SlideShare a Scribd company logo
www.verta.ai Confidential
Robust MLOps with Open-Source: ModelDB,
Docker, Jenkins, and Prometheus
!1
Presented by:
Manasi Vartak
CEO, Verta.ai
Michael Liu
Software Engineer, Verta.ai
Slack (Q&A): http://bit.ly/modeldb-mlops
#webinars
www.verta.ai Confidential
About
!2
• Open-core MLOps Platform for the full model
lifecycle
• Model versioning, deployment & ops, monitoring
• Built for data science; able to run at large scale
Manasi Vartak
CEO, Verta.ai
Michael Liu
Software Engineer,
Verta.ai
MIT CSAIL Ph.D. UCSD, Cognitive Science
Creator of ModelDB —
first OSS model
management and
versioning system
Neural-network based
audio analysis,
everything about Python,

Verta client libs
www.verta.ai Confidential
Agenda
• Part I: Intro to MLOps (15 mins)
• Part II: Building an MLOps Pipeline (30 mins)
• Part III: Questions (10 mins)
!3
Slack (Q&A): http://bit.ly/modeldb-mlops
#webinars
www.verta.ai Confidential
Models have become Easy to Build
!4
from fastai.vision import *
from fastai.metrics import accuracy
data.normalize(imagenet_stats)
learner = create_cnn(data, models.resnet18,
metrics=[accuracy], callback_fns=ShowGraph)
learner.fit_one_cycle(8, max_lr=slice(1e-3,
1e-2))
learner.save('stage-1')
www.verta.ai Confidential
Delivery and Operations of ML-Products is Broken
!5
It used to take us 20+ weeks to bring
a new version of the model into
production.
A predictive readmission model that was
trained, optimized and deployed at a hospital
would start sharply degrading within two to
three months.
www.verta.ai Confidential
Why is ML Delivery and Ops so Hard?
!6
www.verta.ai Confidential!7
Challenge 1. Model Development is empirical & ad-hoc
Model 1
Accuracy: 62%
www.verta.ai Confidential!8
Challenge 1. Model Development is empirical & ad-hoc
Model 3
Accuracy: 76%
val udf1: (Int => Int) = (delayed..)
df.withColumn(“timesDelayed”, udf1)
RandomForestClassifier
www.verta.ai Confidential!9
Challenge 1. Model Development is empirical & ad-hoc
Model 5
Accuracy: 68%
val udf1: (Int => Int) = (delayed..)
df.withColumn(“timesDelayed”, udf1)
RandomForestClassifier
credit-default-clean.csv
val lrGrid = new ParamGridBuilder()
.addGrid(rf.maxDepth, Array(5, 10, 15))
.addGrid(rf.numTrees, Array(50, 100))
www.verta.ai Confidential!10
Challenge 1. Model Development is empirical & ad-hoc
Model 50
Accuracy: 82%
val udf1: (Int => Int) = (delayed..)
df.withColumn(“timesDelayed”, udf1)
RandomForestClassifier
credit-default-clean.csv
val lrGrid = new ParamGridBuilder()
.addGrid(rf.maxDepth, Array(5, 10, 15))
.addGrid(rf.numTrees, Array(50, 100))
val labelIndexer1 = new LabelIndexer()
val labelIndexer2 = new LabelIndexer()
…
val udf1: (Int => Int) = (delayed..)
val udf2: (String, Int) = …
df.withColumn(“timesDelayed”, udf1)
.withColumn(“percentPaid”, udf2)
.withColumn(“creditUsed”, udf3)
val scaler = new StandardScaler()
.setInputCol(“features”) …
www.verta.ai Confidential
Challenge 2. DS/ML vs. Software are Different worlds
!11
• Flexibility

• Prototyping

• Bespoke code

• Robustness

• Scale

• Generalization
www.verta.ai Confidential
Challenge 3. Existing Tools are not ML-Aware
!12
Data Drift Resource Utilization
Optimizations Interdependencies
www.verta.ai Confidential
MLOps: DevOps for ML
!13
www.verta.ai Confidential!14
DevOps: Deliver Software Products Faster, More Reliably
www.verta.ai Confidential!15
Cross-Validation
LIME
Shapley
MLOps: Deliver ML Products Faster, More Reliably
??
www.verta.ai Confidential!16
This talk!
MLOps: Deliver ML Products Faster, More Reliably
www.verta.ai Confidential
Building an MLOps Pipeline with open-source:
Docker, Jenkins, Prometheus
!17
https://github.com/VertaAI/modeldb/tree/master/demos/webinar-2020-5-6
www.verta.ai Confidential
Running Example: TweetTrader
!18
Trader
DOW
NASDAQ
AI company using

