SECTION 1.5

LINEAR FIRST-ORDER EQUATIONS

1.               (       )
       ρ = exp ∫ 1 dx = e x ;                          (
                                             Dx y ⋅ e x = 2e x ;       )                       y ⋅ e x = 2e x + C ;         y ( x) = 2 + Ce − x

       y (0) = 0 implies C = − 2 so y ( x) = 2 − 2e − x


2.     ρ = exp   ( ∫ (−2) dx ) = e         −2 x
                                                  ;               (
                                                               Dx y ⋅ e −2 x = 3;     )                 y ⋅ e −2 x = 3 x + C ;     y ( x) = (3 x + C )e2 x

       y (0) = 0 implies C = 0 so y ( x) = 3x e 2 x

3.     ρ = exp   ( ∫ 3 dx ) = e   3x
                                       ;                   (
                                                  Dx y ⋅ e3 x = 2 x;       )                    y ⋅ e3 x = x 2 + C ;         y ( x ) = ( x 2 + C ) e −3 x


4.     ρ = exp   ( ∫ (−2 x) dx ) = e         − x2
                                                      ;                (
                                                                Dx y ⋅ e − x
                                                                                      2

                                                                                          ) = 1;         y ⋅ e− x = x + C;
                                                                                                                2
                                                                                                                                   y ( x ) = ( x + C )e x
                                                                                                                                                            2




5.     ρ = exp   ( ∫ (2 / x) dx ) = e        2ln x
                                                          = x2 ;                  (             )
                                                                               Dx y ⋅ x 2 = 3x 2 ;                  y ⋅ x 2 = x3 + C

       y( x) = x + C / x2 ;                y (1) = 5 implies C = 4 so y ( x) = x + 4 / x 2

6.     ρ = exp   ( ∫ (5 / x) dx ) = e        5ln x
                                                          = x5 ;                  (             )
                                                                               Dx y ⋅ x 5 = 7 x 6 ;                 y ⋅ x5 = x 7 + C

       y( x) = x 2 + C / x5 ;               y (2) = 5 implies C = 32 so y ( x) = x 2 + 32 / x 5

7.     ρ = exp   ( ∫ (1/ 2 x) dx ) = e        (ln x ) / 2
                                                                = x;                       (
                                                                                   Dx y ⋅ x = 5;         )              y ⋅ x = 5x + C

       y( x) = 5 x + C / x

8.     ρ = exp   ( ∫ (1/ 3x) dx ) = e         (ln x ) / 3
                                                               = 3 x;                      (
                                                                                   Dx y ⋅ 3 x = 4 3 x ; )                  y ⋅ 3 x = 3x4 / 3 + C

       y ( x ) = 3 x + Cx −1/ 3

9.     ρ = exp   ( ∫ (−1/ x) dx ) = e             − ln x
                                                           = 1/ x;                Dx ( y ⋅1/ x ) = 1/ x;                 y ⋅1/ x = ln x + C

       y ( x ) = x ln x + C x;              y (1) = 7 implies C = 7 so y ( x) = x ln x + 7 x

10.    ρ = exp   ( ∫ (−3 / 2 x) dx ) = e              ( −3ln x ) / 2
                                                                       = x −3/ 2 ;                  (               )
                                                                                               Dx y ⋅ x −3/ 2 = 9 x1/ 2 / 2;           y ⋅ x −3/ 2 = 3x 3/ 2 + C




Section 1.5                                                                                                                                           1
y ( x) = 3 x 3 + Cx 3/ 2

11.    ρ = exp    ( ∫ (1/ x − 3) dx ) = e               ln x −3 x
                                                                    = x e −3 x ;                      (
                                                                                             Dx y ⋅ x e −3 x = 0; )                 y ⋅ x e −3 x = C

       y ( x ) = C x −1e3 x ;          y (1) = 0 implies C = 0 so y ( x) ≡ 0 (constant)

12.    ρ = exp    ( ∫ (3 / x) dx ) = e          3 ln x
                                                         = x3 ;                  (
                                                                              Dx y ⋅ x3 = 2 x 7 ; )               y ⋅ x 3 = 1 x8 + C
                                                                                                                            4


       y( x) =    1
                  4
                      x 5 + C x −3 ;            y (2) = 1 implies C = 56 so y ( x) =                                            1
                                                                                                                                4
                                                                                                                                    x 5 + 56 x −3

