SlideShare a Scribd company logo
Scene	
  Classifica,on	
  using	
  
Convolu,onal	
  Neural	
  Networks	
  
Jayani	
  Withanawasam	
  
Outline	
  
•  Computer	
  vision	
  as	
  an	
  AI	
  problem	
  
•  Importance	
  of	
  scene	
  classifica,on	
  and	
  its	
  
challenges	
  	
  
•  Tradi,onal	
  machine	
  learning	
  vs.	
  deep	
  learning	
  
•  Convolu,onal	
  Neural	
  Networks	
  (CNNs)	
  
•  Using	
  Caffe	
  for	
  implemen,ng	
  CNNs	
  	
  
•  Important	
  resources	
  to	
  proceed	
  with…	
  	
  
2	
  
Is	
  this	
  exercise	
  familiar	
  to	
  you?	
  
Scene	
  understanding	
  is	
  a	
  primary	
  school	
  task!	
  	
  
3	
  
What	
  do	
  you	
  see?	
  
4	
  
Photo	
  credits:	
  Kaushalya	
  Madhawa	
  
What	
  computers	
  see?	
  
Source:	
  hSp://www.cs.washington.edu/research/me,p/about/digital.html	
  
5	
  
Why	
  should	
  we	
  understand	
  visual	
  
data?	
  	
  	
  	
  
•  Billions	
  of	
  views	
  are	
  generated	
  on	
  YouTube	
  on	
  
daily	
  basis	
  	
  	
  	
  
•  In	
  Facebook,	
  hundreds	
  of	
  millions	
  of	
  	
  photo	
  
uploads	
  per	
  day	
  
Can	
  humans	
  manually	
  process	
  such	
  large	
  volumes	
  
of	
  data	
  generated	
  at	
  this	
  rate	
  to	
  instantly	
  find	
  
useful	
  insights?	
  
	
  
	
  
6	
  
Computer	
  vision	
  as	
  an	
  AI	
  problem	
  
•  Intelligent	
  behavior	
  of	
  an	
  agent	
  requires	
  the	
  
ability	
  to	
  effec,vely	
  interact	
  and	
  manipulate	
  
their	
  environment	
  	
  
•  Detailed	
  understanding	
  of	
  the	
  external	
  
environment	
  is	
  achieved	
  using	
  visual	
  
percep,on	
  	
  
•  Computer	
  vision	
  provides	
  methods	
  to	
  analyze	
  
images	
  to	
  understand	
  objects	
  and	
  scenes	
  	
  
	
  
7	
  
Using	
  the	
  forest	
  to	
  see	
  the	
  trees!	
  
(Torralba	
  et	
  al.)	
  	
  
8	
  
Source:	
  Using	
  the	
  forest	
  to	
  see	
  the	
  trees:	
  exploi,ng	
  context	
  for	
  visual	
  object	
  recogni,on	
  and	
  
localiza,on,	
  Torralba	
  et	
  al.)	
  
Scene	
  classifica,on	
  in	
  computer	
  vision	
  	
  
•  Main	
  focused	
  areas	
  	
  in	
  computer	
  vision	
  	
  
– Computer	
  graphics	
  	
  
– Image	
  recogni,on	
  
•  Image	
  recogni,on	
  is	
  based	
  on	
  concepts	
  related	
  
to	
  ar,ficial	
  intelligence	
  and	
  cogni,ve	
  science	
  	
  	
  
•  Scene	
  classifica,on	
  goes	
  under	
  image	
  
recogni,on.	
  	
  
•  Scene	
  classifica,on	
  problem	
  differs	
  from	
  object	
  
recogni,on	
  problem	
  as	
  a	
  scene	
  (context)	
  is	
  
composed	
  of	
  mul,ple	
  objects	
  	
  	
  
9	
  
Scene	
  classifica,on	
  in	
  computer	
  vision	
  
(Con,nued.)	
  
