SlideShare a Scribd company logo
Mike Farman
Product Manager, Alfresco
Peter Monks
Director, Professional Services, Alfresco
Derek Hulley
Senior Engineer, Alfresco




2
Many areas to consider...

• Core Repository
• Web-tier load balancing and caching
• Scale-up/scale out - horizontal vs. vertical
• Components tuning
• Replication strategies (3.4)
• Profiling and benchmarking
• ....


We‟re going to focus on the Core Repository

4
What happens when you create a node?
         1
   Begin
Transaction
                        3                  4                                                  8
         2     Write                                                   5
  Create                          Update DB                    Begin           Commit
              stream                                                         (Transaction ID for
node in DB                       content URL                  Commit           IndexTracking)
              to disk
                                                                        6             9
                                                              Transform       Add to L2
                                                            (extract) Text     Cache


                                                               Update 7
                                                            Index (Props
                                                             & Content)
                            Content Indexing
                            automatically moved to
                            background if text extraction               7a
                            exceeds 20 ms                   Index Fulltext
5                                                           (Background)
What happens when you querying for nodes?


           1             2                   3
  Query                           Batch                     4            5
               Results Set                       In Cache       Result Set
(Lucene)                         Pre-fetch
                                                        4a
                                                 DB Fetch




             Check 6               Deliver 7
           Permissions             Results
       - Max Permission Checks
       - Timeout




6
What happens when you read a nodes content?


             1                           4          5
    Node Read              2
                                Fetch         Stream
                  Cached
     Request                   Content       Response
                           3
                 DB Lookup




7
Example Use Cases:

• UC01: Bulk Loading
    • High batch throughput, ongoing
       • e.g. scanning, archival solutions, systems of record
    • Migration
       • One-off migration to Alfresco from legacy system
          • Then UC02...
• UC02: Enterprise Collaboration Platform
    • Concurrent users, variety of interfaces
    • e.g. Team/Project Collaboration, Document/Knowledge
      Management




8
Typical Characteristics
• Large number of documents and throughput
     • 10‟s thousands documents injected per day, often during nightly hours
     • 10‟s million documents per year
• Low User concurrency
     • 100-1000 users (read only access)
• Application profile – System of Record
     •   End users mostly search & read
     •   Document formats: PDF, TIFF, JPG (i.e. no full text indexing)
     •   Typically fixed metadata
     •   No or little version control
     •   Few to no rules, actions, workflows, content transformations
• Client Interfaces
     • Share/Explorer or Custom e.g. Web Scripts, CMIS
     • Typically little CIFS/WebDAV/FTP


10
Primary Objective is to Maximise Throughput
• Parallel processing
     • Load nodes simultaneously
• Avoid unnecessary in-transaction processing
     • In-transaction services often not required when loading
        • e.g. Transformation, Indexing
• Disable unneeded services
     • Many standard services are not required when loading
• Minimise network and file I/O operations
     • Get source content as close to server storage as possible


• Always benchmark and tune...
     • JVM, Network, Threads, DB Connections...

12
Architectural considerations
• Creation is CPU, memory, network intensive
     • Always 64 bit
     • Rule of thumb: Prefer scale up over scale out – simpler deployment and
       management
     • Rule of thumb: get the content as close as possible to Alfresco
• Nature of the data set (i.e. batches) is KEY
     • If batches are sequential -> minimize time-per-batch
          • Scale up in CPU and memory
     • If batches are parallelizable -> maximize number of batches processed
          • Scale out with multi-threaded uploads
     • Consider dedicated server(s) for ingestion
          • Use production servers for migration use case and then reconfigure
• Design content storage around your data
     • How can you get the source content as close as possible to repository content
       storage?
• Note: Avoid Sparc T and related series
     • Highly parallel but not suited for atomic heavy serial operations

13
Tuning best practices - JVM                       Tuning – Application Server

• 64 bit                                          • Pay attention to the
• Make NewSize as large as                          machine capacity i.e.
  possible to avoid spill over                       • Threads
  to OldGen                                          • CPU Utilization
                                                     • I/O
• See
     http://wiki.alfresco.com/wiki/JVM_Tuning

                           Sample JVM Config: 64-bit, dual 2.6GHz
                           Xeon / dual-core per CPU , 8GB RAM
                           environment

                           -server
                           -Xss1M
                           -Xms2G
                           -Xmx3G
                           -XX:NewSize=1G
                           -XX:MaxPermSize=256M
16
Bad    Good 




17
Tuning best practices – I/O
• Network
     • Alfresco to Database is Key
         • Latency is key e.g. > 10ms is absolute max
         • JDBC fetch size should be 150
             • See BP-1_Alfresco_Environment_Validation_and_Day_Zero_Configuration
     • Alfresco to storage (if remote)
         • If possible, avoid it completely for file transfers - Stage content on local disks
         • Use a dedicated network for storage e.g. Fibre channel
     • Incoming to Alfresco – Typically not relevant for bulk loading use case

• Disk
     • Lucene index operations' are disk I/O intensive
         • Fast read/writes i.e. local disk
         • Avoid indexing if not required
     • Avoid unnecessary content file copying
         • Stage content on local disks
         • Consider set cm:content property directly e.g.
             • contentUrl=store://mypath/mydocument.docx|mimetype=application/vnd.openxmlformats-
               officedocument.wordprocessingml.document|size=51142|encoding=UTF-8|locale=en_GB_

18
Tuning best practices - Database
• Connections – Relevant if you are loading concurrently
     • See BP-1_Alfresco_Environment_Validation_and_Day_Zero_Configuration
• DB Indexes & Statistics
     • Plan your batch loads to allow for periodic statistics maintenance
• Make sure the database hardware/software is sized
appropriately e.g.
     • Log sizes, flush on transaction commit, cache tuning, lock
       management....
     • Use of multiple physical volumes/RAID....
•All databases provide many options to optimise
performance
     • Get a DB administrator, partner involved