social media analytics

to make $$$ … …
NLP
NLP
NLP
www.verta.ai Confidential
Let’s help TweetTrader do MLOps
!19
Package
Step 2:
Docker
Container
Release
Step 3:
Jenkins
Monitor
Step 4:
Prometheus
+ Logs
Trained
Model
Step 1:
Tweet
Model
www.verta.ai Confidential
What happens in the wild?
!20
www.verta.ai Confidential
Scenario: All our new traffic is from Germany
!21
www.verta.ai Confidential!22
Challenge 1. Model Development is empirical & ad-hoc
Model 50
Accuracy: 82%
val udf1: (Int => Int) = (delayed..)
df.withColumn(“timesDelayed”, udf1)
RandomForestClassifier
credit-default-clean.csv
val lrGrid = new ParamGridBuilder()
.addGrid(rf.maxDepth, Array(5, 10, 15))
.addGrid(rf.numTrees, Array(50, 100))
val labelIndexer1 = new LabelIndexer()
val labelIndexer2 = new LabelIndexer()
…
val udf1: (Int => Int) = (delayed..)
val udf2: (String, Int) = …
df.withColumn(“timesDelayed”, udf1)
.withColumn(“percentPaid”, udf2)
.withColumn(“creditUsed”, udf3)
val scaler = new StandardScaler()
.setInputCol(“features”) …
www.verta.ai Confidential!23
www.verta.ai Confidential
Scenario: My colleague has an even better
model
!24
www.verta.ai Confidential!25
www.verta.ai Confidential
What’s missing?
!26
www.verta.ai Confidential!27
Cross-Validation
LIME
Shapley
I was kidding; we haven’t solved the ML part
www.verta.ai Confidential!28
DevOps: Deliver Software Products Faster, More Reliably
www.verta.ai Confidential
In code, every change that we make is tracked
!29
www.verta.ai Confidential
In code, every change that we make is tracked
!30
java.lang.NullPointerException: null
...
...
WebBackend
SHA: ed05334
www.verta.ai Confidential
What about models?
!31
Guten Nacht: Negative
Guten Morgen: Negative
...
...
NLPModel
s3://models/final-bert-March12
??
Code?
Data?
Config?
Env?
www.verta.ai Confidential
What’s missing is ML-specific model versioning
• Uniquely identifies a model
• Enables user to go back in time and fully recreate a model
• Code
• Data
• Config
• Environment
• Allows branching, merging, diffs etc.
• Versioning that integrates into the ML workflow (e.g., library vs. CLI)
!32
www.verta.ai Confidential
ModelDB: open-source model versioning
!33
ModelDB 2.0: https://github.com/VertaAI/modeldb
• Code
• Data
• Config
• Env
• Code
• Data
• Config
• Env
www.verta.ai Confidential
Let’s fix the pipeline
!34
www.verta.ai Confidential
Revised MLOps Pipeline
!35
Package
Step 2:
Docker
Container
Release
Step 3:
Jenkins
Monitor
Step 4:
Prometheus
+ Logs
Trained
Model
Step 1:
Tweet
Model + ModelDB
www.verta.ai Confidential
Step 1: Train a Tweet Classification model +
use ModelDB for versioning
!36
www.verta.ai Confidential
Scenario: All our new traffic is from Germany
!37
www.verta.ai Confidential
Scenario: My colleague has an even better
model
!38
www.verta.ai Confidential
lives!
!39
Trader
www.verta.ai Confidential
Revised MLOps Pipeline
!40
Package
Step 2:
Docker
Container
Release
Step 3:
Jenkins
Monitor
Step 4:
Prometheus
+ Logs
Trained
Model
Step 1:
Tweet
Model + ModelDB
www.verta.ai Confidential
Summary
• Part I: Intro to MLOps
• Part II: Building an MLOps Pipeline
• Basic pipeline: Docker, Jenkins, Prometheus
• Real-world simulations
• Pipeline with versioning: ModelDB, Docker, Jenkins, Prometheus
!41
https://github.com/VertaAI/modeldb/tree/master/demos/webinar-2020-5-6
www.verta.ai Confidential
3 Takeaways
• MLOps is DevOps for ML: it helps you ship ML products faster
• Model Versioning : MLOps :: Git : DevOps
• Robust OSS MLOps: ModelDB + Docker + Jenkins + Prometheus
!42
https://github.com/VertaAI/modeldb/tree/master/demos/webinar-2020-5-6
www.verta.ai Confidential
Thanks!
https://github.com/VertaAI/modeldb | Today’s talk: modeldb/demos/ | Slack: http://bit.ly/modeldb-mlops
!43
Pre-register for our MLOps Salon happening in June!
https://info.verta.ai/ml-ops-event

More Related Content

What's hot (20)

PPTX
MLOps and Data Quality: Deploying Reliable ML Models in Production
Provectus
 