10	
  
Source:	
  Srinivasa	
  Narasimhan’s	
  slide	
  
In	
  1966,	
  Marvin	
  Minsky	
  at	
  MIT	
  asked	
  his	
  
undergraduate	
  student	
  Gerald	
  Jay	
  Sussman	
  to	
  
spend	
  the	
  summer	
  linking	
  a	
  camera	
  to	
  a	
  
computer	
  and	
  gefng	
  the	
  computer	
  to	
  describe	
  
what	
  it	
  saw.	
  We	
  now	
  know	
  the	
  problem	
  is	
  
slightly	
  more	
  difficult	
  than	
  that	
  ;)	
  	
  
	
  
Szeliski	
  2009,	
  Computer	
  vision	
  	
  	
  	
  
11	
  
Challenges	
  of	
  scene	
  classifica,on	
  
12	
  
Source:	
  Learning	
  deep	
  features	
  for	
  scene	
  recogni,on	
  using	
  places	
  database,	
  Zhou	
  et	
  al	
  
Scene	
  classifica,on:	
  then	
  and	
  now	
  
Labeling	
  segmenta,ons	
  of	
  the	
  scene	
  	
  
(part	
  based	
  models)	
  	
  	
  
	
  
	
  
	
  
Analyzing	
  the	
  en,re	
  scene	
  as	
  a	
  whole	
  and	
  train	
  
using	
  the	
  available	
  large	
  volumes	
  of	
  data	
  	
  
13	
  
Deep	
  Learning	
  
•  Tradi,onal	
  machine	
  learning	
  algorithms,	
  	
  
–  Do	
  not	
  perform	
  well	
  in	
  high	
  dimensional	
  space	
  
–  Requires	
  expert	
  knowledge	
  to	
  hand	
  engineer	
  
features	
  
–  High	
  computa,onal	
  cost	
  
	
  
•  Deep	
  learning	
  algorithms,	
  
–  Specialized	
  form	
  of	
  ar,ficial	
  neural	
  network	
  	
  
–  Representa,onal	
  learning	
  for	
  high	
  dimensional	
  
data	
  
–  Use	
  of	
  GPUs	
  to	
  accelerate	
  learning	
  	
  
Inspired	
  by	
  nature…	
  
15	
  Source:	
  Hubel	
  and	
  Wiesel	
  experiment	
  
•  Local	
  recep,ve	
  fields	
  	
  
•  Simple	
  cells	
  
•  Complex	
  cells	
  	
  
	
  
Convolu,onal	
  Neural	
  Networks	
  (CNNs)	
  
•  Deep	
  learning	
  technique	
  to	
  recognize	
  spa,al	
  
paSerns	
  of	
  data	
  	
  
•  Hierarchical	
  organiza,on	
  of	
  different	
  abstrac,on	
  
levels	
  of	
  image	
  features	
  
•  Type	
  of	
  Ar,ficial	
  Neural	
  Network	
  (ANN)	
  	
  
	
  
Assump,on:	
  You	
  are	
  familiar	
  with	
  basic	
  Ar,ficial	
  Neural	
  
Networks	
  (ANN)	
  and	
  machine	
  learning	
  concepts	
  
16	
  
Historical	
  CNN	
  architectures	
  	
  
17	
  
Source:	
  Gradient-­‐based	
  learning	
  applied	
  to	
  document	
  recogni,on,	
  
LeCun	
  et	
  al,	
  1998	
  
	
  
Source:	
  Imagenet	
  classifica,on	
  with	
  deep	
  convolu,onal	
  neural	
  networks,	
  Krizhevsky	
  et	
  al,	
  2012	
  
CNN	
  architecture	
  
18	
  
•  Convolu8on	
  layers	
  
•  Sub-­‐sampling	
  (Pooling)	
  layers	
  	
  
•  Non-­‐linearity	
  layers	
  (Ac,va,on	
  func,on)	
  	