19
Tuning best practice - Repository Services

• Force background indexing
     • alfresco-global.properties
         • Everything: index.tracking.disableInTransactionIndexing=true
         • Just Content: lucene.maxAtomicTransformationTime=0
     • Is content indexing required at all?
         • DoNotIndex aspect


• “Run As” system user to avoid permission checking




20
Tuning best practice - Repository Services
• Use an optimised custom bulk loader
     • Process docs in batches - not 1 doc per transaction or 1 transaction for entire
       content set
         • Example: 100 documents per batch
     • Use Foundation (Java) API if possible
• Design multi-threaded import code
     • Partition your data set so you can use multiple threads loading in different areas
     • Scale up CPU accordingly
•Consider direct APIs (e.g. “NodeService” vs “nodeService”)
     • Public services are heavily wrapped with interceptors for transactions, auditing,
       permissions, multilingual translations, etc.
• Disable behaviours
     • Rules evaluations, cm:auditable, versioning, quotas (system.usages.enabled=false)
•Use proper transaction demarcation
     • Complete all operations on a node in a single transaction
     • Batching – group multiple updates in a single transaction
     • Avoid mixing reads and writes
• See session CS2-Repository_Internals for more details on API specifics
21
Tuning best practices – Repository Services

• Disable modified timestamp propagation to parent folders
     • system.enableTimestampPropagation=false (default)
• Deleting large numbers of nodes
     • Skip deleted items (archive) by adding sys:temporary aspect your
       content before deletion
• Partition your content within the repository
     • Depends on read access requirements
     • Consider partitioning more than 2000 nodes per space if browsing
       space children
        Note: Performance much improved in later releases 3.3.3, 3.4 –
          test for your use case


22
Scale Out Using Dedicated Bulk Load Server(s)

• Alfresco can support a non-clustered injection only tier

     • Objective: Separate input write process from front end read load

     • Solution: Dedicated injection tier pointing to same DB/Content
       store(s) as front end servers. No need to cluster caches from this
       tier with the front end. Background index properties and/or content,
       indexes will catch up from DB transactions.

     • Benefits: No Cache update/invalidation overhead. Indexing does not
       block loading process



24
Bulk load server(s) not clustered but share storage and DB
  product servers will „catch up‟ via index tracking
Bulk Load Process                                                         Runtime Clients
Creates Only
 Bulk Load A             Bulk Load B                   Production A            Production B            Production C


      Tomcat                  Tomcat                        Tomcat                   Tomcat                  Tomcat



      EHCache                 EHCache                       EHCache                 EHCache                 EHCache




                Lucene                  Lucene                        Lucene                  Lucene                  Lucene
                 Index                   Index                         Index                   Index                   Index




                                                          Database
                                             Content
                                                                MySQL
                                              Store




 25
Load Server(s) Configuration Tips
• Bulk Load Server(s)
     • To exclude servers(s) from cluster:
        • Do not set cluster name for bulk load servers in alfresco-global.properties
           • alfresco.cluster.name=
     • Force background indexing in the local alfresco-global.properties using:
        • Everything:
           • index.tracking.disableInTransactionIndexing=true
        • Just Content:
           • lucene.maxAtomicTransformationTime=0
     • Note: The load process should perform creates only, no updates or
       reads
• Production Server(s)
     • Ensure index tracking is enabled:
        • index.tracking.cronExpression=0/5 * * * * ?
        • index.recovery.mode=AUTO



26
Example: In-transaction v‟s Background Indexing

• 10,000 docs, 1,000 folders
• 50kb word documents
• FTP with 10 sessions
• Laptop

• Foreground Indexing:
     • 33 mins
• Background Indexing:
     • 5 mins



27
UC02: Enterprise Collaboration Platform




29
Requirements
• High (and potentially highly distributed) user concurrency
     •   1,000‟s -10,000‟s users (read & write)
     •   Medium/High number of documents
     •   10,000-1 million+ documents
     •   1000 document updates per day
• Complex enterprise content and permission models
     • Multiple content models/Dynamic ACL
     • Versioning and full text indexing on all documents
     • Document types: Office, drawing, images
• Advanced content management
     • Multiple rules and actions
     • Heavy use of content transformations/workflow
•Interfaces (All)
     • Share, WebDAV, CIFS ....


30
Architectural considerations
• Fully fledged platform deployment
     • Need to consider maintenance window
• Scale out Share independently from Repo
     • Front and intermediate Load balancer/Web Cache layers
     • Read/write split and scheduled repository exclusion for maintenance
• Scale out transformation server
     • Enterprise only: JOD OpenOffice subsystem
• Scale out and up infrastructure
     • Cluster CIFS with DFS (Distributed File System)
     • All HTTP based protocols scale seamlessly (SSP on port 7070)
•Balance multi-CPU (scale up) and multi-node clusters (scale out)
     • Overhead of index tracking


31
Design best practices
• Distribute your content within the repository
     • Otherwise search and retrieval performance degradation is likely
     • Use versioning and indexing where appropriate, not just because it‟s
       there..
     • e.g. don‟t simply apply cm:versionable to the full cm:content
• Modelling
     • Prefer aspects over types
        • Remember aspects support inheritance as well
     • Content Model indexing options
        • Tune what you need to index
• Quotas (aka Usages)
     • Might save your repo from content explosion but also have an
       overhead!