PPTX
From Data Science to MLOps
Carl W. Handlin
 
PDF
Apply MLOps at Scale
Databricks
 
PDF
The A-Z of Data: Introduction to MLOps
DataPhoenix
 
PDF
Ml ops intro session
Avinash Patil
 
PDF
MLOps by Sasha Rosenbaum
Sasha Rosenbaum
 
PPTX
MLOps in action
Pieter de Bruin
 
PDF
Ml ops on AWS
PhilipBasford
 
PPTX
MLOps.pptx
AllenPeter7
 
PDF
Managing the Complete Machine Learning Lifecycle with MLflow
Databricks
 
PPTX
How ChatGPT and AI-assisted coding changes software engineering profoundly
Pekka Abrahamsson / Tampere University
 
PDF
MLOps Virtual Event: Automating ML at Scale
Databricks
 
PDF
MLops workshop AWS
Gili Nachum
 
PDF
Machine Learning Operations & Azure
Erlangen Artificial Intelligence & Machine Learning Meetup
 
PDF
Introdution to Dataops and AIOps (or MLOps)
Adrien Blind
 
PDF
Ml ops past_present_future
Nisha Talagala
 
PDF
Vector databases and neural search
Dmitry Kan
 
PDF
MLOps Using MLflow
Databricks
 
PDF
Machine Learning Model Deployment: Strategy to Implementation
DataWorks Summit
 
PDF
MLOps – Applying DevOps to Competitive Advantage
DATAVERSITY
 
MLOps and Data Quality: Deploying Reliable ML Models in Production
Provectus
 
From Data Science to MLOps
Carl W. Handlin
 
Apply MLOps at Scale
Databricks
 
The A-Z of Data: Introduction to MLOps
DataPhoenix
 
Ml ops intro session
Avinash Patil
 
MLOps by Sasha Rosenbaum
Sasha Rosenbaum
 
MLOps in action
Pieter de Bruin
 
Ml ops on AWS
PhilipBasford
 
MLOps.pptx
AllenPeter7
 
Managing the Complete Machine Learning Lifecycle with MLflow
Databricks
 
How ChatGPT and AI-assisted coding changes software engineering profoundly
Pekka Abrahamsson / Tampere University
 
MLOps Virtual Event: Automating ML at Scale
Databricks
 
MLops workshop AWS
Gili Nachum
 
Introdution to Dataops and AIOps (or MLOps)
Adrien Blind
 
Ml ops past_present_future
Nisha Talagala
 
Vector databases and neural search
Dmitry Kan
 
MLOps Using MLflow
Databricks
 
Machine Learning Model Deployment: Strategy to Implementation
DataWorks Summit
 
MLOps – Applying DevOps to Competitive Advantage
DATAVERSITY
 

Similar to Robust MLOps with Open-Source: ModelDB, Docker, Jenkins, and Prometheus (20)

PDF
Model versioning done right: A ModelDB 2.0 Walkthrough
Manasi Vartak
 
PPTX
Combining Machine Learning Frameworks with Apache Spark
Databricks
 
PDF
Distributed ML in Apache Spark
Databricks
 
PPTX
Combining Machine Learning frameworks with Apache Spark
DataWorks Summit/Hadoop Summit
 
PPTX
Legion - AI Runtime Platform
Alexey Kharlamov
 
PPTX
Open, Secure & Transparent AI Pipelines
Nick Pentreath
 
PPTX
Notes on Deploying Machine-learning Models at Scale
Deep Kayal
 
PDF
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
PyData
 
PDF
mlflow: Accelerating the End-to-End ML lifecycle
Databricks
 
PDF
Managing the Machine Learning Lifecycle with MLflow
Databricks
 
PDF
Key projects in AI, ML and Generative AI
Vijayananda Mohire
 
PDF
Using Machine Learning & Artificial Intelligence to Create Impactful Customer...
Costanoa Ventures
 
PDF
Michelangelo - Machine Learning Platform - 2018
Karthik Murugesan
 
PDF
A survey on Machine Learning In Production (July 2018)
Arnab Biswas
 
PPTX
Top MLOps (machine learning) Tools Of 2024 - TechDogs
SophiaJohnson39
 
PPTX
Serverless Functions and Machine Learning: Putting the AI in APIs
Nordic APIs
 
PPTX
Apache Spark MLlib
Zahra Eskandari
 
PDF
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
Databricks
 
PDF
"Managing the Complete Machine Learning Lifecycle with MLflow"
Databricks
 
PPTX
DevOps and Machine Learning (Geekwire Cloud Tech Summit)
Jasjeet Thind
 
Model versioning done right: A ModelDB 2.0 Walkthrough
Manasi Vartak
 
Combining Machine Learning Frameworks with Apache Spark
Databricks
 
Distributed ML in Apache Spark
Databricks
 
Combining Machine Learning frameworks with Apache Spark
DataWorks Summit/Hadoop Summit
 