  
•  Fully	
  connected	
  (FC)	
  layer	
  (op,onal)	
  
Source:	
  hSps://adeshpande3.github.io/adeshpande3.github.io/A-­‐Beginner's-­‐Guide-­‐To-­‐Understanding-­‐Convolu,onal-­‐Neural-­‐Networks/	
  
	
  
Important	
  hyper	
  parameters	
  for	
  CNN	
  	
  
•  Number	
  of	
  filters	
  (kernals)	
  	
  
•  Stride	
  
•  Size	
  of	
  the	
  filter	
  
•  Amount	
  of	
  padding	
  	
  	
  
•  Other	
  (not	
  CNN	
  specific)	
  	
  
– Learning	
  rate	
  (and	
  its	
  decay)	
  	
  
– Batch	
  size	
  	
  
– Momentum	
  	
  
19	
  
Caffe	
  for	
  CNN	
  implementa,on	
  
•  Convolu,onal	
  Architecture	
  For	
  Feature	
  Extrac,on	
  	
  
•  Deep	
  learning	
  framework	
  by	
  Berkley	
  Vision	
  and	
  
Learning	
  center	
  hSp://caffe.berkeleyvision.org/	
  	
  	
  
•  Reference	
  models	
  in	
  Caffe	
  model	
  Zoo	
  
•  Input	
  	
  (E.g.,	
  lmdb)	
  
•  Net:	
  Layers	
  (data,	
  loss,	
  convolu,on)	
  E.g.,	
  
lenet_train.prototxt	
  
•  Solver	
  (learning	
  rate,	
  net,	
  model	
  snapshots,	
  
valida,on)	
  E.g.,	
  lenet_solver.prototxt	
  
20	
  
lenet_solver.prototxt	
  
	
  
21	
  
lenet_train.prototxt	
  (few	
  important	
  
layers)	
  
22	
  
Data	
  layer	
  
Pooling	
  layer	
  
Convolu,onal	
  layer	
  
MIT	
  Places	
  for	
  scene	
  recogni,on	
  	
  
•  MIT	
  Places	
  database	
  	
  	
  
•  Places2	
  Challenge	
  	
  
•  MIT	
  Scene	
  Recogni,on	
  Demo	
  
•  hSp://places.csail.mit.edu	
  	
  
	
  
	
  
23	
  
Important	
  resources	
  	
  
•  CS231n:	
  Convolu,onal	
  neural	
  networks	
  for	
  
visual	
  recogni,on,	
  Fei	
  Fei	
  Li,	
  Andrej	
  Karpathy,	
  
Jus,n	
  Johnson,	
  Stanford	
  university.	
  
hSp://cs231n.stanford.edu/	
  	
  
•  DeepLearninbook,	
  Ian	
  Goodfellow,	
  Yoshua	
  
Bengio,	
  Aaron	
  Courville.	
  
hSp://www.deeplearningbook.org/	
  	
  	
  
24	
  
We	
  are	
  not	
  there	
  yet…	
  
Source:	
  Concise	
  Computer	
  Vision	
  
25	
  
Contact	
  me	
  
•  Linkedin:	
  
hSps://www.linkedin.com/in/
jayaniwithanawasam	
  	
  
•  Email:	
  jayaniwithanawasam@gmail.com	
  
26	
  
Thank	
  you	
  
27	
  

More Related Content

What's hot (20)

PPTX
Real Time Object Dectection using machine learning
pratik pratyay
 
PPTX
Deep Learning in Computer Vision
Sungjoon Choi
 
PDF
Deep learning based object detection basics
Brodmann17
 
PPTX
GANs Presentation.pptx
MAHMOUD729246
 
PPTX
Machine Learning With Python | Machine Learning Algorithms | Machine Learning...
Simplilearn
 
PDF
Introduction of Deep Learning
Myungjin Lee
 
PPTX
Object Detection using Deep Neural Networks
Usman Qayyum
 
PPTX
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
PDF
What is Machine Learning | Introduction to Machine Learning | Machine Learnin...
Simplilearn
 