32
Tuning best practices – Note: Also see bulk load use case!
• RDBMS
     • Number of connections much more important for this use case
     • Formula: HTTP Worker Threads + 75 per cluster node
         • For Tomcat defaults this is 275
• Cache Configuration
     • L2 Cache: increase with RAM to include more objects in cache
     • Use ehcache tracing tool to indentify which caches have low hit ratios and increase if you have available memory
     • See http://wiki.alfresco.com/wiki/Repository_Cache_Configuration#Tracing_cache_sizes for details
• Alfresco Configuration optimization
     • VFS thread pool tuning (default: <threadPool init=“25” max=“50” />)
     • Tune ACLs and preload common searches (if needed)
         system.acl.maxPermissionCheckTimeMillis=10000
         system.acl.maxPermissionChecks=10000
         Query via node browser as different users, not only admin
     • Consider bulk load large user bases (10,000s) to single (un-clustered) node and then cluster
         • Disable eager home folder creation
                •   home.folder.creation.eager=false in alfresco-globallproperties
     • Use multi-threaded and incremental LDAP sync once initial sync has been completed
         • Differential sync is the default
• Lucene Tuning
     • Lucene.maxAtomicTransformationTime=20
• Monitor the network performance when adding nodes to a cluster
     • What for ehcache waiting for the network via thread dumps
     • Consider disabling some/all of the L2 caches




33
HTTP Clients
                                                                                                     Example Windows ECM
                                                                            CIFS
                                           e.g. Share                  via alfrescocifs            Production
                                                                                                     Cluster Install
                                            HTTP Load Balancer       DFS Round Robin                 - Local & Shared Content
                                                                                                     Store              Active
                                                                                                                     Directory
                                                                                                     User/Group Sync
                                                                                                     NTLM Authentication

                                  alfappsrv01                                        alfappsrv02

                                        Tomcat 1                                   Tomcat 2
                       Local                                                                               Local
                      alf_data                                                                            alf_data
• Lucene Index                                                                                                       • Lucene Index
                                        EHCache              Clustered             EHCache                              d:alf_storelucene-indexes
   d:alf_storelucene-indexes
• Content Store                                                                                                      • Content Store
   d:alf_storecontentstore                                                                                            d:alf_storecontentstore
   In & Outbound Replication                                                                                            In & Outbound Replication to
                                                                                                                     shared content store on SAN

                                                                  JDBC
                                                                  oraclecluster

                                 alfclustsrv01                                       alfclustsrv02

 • Replicating Content Store                                                                             • Replicating Content Store
                                         Oracle 1                                  Oracle 2
 In & Outbound replication                                 <- Failover ->                                In & Outbound replication
 between local and shared                                                                                between local and shared
 content store                                                                                           content store
                                                                                     MSCS Cluster


                                                               SAN


                                 • Shared Content Store: sharedContentStore (alfdataDatastore)
                                 • Oracle:
                                    - Data (o:oradataalfresco), Control (o:oradataalfresco) & Logfiles (L:oradataalfresco)
                                    - Oracle Backup (o:flash_recovery_area)
                                 • Lucene Index Backup (alfdataHold)
Replication (3.4) offers new deployment options

• Replication may be appropriate for specific contexts
     • Provides selective replication of content between distinct Alfresco
       repositories
     • On demand or scheduled via Replication Jobs
     • Reporting and Tracking of Replication Jobs


• Read and viewing performance: Content is served from a
local server




35
For any system...
• Do not use the OOTB settings for application server, database etc
Alfresco you must always tune for your use case
• Balance your resources
     • Separate tiers for DataBase, Content, App Servers
• Indexes should always be on fast, local disk e.g. not NFS mounts,
USB drives etc
• Run on a supported stack e.g.
     • e.g. issues with 1.6u10 use JDK 1.6u.20, use MySQL 5.1.39 or later
• Don‟t starve your database of connections:
     • db.pool.max=XXX
• Use appropriate application server worker threads
     • Configuration details are application server specific e.g. Tomcat: server.xml
• When clustering, use JGroups and Unicast
• Use the latest Alfresco version/service pack e.g.
     • 3.3.3, 3.4


36
Things you should NOT change

• The database transaction isolation level
     • Use defaults for all databases except MS SQLServer
     • FYI. SQLServer should be:
        • db.txn.isolation=4096
        • ALTER DATABASE alfresco SET ALLOW_SNAPSHOT_ISOLATION ON;

• The ehcache default configuration i.e. Replicate async
• The Lucene indexing defaults unless you know what you
are doing and why!
• Note: Also do not do a full-index rebuild unless you know
what was wrong in the first place!
     • Use the index checker

37
Benchmark your solutions




38
Alfresco Benchmarks

• Alfresco Benchmark Tools
     • alfresco-bm – http://wiki.alfresco.com/wiki/Server_Benchmarks
     • SimpleInjector – (check partners.alfresco.com)
     • For CIFS loading -> Jmeter + SMB mount
• Alfresco Benchmark Results
     • Unisys benchmark results
     • JCR Benchmarks
• WIP
     • “Scale your Alfresco Solutions” (in http://partners.alfresco.com)
     • More Platform benchmark ongoing – watch this space!



39
Profiling your Alfresco solution
•Alfresco Application Profiling
     • JMX (for Enterprise Only see Admin Guide)
       http://wiki.alfresco.com/wiki/JMX
     • Audit Surf
       http://forge.alfresco.com/projects/auditsurf/
     • Nagios integration
       http://forge.alfresco.com/projects/nagios4alfresco/
• Infrastructure Profiling
     • VisualVM (JVM)
       http://ur.ly/esjZ
     • Thread Dump Analyzer
     • https://tda.dev.java.net/
     • YourKit (JVM)
       http://wiki.alfresco.com/wiki/JMX
     • WireShark (Network)
       http://www.wireshark.org/
     • Mysql Query Profiler (DBMS)
       http://dev.mysql.com/tech-resources/articles/using-new-query-profiler.html



40
Q/A & Feedback

• Any Questions?
• Share your experiences (good and bad) with us so we can
all learn!
     •   Successful scaled up/out architectures
     •   Limitations, bottlenecks
     •   Use case parameters => Implementation => Results
     •   What worked, what didn‟t




43

More Related Content

What's hot (20)

PPTX
Alfresco Certificates
Angel Borroy López
 
PDF
Alfresco in an hour
Alfresco Software
 
PPTX
Alfresco search services: Now and Then
Angel Borroy López
 
PPTX
Hive: Loading Data
Benjamin Leonhardi
 
PDF
Streaming SQL with Apache Calcite
Julian Hyde
 
PPTX
Alfresco DevCon 2019 Performance Tools of the Trade
Luis Colorado
 
PDF
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
PPTX
Upgrading to Alfresco 6
Angel Borroy López
 
PDF
Guide to alfresco monitoring
Miguel Rodriguez
 
PDF
Continuous Application with FAIR Scheduler with Robert Xue
Databricks
 
PDF
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
PDF
Hive tuning
Michael Zhang
 
PDF
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
PDF
Removing performance bottlenecks with Kafka Monitoring and topic configuration
Knoldus Inc.
 