Legion - AI Runtime Platform
Alexey Kharlamov
 
Open, Secure & Transparent AI Pipelines
Nick Pentreath
 
Notes on Deploying Machine-learning Models at Scale
Deep Kayal
 
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
PyData
 
mlflow: Accelerating the End-to-End ML lifecycle
Databricks
 
Managing the Machine Learning Lifecycle with MLflow
Databricks
 
Key projects in AI, ML and Generative AI
Vijayananda Mohire
 
Using Machine Learning & Artificial Intelligence to Create Impactful Customer...
Costanoa Ventures
 
Michelangelo - Machine Learning Platform - 2018
Karthik Murugesan
 
A survey on Machine Learning In Production (July 2018)
Arnab Biswas
 
Top MLOps (machine learning) Tools Of 2024 - TechDogs
SophiaJohnson39
 
Serverless Functions and Machine Learning: Putting the AI in APIs
Nordic APIs
 
Apache Spark MLlib
Zahra Eskandari
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
Databricks
 
"Managing the Complete Machine Learning Lifecycle with MLflow"
Databricks
 
DevOps and Machine Learning (Geekwire Cloud Tech Summit)
Jasjeet Thind
 
Ad

Recently uploaded (20)

PPTX
Revolutionizing Code Modernization with AI
KrzysztofKkol1
 
DOCX
Import Data Form Excel to Tally Services
Tally xperts
 
PDF
Alarm in Android-Scheduling Timed Tasks Using AlarmManager in Android.pdf
Nabin Dhakal
 
PDF
Odoo CRM vs Zoho CRM: Honest Comparison 2025
Odiware Technologies Private Limited
 
PPTX
How Apagen Empowered an EPC Company with Engineering ERP Software
SatishKumar2651
 
PPTX
Engineering the Java Web Application (MVC)
abhishekoza1981
 
PPTX
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
PPTX
Comprehensive Guide: Shoviv Exchange to Office 365 Migration Tool 2025
Shoviv Software
 
PPTX
Platform for Enterprise Solution - Java EE5
abhishekoza1981
 
PDF
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pdf
Varsha Nayak
 
PDF
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
PDF
Executive Business Intelligence Dashboards
vandeslie24
 
PPTX
Writing Better Code - Helping Developers make Decisions.pptx
Lorraine Steyn
 
PPTX
3uTools Full Crack Free Version Download [Latest] 2025
muhammadgurbazkhan
 
PDF
Unlock Efficiency with Insurance Policy Administration Systems
Insurance Tech Services
 
PDF
vMix Pro 28.0.0.42 Download vMix Registration key Bundle
kulindacore
 
PDF
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
PPTX
MiniTool Power Data Recovery Full Crack Latest 2025
muhammadgurbazkhan
 
PDF
Thread In Android-Mastering Concurrency for Responsive Apps.pdf
Nabin Dhakal
 
PPTX
Equipment Management Software BIS Safety UK.pptx
BIS Safety Software
 
Revolutionizing Code Modernization with AI
KrzysztofKkol1
 
Import Data Form Excel to Tally Services
Tally xperts
 
Alarm in Android-Scheduling Timed Tasks Using AlarmManager in Android.pdf
Nabin Dhakal
 
Odoo CRM vs Zoho CRM: Honest Comparison 2025
Odiware Technologies Private Limited
 
How Apagen Empowered an EPC Company with Engineering ERP Software
SatishKumar2651
 
Engineering the Java Web Application (MVC)
abhishekoza1981
 
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
Comprehensive Guide: Shoviv Exchange to Office 365 Migration Tool 2025
Shoviv Software
 
Platform for Enterprise Solution - Java EE5
abhishekoza1981
 
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pdf
Varsha Nayak
 
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
Executive Business Intelligence Dashboards
vandeslie24
 
Writing Better Code - Helping Developers make Decisions.pptx
Lorraine Steyn
 
3uTools Full Crack Free Version Download [Latest] 2025
muhammadgurbazkhan
 
Unlock Efficiency with Insurance Policy Administration Systems
Insurance Tech Services
 
vMix Pro 28.0.0.42 Download vMix Registration key Bundle
kulindacore
 
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
MiniTool Power Data Recovery Full Crack Latest 2025
muhammadgurbazkhan
 
Thread In Android-Mastering Concurrency for Responsive Apps.pdf
Nabin Dhakal
 
Equipment Management Software BIS Safety UK.pptx
BIS Safety Software
 
Ad

Robust MLOps with Open-Source: ModelDB, Docker, Jenkins, and Prometheus