PPTX
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
PDF
Deep learning - A Visual Introduction
Lukas Masuch
 
PDF
Deep Learning - Convolutional Neural Networks
Christian Perone
 
PPTX
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
PDF
Recurrent Neural Networks
Sharath TS
 
PPTX
Deep Learning - RNN and CNN
Pradnya Saval
 
PDF
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
Sergio Orts-Escolano
 
PPTX
Convolutional Neural Network
Vignesh Suresh
 
PDF
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
PPTX
Image classification using cnn
Debarko De
 
PPTX
Intro to deep learning
David Voyles
 
Real Time Object Dectection using machine learning
pratik pratyay
 
Deep Learning in Computer Vision
Sungjoon Choi
 
Deep learning based object detection basics
Brodmann17
 
GANs Presentation.pptx
MAHMOUD729246
 
Machine Learning With Python | Machine Learning Algorithms | Machine Learning...
Simplilearn
 
Introduction of Deep Learning
Myungjin Lee
 
Object Detection using Deep Neural Networks
Usman Qayyum
 
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Jia-Bin Huang
 
What is Machine Learning | Introduction to Machine Learning | Machine Learnin...
Simplilearn
 
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
Deep learning - A Visual Introduction
Lukas Masuch
 
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
Recurrent Neural Networks
Sharath TS
 
Deep Learning - RNN and CNN
Pradnya Saval
 
A Three-Dimensional Representation method for Noisy Point Clouds based on Gro...
Sergio Orts-Escolano
 
Convolutional Neural Network
Vignesh Suresh
 
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Image classification using cnn
Debarko De
 
Intro to deep learning
David Voyles
 

Viewers also liked (20)

PPTX
Deep Learning - Convolutional Neural Networks - Architectural Zoo
Christian Perone
 
PDF
04 history of cv computer vision, neural networks and pattern recognition - ...
zukun
 
PDF
Understanding Convolutional Neural Networks
Jeremy Nixon
 
PDF
"Enabling Ubiquitous Visual Intelligence Through Deep Learning," a Keynote Pr...
Edge AI and Vision Alliance
 
PDF
Learning Convolutional Neural Networks for Graphs
Mathias Niepert
 
PPTX
Jeff Johnson, Research Engineer, Facebook at MLconf NYC
MLconf
 
PDF
Inverse Reinforcement Learning Algorithms
Sungjoon Choi
 
PPTX
Convolutional neural networks for sentiment classification
Yunchao He
 
PDF
Lukáš Vrábel - Deep Convolutional Neural Networks
Machine Learning Prague
 
PPTX
TensorFlow Tutorial Part2
Sungjoon Choi
 
PDF
Automatic Tagging using Deep Convolutional Neural Networks - ISMIR 2016
Keunwoo Choi
 
PPTX
TensorFlow Tutorial Part1
Sungjoon Choi
 
PDF
Deep Convolutional Neural Networks - Overview
Keunwoo Choi
 
PPTX
Object Detection Methods using Deep Learning
Sungjoon Choi
 
PDF
101: Convolutional Neural Networks
Mad Scientists
 
PPTX
CNN Tutorial
Sungjoon Choi
 
PDF
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
PPTX
Convolutional Neural Network (CNN) presentation from theory to code in Theano
Seongwon Hwang
 
ODP
An Introduction to Computer Vision
guestd1b1b5
 
PDF
Applied Deep Learning 11/03 Convolutional Neural Networks
Mark Chang
 
Deep Learning - Convolutional Neural Networks - Architectural Zoo
Christian Perone
 
04 history of cv computer vision, neural networks and pattern recognition - ...
zukun
 
Understanding Convolutional Neural Networks
Jeremy Nixon
 
"Enabling Ubiquitous Visual Intelligence Through Deep Learning," a Keynote Pr...
Edge AI and Vision Alliance
 