PPTX
Moving Gigantic Files Into and Out of the Alfresco Repository
Jeff Potts
 
PDF
The basics of fluentd
Treasure Data, Inc.
 
PPT
Replacing Your Shared Drive with Alfresco - Open Source ECM
Alfresco Software
 
PDF
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
PPT
Dataguard presentation
Vimlendu Kumar
 
PDF
Changelog Stream Processing with Apache Flink
Flink Forward
 
Alfresco Certificates
Angel Borroy López
 
Alfresco in an hour
Alfresco Software
 
Alfresco search services: Now and Then
Angel Borroy López
 
Hive: Loading Data
Benjamin Leonhardi
 
Streaming SQL with Apache Calcite
Julian Hyde
 
Alfresco DevCon 2019 Performance Tools of the Trade
Luis Colorado
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Upgrading to Alfresco 6
Angel Borroy López
 
Guide to alfresco monitoring
Miguel Rodriguez
 
Continuous Application with FAIR Scheduler with Robert Xue
Databricks
 
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
Hive tuning
Michael Zhang
 
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
Removing performance bottlenecks with Kafka Monitoring and topic configuration
Knoldus Inc.
 
Moving Gigantic Files Into and Out of the Alfresco Repository
Jeff Potts
 
The basics of fluentd
Treasure Data, Inc.
 
Replacing Your Shared Drive with Alfresco - Open Source ECM
Alfresco Software
 
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Dataguard presentation
Vimlendu Kumar
 
Changelog Stream Processing with Apache Flink
Flink Forward
 

Viewers also liked (20)

PPT
Alfresco As SharePoint Alternative - Architecture Overview
Alfresco Software
 
PDF
Alfresco 5.2 REST API
J V
 
PPT
Alfresco In An Hour - Document Management, Web Content Management, and Collab...
Alfresco Software
 
PPTX
The Alfresco ECM 1 Billion Document Benchmark on AWS and Aurora - Benchmark ...
Symphony Software Foundation
 
PPTX
Intro to Alfresco for Developers
Jeff Potts
 
PDF
Alfresco in few points - Search Tutorial
PASCAL Jean Marie
 
PDF
Alfresco Day Roma 2015: Full Stack Load Testing
Alfresco Software
 
PDF
Scaling the Content Repository with Elasticsearch
Nuxeo
 
PDF
Alfresco Day Roma 2015: Big Repository
Alfresco Software
 
PDF
Getting to know alfresco 4
Paul Hampton
 
PPTX
Alfresco Search Internals
Alfresco Software
 
PDF
Alfresco Content Modelling and Policy Behaviours
J V
 
PDF
Alfresco & Kofax - scan, manage, collaborate
Alfresco Software
 
PDF
The power of faceted search in alfresco
XeniT Solutions nv
 
PDF
Alfresco Day Roma 2015: Alfresco Activiti
Alfresco Software
 
PDF
Alfresco Security Best Practices 2012
Toni de la Fuente
 
PDF
Apache Chemistry: The Alfresco Open Source Implementation of CMIS
Alfresco Software
 
PPT
Enterprise Content Management Migration Best Practices Feat Migrations From...
Alfresco Software
 
PDF
Alfresco Day Amsterdam 2015 - Alfresco One Product Suite Update + Demo
Alfresco Software
 
PDF
Installing and Getting Started with Alfresco
Wildan Maulana
 
Alfresco As SharePoint Alternative - Architecture Overview
Alfresco Software
 
Alfresco 5.2 REST API
J V
 
Alfresco In An Hour - Document Management, Web Content Management, and Collab...
Alfresco Software
 
The Alfresco ECM 1 Billion Document Benchmark on AWS and Aurora - Benchmark ...
Symphony Software Foundation
 
Intro to Alfresco for Developers
Jeff Potts
 
Alfresco in few points - Search Tutorial
PASCAL Jean Marie
 
Alfresco Day Roma 2015: Full Stack Load Testing
Alfresco Software
 
Scaling the Content Repository with Elasticsearch
Nuxeo
 
Alfresco Day Roma 2015: Big Repository
Alfresco Software
 
Getting to know alfresco 4
Paul Hampton
 
Alfresco Search Internals
Alfresco Software
 
Alfresco Content Modelling and Policy Behaviours
J V
 
Alfresco & Kofax - scan, manage, collaborate
Alfresco Software
 
The power of faceted search in alfresco
XeniT Solutions nv
 
Alfresco Day Roma 2015: Alfresco Activiti
Alfresco Software
 
Alfresco Security Best Practices 2012
Toni de la Fuente
 
Apache Chemistry: The Alfresco Open Source Implementation of CMIS
Alfresco Software
 
Enterprise Content Management Migration Best Practices Feat Migrations From...
Alfresco Software
 
Alfresco Day Amsterdam 2015 - Alfresco One Product Suite Update + Demo
Alfresco Software
 
Installing and Getting Started with Alfresco
Wildan Maulana
 
Ad

Similar to Scale your Alfresco Solutions (20)

PDF
BP-1 Performance and Scalability
Alfresco Software
 
PDF
BP-3 Taking Your Bulk Content Ingestions to the Next Level
Alfresco Software
 
PDF
Alfresco 4: Scalability and Performance
Alfresco Software
 
PDF
Alfresco scalability and performnce
Paul Hampton
 
PDF
Whats new in alfresco community 3.4
Alfresco Software
 
PPT
Alfresco Web Content Management Roadmap - 3.2 and Beyond
Alfresco Software
 
PDF
Alfresco - Lunch and Learn - Fall 2010
TechSolCom
 
PDF
alfresco-global.properties-COMPLETO-3.4.6
alfrescosedemo
 
PDF
Developer’s intro to the alfresco platform
Alfresco Software
 
PDF
Getting to Know Alfresco 4
Alfresco Software
 
PDF
Alfresco content platform for oem
Alfresco Software
 
PDF
Building and deploying large scale real time news system with my sql and dist...
Tao Cheng
 
PDF
Alfresco CMS (ECMS) - Businessware Technologies
asimzaman
 
PDF
What's new in alfresco enterprise 3 3
Alfresco Software
 
PDF
Alfresco Novidades 3.3
Vitor Lourenço
 
PPTX
10 things you need to know to deliver a successful Alfresco project
Symphony Software Foundation
 
PDF
ECM Decision Matrix - Deciding Between Alfresco Community Edition, Alfresco E...
Alfresco Software
 
PDF
Enterprise Content Management 101 for the Hospitality Industry
Alfresco Software
 
PDF
Pervasive content management
Alfresco Software
 
PPT
Empowering Next Generation Media
Ricardo Piccoli
 
BP-1 Performance and Scalability
Alfresco Software
 
BP-3 Taking Your Bulk Content Ingestions to the Next Level
Alfresco Software
 
Alfresco 4: Scalability and Performance
Alfresco Software
 
Alfresco scalability and performnce
Paul Hampton
 
Whats new in alfresco community 3.4
Alfresco Software
 
Alfresco Web Content Management Roadmap - 3.2 and Beyond
Alfresco Software
 
Alfresco - Lunch and Learn - Fall 2010
TechSolCom
 
alfresco-global.properties-COMPLETO-3.4.6
alfrescosedemo
 
Developer’s intro to the alfresco platform
Alfresco Software
 
Getting to Know Alfresco 4
Alfresco Software
 
Alfresco content platform for oem
Alfresco Software
 
Building and deploying large scale real time news system with my sql and dist...
Tao Cheng
 
Alfresco CMS (ECMS) - Businessware Technologies
asimzaman
 
What's new in alfresco enterprise 3 3
Alfresco Software
 
Alfresco Novidades 3.3
Vitor Lourenço
 
10 things you need to know to deliver a successful Alfresco project
Symphony Software Foundation
 
ECM Decision Matrix - Deciding Between Alfresco Community Edition, Alfresco E...
Alfresco Software
 
Enterprise Content Management 101 for the Hospitality Industry
Alfresco Software
 
Pervasive content management
Alfresco Software
 
Empowering Next Generation Media
Ricardo Piccoli
 
Ad

More from Alfresco Software (20)

PPTX
Alfresco Day Benelux Inholland studentendossier
Alfresco Software
 
PPTX
Alfresco Day Benelux Hogeschool Inholland Records Management application
Alfresco Software
 
PPTX
Alfresco Day BeNelux: Customer Success Showcase - Saxion Hogescholen
Alfresco Software
 
PPTX
Alfresco Day BeNelux: Customer Success Showcase - Gemeente Amsterdam
Alfresco Software
 
PPTX
Alfresco Day BeNelux: The success of Alfresco
Alfresco Software
 
PDF
Alfresco Day BeNelux: Customer Success Showcase - Credendo Group
Alfresco Software
 
PDF
Alfresco Day BeNelux: Digital Transformation - It's All About Flow
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Activiti – ein Katalysator für die DMS-Strategie be...
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Elektronische Geschäftsprozesse auf Basis von Alfre...
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Alfrescos neue Rest API
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Support Tools für die Admin-Konsole
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Entwickeln mit Alfresco
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Activiti goes enterprise: Die Evolution der BPM Sui...
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Partner Lightning Talk: Westernacher
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Bringing Content & Process together with the App De...
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: Partner Lightning Talk - it-novum
Alfresco Software
 
PDF
Alfresco Day Vienna 2016: How to Achieve Digital Flow in the Enterprise - Joh...
Alfresco Software
 
PDF
Alfresco Day Warsaw 2016 - Czy możliwe jest spełnienie wszystkich regulacji p...
Alfresco Software
 
PDF
Alfresco Day Warsaw 2016: Identyfikacja i podpiselektroniczny - Safran
Alfresco Software
 
PDF
Alfresco Day Warsaw 2016: Advancing the Flow of Digital Business
Alfresco Software
 
Alfresco Day Benelux Inholland studentendossier
Alfresco Software
 
Alfresco Day Benelux Hogeschool Inholland Records Management application
Alfresco Software
 
Alfresco Day BeNelux: Customer Success Showcase - Saxion Hogescholen
Alfresco Software
 
Alfresco Day BeNelux: Customer Success Showcase - Gemeente Amsterdam
Alfresco Software
 
Alfresco Day BeNelux: The success of Alfresco
Alfresco Software
 
Alfresco Day BeNelux: Customer Success Showcase - Credendo Group
Alfresco Software
 
Alfresco Day BeNelux: Digital Transformation - It's All About Flow
Alfresco Software
 
Alfresco Day Vienna 2016: Activiti – ein Katalysator für die DMS-Strategie be...
Alfresco Software
 
Alfresco Day Vienna 2016: Elektronische Geschäftsprozesse auf Basis von Alfre...
Alfresco Software
 
Alfresco Day Vienna 2016: Alfrescos neue Rest API
Alfresco Software
 
Alfresco Day Vienna 2016: Support Tools für die Admin-Konsole
Alfresco Software
 
Alfresco Day Vienna 2016: Entwickeln mit Alfresco
Alfresco Software
 
Alfresco Day Vienna 2016: Activiti goes enterprise: Die Evolution der BPM Sui...
Alfresco Software
 
Alfresco Day Vienna 2016: Partner Lightning Talk: Westernacher
Alfresco Software
 
Alfresco Day Vienna 2016: Bringing Content & Process together with the App De...
Alfresco Software
 