Learning Convolutional Neural Networks for Graphs
Mathias Niepert
 
Jeff Johnson, Research Engineer, Facebook at MLconf NYC
MLconf
 
Inverse Reinforcement Learning Algorithms
Sungjoon Choi
 
Convolutional neural networks for sentiment classification
Yunchao He
 
Lukáš Vrábel - Deep Convolutional Neural Networks
Machine Learning Prague
 
TensorFlow Tutorial Part2
Sungjoon Choi
 
Automatic Tagging using Deep Convolutional Neural Networks - ISMIR 2016
Keunwoo Choi
 
TensorFlow Tutorial Part1
Sungjoon Choi
 
Deep Convolutional Neural Networks - Overview
Keunwoo Choi
 
Object Detection Methods using Deep Learning
Sungjoon Choi
 
101: Convolutional Neural Networks
Mad Scientists
 
CNN Tutorial
Sungjoon Choi
 
Deep Learning for Computer Vision: Visualization (UPC 2016)
Universitat Politècnica de Catalunya
 
Convolutional Neural Network (CNN) presentation from theory to code in Theano
Seongwon Hwang
 
An Introduction to Computer Vision
guestd1b1b5
 
Applied Deep Learning 11/03 Convolutional Neural Networks
Mark Chang
 
Ad

Similar to Scene classification using Convolutional Neural Networks - Jayani Withanawasam (20)

PDF
CNN Algorithm
georgejustymirobi1
 
PDF
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
Edge AI and Vision Alliance
 
PPTX
Introduction to Convolutional Neural Networks (CNNs).pptx
CHRISEVANS269099
 
PDF
PyDresden 20170824 - Deep Learning for Computer Vision
Alex Conway
 
PDF
HiPEAC 2019 Workshop - Real-Time Modelling Visual Scenes with Biological Insp...
Tulipp. Eu
 
PDF
Overblik over kunstig intelligens og digital billedanalyse
LFF - Landsforeningen til bevaring af foto og film
 
PPTX
Convolutional-Neural-Networks-Revolutionizing-Computer-Vision (1).pptx
nikhilarasada
 
PDF
“Introduction to Computer Vision with Convolutional Neural Networks,” a Prese...
Edge AI and Vision Alliance
 
PPTX
01 CM Introduction of Computer Vision.pptx
lixiaomao1
 
PPTX
Introduction to computer vision
Marcin Jedyk
 
PPTX
Introduction to computer vision with Convoluted Neural Networks
MarcinJedyk
 
PPTX
PyConZA'17 Deep Learning for Computer Vision
Alex Conway
 
PPTX
Introduction-to-Computer-Vision PPPP.pptx
ShivaniPaswan6
 
PPTX
AI UNIT 4 - SRCAS JOC.pptx enjoy this ppt
Pavankalayankusetty
 
PDF
Image Segmentation and Classification using Neural Network
AIRCC Publishing Corporation
 
PDF
Image Segmentation and Classification using Neural Network
AIRCC Publishing Corporation
 
PDF
Deep Neural Networks Presentation
Bohdan Klimenko
 
PPTX
CNN Machine learning DeepLearning
Abhishek Sharma
 
PPTX
NMO IE-2 Activity Presentation.pptx
LEGENDARYTECHNICAL
 
PPTX
build a Convolutional Neural Network (CNN) using TensorFlow in Python
Kv Sagar
 
CNN Algorithm
georgejustymirobi1
 
“Introduction to Computer Vision with CNNs,” a Presentation from Mohammad Hag...
Edge AI and Vision Alliance
 
Introduction to Convolutional Neural Networks (CNNs).pptx
CHRISEVANS269099
 
PyDresden 20170824 - Deep Learning for Computer Vision
Alex Conway
 
HiPEAC 2019 Workshop - Real-Time Modelling Visual Scenes with Biological Insp...
Tulipp. Eu
 