Alfresco Day Vienna 2016: Partner Lightning Talk - it-novum
Alfresco Software
 
Alfresco Day Vienna 2016: How to Achieve Digital Flow in the Enterprise - Joh...
Alfresco Software
 
Alfresco Day Warsaw 2016 - Czy możliwe jest spełnienie wszystkich regulacji p...
Alfresco Software
 
Alfresco Day Warsaw 2016: Identyfikacja i podpiselektroniczny - Safran
Alfresco Software
 
Alfresco Day Warsaw 2016: Advancing the Flow of Digital Business
Alfresco Software
 

Recently uploaded (20)

PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PDF
Wojciech Ciemski for Top Cyber News MAGAZINE. June 2025
Dr. Ludmila Morozova-Buss
 
PDF
Building Resilience with Digital Twins : Lessons from Korea
SANGHEE SHIN
 
PDF
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
PPTX
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
PDF
Persuasive AI: risks and opportunities in the age of digital debate
Speck&Tech
 
PDF
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Smart Air Quality Monitoring with Serrax AQM190 LITE
SERRAX TECHNOLOGIES LLP
 
PPTX
Top iOS App Development Company in the USA for Innovative Apps
SynapseIndia
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
PPTX
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
PPTX
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
Wojciech Ciemski for Top Cyber News MAGAZINE. June 2025
Dr. Ludmila Morozova-Buss
 
Building Resilience with Digital Twins : Lessons from Korea
SANGHEE SHIN
 
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
Persuasive AI: risks and opportunities in the age of digital debate
Speck&Tech
 
Why Orbit Edge Tech is a Top Next JS Development Company in 2025
mahendraalaska08
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Smart Air Quality Monitoring with Serrax AQM190 LITE
SERRAX TECHNOLOGIES LLP
 
Top iOS App Development Company in the USA for Innovative Apps
SynapseIndia
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Complete JavaScript Notes: From Basics to Advanced Concepts.pdf
haydendavispro
 
Building a Production-Ready Barts Health Secure Data Environment Tooling, Acc...
Barts Health
 
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 

Scale your Alfresco Solutions

  • 1. Mike Farman Product Manager, Alfresco Peter Monks Director, Professional Services, Alfresco Derek Hulley Senior Engineer, Alfresco 2
  • 2. Many areas to consider... • Core Repository • Web-tier load balancing and caching • Scale-up/scale out - horizontal vs. vertical • Components tuning • Replication strategies (3.4) • Profiling and benchmarking • .... We‟re going to focus on the Core Repository 4
  • 3. What happens when you create a node? 1 Begin Transaction 3 4 8 2 Write 5 Create Update DB Begin Commit stream (Transaction ID for node in DB content URL Commit IndexTracking) to disk 6 9 Transform Add to L2 (extract) Text Cache Update 7 Index (Props & Content) Content Indexing automatically moved to background if text extraction 7a exceeds 20 ms Index Fulltext 5 (Background)
  • 4. What happens when you querying for nodes? 1 2 3 Query Batch 4 5 Results Set In Cache Result Set (Lucene) Pre-fetch 4a DB Fetch Check 6 Deliver 7 Permissions Results - Max Permission Checks - Timeout 6
  • 5. What happens when you read a nodes content? 1 4 5 Node Read 2 Fetch Stream Cached Request Content Response 3 DB Lookup 7
  • 6. Example Use Cases: • UC01: Bulk Loading • High batch throughput, ongoing • e.g. scanning, archival solutions, systems of record • Migration • One-off migration to Alfresco from legacy system • Then UC02... • UC02: Enterprise Collaboration Platform • Concurrent users, variety of interfaces • e.g. Team/Project Collaboration, Document/Knowledge Management 8
  • 7. Typical Characteristics • Large number of documents and throughput • 10‟s thousands documents injected per day, often during nightly hours • 10‟s million documents per year • Low User concurrency • 100-1000 users (read only access) • Application profile – System of Record • End users mostly search & read • Document formats: PDF, TIFF, JPG (i.e. no full text indexing) • Typically fixed metadata • No or little version control • Few to no rules, actions, workflows, content transformations • Client Interfaces • Share/Explorer or Custom e.g. Web Scripts, CMIS • Typically little CIFS/WebDAV/FTP 10
  • 8. Primary Objective is to Maximise Throughput • Parallel processing • Load nodes simultaneously • Avoid unnecessary in-transaction processing • In-transaction services often not required when loading • e.g. Transformation, Indexing • Disable unneeded services • Many standard services are not required when loading • Minimise network and file I/O operations • Get source content as close to server storage as possible • Always benchmark and tune... • JVM, Network, Threads, DB Connections... 12
  • 9. Architectural considerations • Creation is CPU, memory, network intensive • Always 64 bit • Rule of thumb: Prefer scale up over scale out – simpler deployment and management • Rule of thumb: get the content as close as possible to Alfresco • Nature of the data set (i.e. batches) is KEY • If batches are sequential -> minimize time-per-batch • Scale up in CPU and memory • If batches are parallelizable -> maximize number of batches processed • Scale out with multi-threaded uploads • Consider dedicated server(s) for ingestion • Use production servers for migration use case and then reconfigure • Design content storage around your data • How can you get the source content as close as possible to repository content storage? • Note: Avoid Sparc T and related series • Highly parallel but not suited for atomic heavy serial operations 13
  • 10. Tuning best practices - JVM Tuning – Application Server • 64 bit • Pay attention to the • Make NewSize as large as machine capacity i.e. possible to avoid spill over • Threads to OldGen • CPU Utilization • I/O • See http://wiki.alfresco.com/wiki/JVM_Tuning Sample JVM Config: 64-bit, dual 2.6GHz Xeon / dual-core per CPU , 8GB RAM environment -server -Xss1M -Xms2G -Xmx3G -XX:NewSize=1G -XX:MaxPermSize=256M 16
  • 11. Bad  Good  17
  • 12. Tuning best practices – I/O • Network • Alfresco to Database is Key • Latency is key e.g. > 10ms is absolute max • JDBC fetch size should be 150 • See BP-1_Alfresco_Environment_Validation_and_Day_Zero_Configuration • Alfresco to storage (if remote) • If possible, avoid it completely for file transfers - Stage content on local disks • Use a dedicated network for storage e.g. Fibre channel • Incoming to Alfresco – Typically not relevant for bulk loading use case • Disk • Lucene index operations' are disk I/O intensive • Fast read/writes i.e. local disk • Avoid indexing if not required • Avoid unnecessary content file copying • Stage content on local disks • Consider set cm:content property directly e.g. • contentUrl=store://mypath/mydocument.docx|mimetype=application/vnd.openxmlformats- officedocument.wordprocessingml.document|size=51142|encoding=UTF-8|locale=en_GB_ 18
  • 13. Tuning best practices - Database • Connections – Relevant if you are loading concurrently • See BP-1_Alfresco_Environment_Validation_and_Day_Zero_Configuration • DB Indexes & Statistics • Plan your batch loads to allow for periodic statistics maintenance • Make sure the database hardware/software is sized appropriately e.g. • Log sizes, flush on transaction commit, cache tuning, lock management.... • Use of multiple physical volumes/RAID.... •All databases provide many options to optimise performance • Get a DB administrator, partner involved 19
  • 14. Tuning best practice - Repository Services • Force background indexing • alfresco-global.properties • Everything: index.tracking.disableInTransactionIndexing=true • Just Content: lucene.maxAtomicTransformationTime=0 • Is content indexing required at all? • DoNotIndex aspect • “Run As” system user to avoid permission checking 20
  • 15. Tuning best practice - Repository Services • Use an optimised custom bulk loader • Process docs in batches - not 1 doc per transaction or 1 transaction for entire content set • Example: 100 documents per batch • Use Foundation (Java) API if possible • Design multi-threaded import code • Partition your data set so you can use multiple threads loading in different areas • Scale up CPU accordingly •Consider direct APIs (e.g. “NodeService” vs “nodeService”) • Public services are heavily wrapped with interceptors for transactions, auditing, permissions, multilingual translations, etc. • Disable behaviours • Rules evaluations, cm:auditable, versioning, quotas (system.usages.enabled=false) •Use proper transaction demarcation • Complete all operations on a node in a single transaction • Batching – group multiple updates in a single transaction • Avoid mixing reads and writes • See session CS2-Repository_Internals for more details on API specifics 21
  • 16. Tuning best practices – Repository Services • Disable modified timestamp propagation to parent folders • system.enableTimestampPropagation=false (default) • Deleting large numbers of nodes • Skip deleted items (archive) by adding sys:temporary aspect your content before deletion • Partition your content within the repository • Depends on read access requirements • Consider partitioning more than 2000 nodes per space if browsing space children Note: Performance much improved in later releases 3.3.3, 3.4 – test for your use case 22
  • 17. Scale Out Using Dedicated Bulk Load Server(s) • Alfresco can support a non-clustered injection only tier • Objective: Separate input write process from front end read load • Solution: Dedicated injection tier pointing to same DB/Content store(s) as front end servers. No need to cluster caches from this tier with the front end. Background index properties and/or content, indexes will catch up from DB transactions. • Benefits: No Cache update/invalidation overhead. Indexing does not block loading process 24
  • 18. Bulk load server(s) not clustered but share storage and DB product servers will „catch up‟ via index tracking Bulk Load Process Runtime Clients Creates Only Bulk Load A Bulk Load B Production A Production B Production C Tomcat Tomcat Tomcat Tomcat Tomcat EHCache EHCache EHCache EHCache EHCache Lucene Lucene Lucene Lucene Lucene Index Index Index Index Index Database Content MySQL Store 25