Overblik over kunstig intelligens og digital billedanalyse
LFF - Landsforeningen til bevaring af foto og film
 
Convolutional-Neural-Networks-Revolutionizing-Computer-Vision (1).pptx
nikhilarasada
 
“Introduction to Computer Vision with Convolutional Neural Networks,” a Prese...
Edge AI and Vision Alliance
 
01 CM Introduction of Computer Vision.pptx
lixiaomao1
 
Introduction to computer vision
Marcin Jedyk
 
Introduction to computer vision with Convoluted Neural Networks
MarcinJedyk
 
PyConZA'17 Deep Learning for Computer Vision
Alex Conway
 
Introduction-to-Computer-Vision PPPP.pptx
ShivaniPaswan6
 
AI UNIT 4 - SRCAS JOC.pptx enjoy this ppt
Pavankalayankusetty
 
Image Segmentation and Classification using Neural Network
AIRCC Publishing Corporation
 
Image Segmentation and Classification using Neural Network
AIRCC Publishing Corporation
 
Deep Neural Networks Presentation
Bohdan Klimenko
 
CNN Machine learning DeepLearning
Abhishek Sharma
 
NMO IE-2 Activity Presentation.pptx
LEGENDARYTECHNICAL
 
build a Convolutional Neural Network (CNN) using TensorFlow in Python
Kv Sagar
 
Ad

More from WithTheBest (20)

PDF
Riccardo Vittoria
WithTheBest
 
PPTX
Recreating history in virtual reality
WithTheBest
 
PDF
Engaging and sharing your VR experience
WithTheBest
 
PDF
How to survive the early days of VR as an Indie Studio
WithTheBest
 
PDF
Mixed reality 101
WithTheBest
 
PDF
Unlocking Human Potential with Immersive Technology
WithTheBest
 
PPTX
Building your own video devices
WithTheBest
 
PPTX
Maximizing performance of 3 d user generated assets in unity
WithTheBest
 
PPTX
Wizdish rovr
WithTheBest
 
PPTX
Haptics & amp; null space vr
WithTheBest
 
PPTX
How we use vr to break the laws of physics
WithTheBest
 
PPTX
The Virtual Self
WithTheBest
 
PPTX
You dont have to be mad to do VR and AR ... but it helps
WithTheBest
 
PDF
Omnivirt overview
WithTheBest
 
PDF
VR Interactions - Jason Jerald
WithTheBest
 
PDF
Japheth Funding your startup - dating the devil
WithTheBest
 
PDF
Transported vr the virtual reality platform for real estate
WithTheBest
 
PDF
Measuring Behavior in VR - Rob Merki Cognitive VR
WithTheBest
 
PDF
Global demand for Mixed Realty (VR/AR) content is about to explode.
WithTheBest
 
PDF
VR, a new technology over 40,000 years old
WithTheBest
 
Riccardo Vittoria
WithTheBest
 
Recreating history in virtual reality
WithTheBest
 
Engaging and sharing your VR experience
WithTheBest
 
How to survive the early days of VR as an Indie Studio
WithTheBest
 
Mixed reality 101
WithTheBest
 
Unlocking Human Potential with Immersive Technology
WithTheBest
 
Building your own video devices
WithTheBest
 
Maximizing performance of 3 d user generated assets in unity
WithTheBest
 
Wizdish rovr
WithTheBest
 
Haptics & amp; null space vr
WithTheBest
 
How we use vr to break the laws of physics
WithTheBest
 
The Virtual Self
WithTheBest
 
You dont have to be mad to do VR and AR ... but it helps
WithTheBest
 
Omnivirt overview
WithTheBest
 
VR Interactions - Jason Jerald
WithTheBest
 
Japheth Funding your startup - dating the devil
WithTheBest
 
Transported vr the virtual reality platform for real estate
WithTheBest
 
Measuring Behavior in VR - Rob Merki Cognitive VR
WithTheBest
 
Global demand for Mixed Realty (VR/AR) content is about to explode.
WithTheBest
 
VR, a new technology over 40,000 years old
WithTheBest
 

Recently uploaded (20)

PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
July Patch Tuesday
Ivanti
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PPTX
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
PDF
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PPTX
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PPT
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
July Patch Tuesday
Ivanti
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
SFWelly Summer 25 Release Highlights July 2025
Anna Loughnan Colquhoun
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
UiPath Academic Alliance Educator Panels: Session 2 - Business Analyst Content
DianaGray10
 
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
"Autonomy of LLM Agents: Current State and Future Prospects", Oles` Petriv
Fwdays
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
Interview paper part 3, It is based on Interview Prep
SoumyadeepGhosh39
 

Scene classification using Convolutional Neural Networks - Jayani Withanawasam

  • 1. Scene  Classifica,on  using   Convolu,onal  Neural  Networks   Jayani  Withanawasam  
  • 2. Outline   •  Computer  vision  as  an  AI  problem   •  Importance  of  scene  classifica,on  and  its   challenges     •  Tradi,onal  machine  learning  vs.  deep  learning   •  Convolu,onal  Neural  Networks  (CNNs)   •  Using  Caffe  for  implemen,ng  CNNs     •  Important  resources  to  proceed  with…     2  
  • 3. Is  this  exercise  familiar  to  you?   Scene  understanding  is  a  primary  school  task!     3  
  • 4. What  do  you  see?   4   Photo  credits:  Kaushalya  Madhawa  
  • 5. What  computers  see?   Source:  hSp://www.cs.washington.edu/research/me,p/about/digital.html   5  
  • 6. Why  should  we  understand  visual   data?         •  Billions  of  views  are  generated  on  YouTube  on   daily  basis         •  In  Facebook,  hundreds  of  millions  of    photo   uploads  per  day   Can  humans  manually  process  such  large  volumes   of  data  generated  at  this  rate  to  instantly  find   useful  insights?       6  
  • 7. Computer  vision  as  an  AI  problem   •  Intelligent  behavior  of  an  agent  requires  the   ability  to  effec,vely  interact  and  manipulate   their  environment     •  Detailed  understanding  of  the  external   environment  is  achieved  using  visual   percep,on     •  Computer  vision  provides  methods  to  analyze   images  to  understand  objects  and  scenes       7  
  • 8. Using  the  forest  to  see  the  trees!   (Torralba  et  al.)     8   Source:  Using  the  forest  to  see  the  trees:  exploi,ng  context  for  visual  object  recogni,on  and   localiza,on,  Torralba  et  al.)  
  • 9. Scene  classifica,on  in  computer  vision     •  Main  focused  areas    in  computer  vision     – Computer  graphics     – Image  recogni,on   •  Image  recogni,on  is  based  on  concepts  related   to  ar,ficial  intelligence  and  cogni,ve  science       •  Scene  classifica,on  goes  under  image   recogni,on.     •  Scene  classifica,on  problem  differs  from  object   recogni,on  problem  as  a  scene  (context)  is   composed  of  mul,ple  objects       9  
  • 10. Scene  classifica,on  in  computer  vision   (Con,nued.)   10   Source:  Srinivasa  Narasimhan’s  slide  
  • 11. In  1966,  Marvin  Minsky  at  MIT  asked  his   undergraduate  student  Gerald  Jay  Sussman  to   spend  the  summer  linking  a  camera  to  a   computer  and  gefng  the  computer  to  describe   what  it  saw.  We  now  know  the  problem  is   slightly  more  difficult  than  that  ;)       Szeliski  2009,  Computer  vision         11  
  • 12. Challenges  of  scene  classifica,on   12   Source:  Learning  deep  features  for  scene  recogni,on  using  places  database,  Zhou  et  al  
  • 13. Scene  classifica,on:  then  and  now   Labeling  segmenta,ons  of  the  scene     (part  based  models)             Analyzing  the  en,re  scene  as  a  whole  and  train   using  the  available  large  volumes  of  data     13  
  • 14. Deep  Learning   •  Tradi,onal  machine  learning  algorithms,     –  Do  not  perform  well  in  high  dimensional  space   –  Requires  expert  knowledge  to  hand  engineer   features   –  High  computa,onal  cost     •  Deep  learning  algorithms,   –  Specialized  form  of  ar,ficial  neural  network     –  Representa,onal  learning  for  high  dimensional   data   –  Use  of  GPUs  to  accelerate  learning    
  • 15. Inspired  by  nature…   15  Source:  Hubel  and  Wiesel  experiment   •  Local  recep,ve  fields     •  Simple  cells   •  Complex  cells      
  • 16. Convolu,onal  Neural  Networks  (CNNs)   •  Deep  learning  technique  to  recognize  spa,al   paSerns  of  data     •  Hierarchical  organiza,on  of  different  abstrac,on   levels  of  image  features   •  Type  of  Ar,ficial  Neural  Network  (ANN)       Assump,on:  You  are  familiar  with  basic  Ar,ficial  Neural   Networks  (ANN)  and  machine  learning  concepts   16  
  • 17. Historical  CNN  architectures     17   Source:  Gradient-­‐based  learning  applied  to  document  recogni,on,   LeCun  et  al,  1998     Source:  Imagenet  classifica,on  with  deep  convolu,onal  neural  networks,  Krizhevsky  et  al,  2012  
  • 18. CNN  architecture   18   •  Convolu8on  layers   •  Sub-­‐sampling  (Pooling)  layers     •  Non-­‐linearity  layers  (Ac,va,on  func,on)     •  Fully  connected  (FC)  layer  (op,onal)   Source:  hSps://adeshpande3.github.io/adeshpande3.github.io/A-­‐Beginner's-­‐Guide-­‐To-­‐Understanding-­‐Convolu,onal-­‐Neural-­‐Networks/    
  • 19. Important  hyper  parameters  for  CNN     •  Number  of  filters  (kernals)     •  Stride   •  Size  of  the  filter   •  Amount  of  padding       •  Other  (not  CNN  specific)     – Learning  rate  (and  its  decay)     – Batch  size     – Momentum     19  
  • 20. Caffe  for  CNN  implementa,on   •  Convolu,onal  Architecture  For  Feature  Extrac,on     •  Deep  learning  framework  by  Berkley  Vision  and   Learning  center  hSp://caffe.berkeleyvision.org/       •  Reference  models  in  Caffe  model  Zoo   •  Input    (E.g.,  lmdb)   •  Net:  Layers  (data,  loss,  convolu,on)  E.g.,   lenet_train.prototxt   •  Solver  (learning  rate,  net,  model  snapshots,   valida,on)  E.g.,  lenet_solver.prototxt   20  
  • 22. lenet_train.prototxt  (few  important   layers)   22   Data  layer   Pooling  layer   Convolu,onal  layer  
  • 23. MIT  Places  for  scene  recogni,on     •  MIT  Places  database       •  Places2  Challenge     •  MIT  Scene  Recogni,on  Demo   •  hSp://places.csail.mit.edu         23  
  • 24. Important  resources     •  CS231n:  Convolu,onal  neural  networks  for   visual  recogni,on,  Fei  Fei  Li,  Andrej  Karpathy,   Jus,n  Johnson,  Stanford  university.   hSp://cs231n.stanford.edu/     •  DeepLearninbook,  Ian  Goodfellow,  Yoshua   Bengio,  Aaron  Courville.   hSp://www.deeplearningbook.org/       24  
  • 25. We  are  not  there  yet…   Source:  Concise  Computer  Vision   25  
  • 26. Contact  me   •  Linkedin:   hSps://www.linkedin.com/in/ jayaniwithanawasam     •  Email:  [email protected]   26