  • 19. Load Server(s) Configuration Tips • Bulk Load Server(s) • To exclude servers(s) from cluster: • Do not set cluster name for bulk load servers in alfresco-global.properties • alfresco.cluster.name= • Force background indexing in the local alfresco-global.properties using: • Everything: • index.tracking.disableInTransactionIndexing=true • Just Content: • lucene.maxAtomicTransformationTime=0 • Note: The load process should perform creates only, no updates or reads • Production Server(s) • Ensure index tracking is enabled: • index.tracking.cronExpression=0/5 * * * * ? • index.recovery.mode=AUTO 26
  • 20. Example: In-transaction v‟s Background Indexing • 10,000 docs, 1,000 folders • 50kb word documents • FTP with 10 sessions • Laptop • Foreground Indexing: • 33 mins • Background Indexing: • 5 mins 27
  • 22. Requirements • High (and potentially highly distributed) user concurrency • 1,000‟s -10,000‟s users (read & write) • Medium/High number of documents • 10,000-1 million+ documents • 1000 document updates per day • Complex enterprise content and permission models • Multiple content models/Dynamic ACL • Versioning and full text indexing on all documents • Document types: Office, drawing, images • Advanced content management • Multiple rules and actions • Heavy use of content transformations/workflow •Interfaces (All) • Share, WebDAV, CIFS .... 30
  • 23. Architectural considerations • Fully fledged platform deployment • Need to consider maintenance window • Scale out Share independently from Repo • Front and intermediate Load balancer/Web Cache layers • Read/write split and scheduled repository exclusion for maintenance • Scale out transformation server • Enterprise only: JOD OpenOffice subsystem • Scale out and up infrastructure • Cluster CIFS with DFS (Distributed File System) • All HTTP based protocols scale seamlessly (SSP on port 7070) •Balance multi-CPU (scale up) and multi-node clusters (scale out) • Overhead of index tracking 31
  • 24. Design best practices • Distribute your content within the repository • Otherwise search and retrieval performance degradation is likely • Use versioning and indexing where appropriate, not just because it‟s there.. • e.g. don‟t simply apply cm:versionable to the full cm:content • Modelling • Prefer aspects over types • Remember aspects support inheritance as well • Content Model indexing options • Tune what you need to index • Quotas (aka Usages) • Might save your repo from content explosion but also have an overhead! 32
  • 25. Tuning best practices – Note: Also see bulk load use case! • RDBMS • Number of connections much more important for this use case • Formula: HTTP Worker Threads + 75 per cluster node • For Tomcat defaults this is 275 • Cache Configuration • L2 Cache: increase with RAM to include more objects in cache • Use ehcache tracing tool to indentify which caches have low hit ratios and increase if you have available memory • See http://wiki.alfresco.com/wiki/Repository_Cache_Configuration#Tracing_cache_sizes for details • Alfresco Configuration optimization • VFS thread pool tuning (default: <threadPool init=“25” max=“50” />) • Tune ACLs and preload common searches (if needed) system.acl.maxPermissionCheckTimeMillis=10000 system.acl.maxPermissionChecks=10000 Query via node browser as different users, not only admin • Consider bulk load large user bases (10,000s) to single (un-clustered) node and then cluster • Disable eager home folder creation • home.folder.creation.eager=false in alfresco-globallproperties • Use multi-threaded and incremental LDAP sync once initial sync has been completed • Differential sync is the default • Lucene Tuning • Lucene.maxAtomicTransformationTime=20 • Monitor the network performance when adding nodes to a cluster • What for ehcache waiting for the network via thread dumps • Consider disabling some/all of the L2 caches 33
  • 26. HTTP Clients Example Windows ECM CIFS e.g. Share via alfrescocifs Production Cluster Install HTTP Load Balancer DFS Round Robin - Local & Shared Content Store Active Directory User/Group Sync NTLM Authentication alfappsrv01 alfappsrv02 Tomcat 1 Tomcat 2 Local Local alf_data alf_data • Lucene Index • Lucene Index EHCache Clustered EHCache d:alf_storelucene-indexes d:alf_storelucene-indexes • Content Store • Content Store d:alf_storecontentstore d:alf_storecontentstore In & Outbound Replication In & Outbound Replication to shared content store on SAN JDBC oraclecluster alfclustsrv01 alfclustsrv02 • Replicating Content Store • Replicating Content Store Oracle 1 Oracle 2 In & Outbound replication <- Failover -> In & Outbound replication between local and shared between local and shared content store content store MSCS Cluster SAN • Shared Content Store: sharedContentStore (alfdataDatastore) • Oracle: - Data (o:oradataalfresco), Control (o:oradataalfresco) & Logfiles (L:oradataalfresco) - Oracle Backup (o:flash_recovery_area) • Lucene Index Backup (alfdataHold)
  • 27. Replication (3.4) offers new deployment options • Replication may be appropriate for specific contexts • Provides selective replication of content between distinct Alfresco repositories • On demand or scheduled via Replication Jobs • Reporting and Tracking of Replication Jobs • Read and viewing performance: Content is served from a local server 35
  • 28. For any system... • Do not use the OOTB settings for application server, database etc Alfresco you must always tune for your use case • Balance your resources • Separate tiers for DataBase, Content, App Servers • Indexes should always be on fast, local disk e.g. not NFS mounts, USB drives etc • Run on a supported stack e.g. • e.g. issues with 1.6u10 use JDK 1.6u.20, use MySQL 5.1.39 or later • Don‟t starve your database of connections: • db.pool.max=XXX • Use appropriate application server worker threads • Configuration details are application server specific e.g. Tomcat: server.xml • When clustering, use JGroups and Unicast • Use the latest Alfresco version/service pack e.g. • 3.3.3, 3.4 36
  • 29. Things you should NOT change • The database transaction isolation level • Use defaults for all databases except MS SQLServer • FYI. SQLServer should be: • db.txn.isolation=4096 • ALTER DATABASE alfresco SET ALLOW_SNAPSHOT_ISOLATION ON; • The ehcache default configuration i.e. Replicate async • The Lucene indexing defaults unless you know what you are doing and why! • Note: Also do not do a full-index rebuild unless you know what was wrong in the first place! • Use the index checker 37
  • 31. Alfresco Benchmarks • Alfresco Benchmark Tools • alfresco-bm – http://wiki.alfresco.com/wiki/Server_Benchmarks • SimpleInjector – (check partners.alfresco.com) • For CIFS loading -> Jmeter + SMB mount • Alfresco Benchmark Results • Unisys benchmark results • JCR Benchmarks • WIP • “Scale your Alfresco Solutions” (in http://partners.alfresco.com) • More Platform benchmark ongoing – watch this space! 39
  • 32. Profiling your Alfresco solution •Alfresco Application Profiling • JMX (for Enterprise Only see Admin Guide) http://wiki.alfresco.com/wiki/JMX • Audit Surf http://forge.alfresco.com/projects/auditsurf/ • Nagios integration http://forge.alfresco.com/projects/nagios4alfresco/ • Infrastructure Profiling • VisualVM (JVM) http://ur.ly/esjZ • Thread Dump Analyzer • https://tda.dev.java.net/ • YourKit (JVM) http://wiki.alfresco.com/wiki/JMX • WireShark (Network) http://www.wireshark.org/ • Mysql Query Profiler (DBMS) http://dev.mysql.com/tech-resources/articles/using-new-query-profiler.html 40
  • 33. Q/A & Feedback • Any Questions? • Share your experiences (good and bad) with us so we can all learn! • Successful scaled up/out architectures • Limitations, bottlenecks • Use case parameters => Implementation => Results • What worked, what didn‟t 43

Editor's Notes

  • #5: We won’t be going into details on how to setup clustering and the web tier
  • #6: [Check with AH the background indexing stuff, i.e. is it indexing or extraction that exceeds 20 ms]
  • #11: Theses are typically, specifics with obviously vary.
  • #17: [Derek]
  • #18: [Derek]
  • #21: [PM – how does the custom loading fit into this??]