13.               (        )
       ρ = exp ∫ 1 dx = e x ;                            (
                                                Dx y ⋅ e x = e 2 x ; )                       y ⋅ e x = 1 e2 x + C
                                                                                                       2


       y ( x) =   1
                  2
                      e x + C e− x ;            y (0) = 1 implies C =                                 1
                                                                                                      2    so y ( x) =      1
                                                                                                                            2
                                                                                                                                e x + 1 e− x
                                                                                                                                      2



14.    ρ = exp    ( ∫ (−3/ x) dx ) = e            −3ln x
                                                              = x −3 ;               (
                                                                                 Dx y ⋅ x −3 = x −1 ;     )             y ⋅ x −3 = ln x + C

       y ( x) = x 3 ln x + C x 3 ;                 y (1) = 10 implies C = 10 so y ( x ) = x 3 ln x + 10 x 3

15.    ρ = exp    ( ∫ 2 x dx ) = e     x2
                                            ;                 (
                                                     Dx y ⋅ e x
                                                                          2

                                                                              ) = xe     x2
                                                                                              ;           y ⋅ ex = 1 ex + C
                                                                                                              2

                                                                                                                   2
                                                                                                                        2




       y ( x) =       + C e− x ;            y (0) = −2 implies C = − 5 so y ( x ) =                                                  − 5 e− x
                               2                                                                                                                2
                  1                                                                                                             1
                  2                                                  2                                                          2      2



16.    ρ = exp    ( ∫ cos x dx ) = e        sin x
                                                    ;                (               )
                                                              Dx y ⋅ esin x = esin x cos x;                           y ⋅ esin x = esin x + C

       y ( x ) = 1 + C e − sin x ;          y (π ) = 2 implies C = 1 so y ( x ) = 1 + e− sin x

17.               (                     )
       ρ = exp ∫ 1/(1 + x) dx = eln(1+ x ) = 1 + x;                                  Dx ( y ⋅ (1 + x )) = cos x;                       y ⋅ (1 + x ) = sin x + C

                  C + sin x                                                                                             1 + sin x
       y( x) =              ;               y (0) = 1 implies C = 1 so y ( x ) =
                    1+ x                                                                                                  1+ x

18.    ρ = exp    ( ∫ (−2 / x) dx ) = e            −2ln x
                                                              = x −2 ;                   (
                                                                                 Dx y ⋅ x −2 = cos x;     )                 y ⋅ x −2 = sin x + C

       y ( x ) = x 2 (sin x + C )


19.    ρ = exp    ( ∫ cot x dx ) = e        ln(sin x )
                                                             = sin x;            Dx ( y ⋅ sin x ) = sin x cos x

       y ⋅ sin x = 1 sin 2 x + C ;
                   2
                                                   y ( x) =           1
                                                                      2   sin x + C csc x




Section 1.5                                                                                                                                             2
20.    ρ = exp           ( ∫ (−1 − x) dx ) = e              − x − x2 / 2
                                                                           ;                      (
                                                                                        Dx y ⋅ e − x − x
                                                                                                                       2
                                                                                                                            /2
                                                                                                                                    ) = (1 + x) e       − x − x2 / 2




       y ⋅ e− x− x            = − e− x− x            + C;             y ( x) = − 1 + C e − x− x
                     2                      2                                                                                   2
                         /2                     /2                                                                                   /2



       y (0) = 0 implies C = 1 so y ( x ) = − 1 + e − x − x
                                                                                                                            2
                                                                                                                                /2




21.    ρ = exp           ( ∫ (−3 / x) dx ) = e           −3ln x
                                                                      = x −3 ;                            (
                                                                                                  Dx y ⋅ x −3 = cos x;          )                        y ⋅ x −3 = sin x + C

       y ( x) = x 3 sin x + C x 3 ;                           y (2π ) = 0 implies C = 0 so y ( x) = x 3 sin x

22.    ρ = exp           ( ∫ (−2 x) dx ) = e           − x2
                                                              ;                    (
                                                                        Dx y ⋅ e − x
                                                                                                      2

                                                                                                          ) = 3x ;      2
                                                                                                                                          y ⋅ e− x = x3 + C
                                                                                                                                                2




                         (
       y ( x) = x 3 + C e − x ;      )                   y (0) = 5 implies C = 5 so y ( x ) = x 3 + 5 e − x                                                   (        )
                                                2                                                                                                                          2




23.    ρ = exp           ( ∫ (2 − 3 / x) dx ) = e                 2 x −3ln x
                                                                                   = x −3e 2 x ;                                (
                                                                                                                      Dx y ⋅ x −3e 2 x = 4 e 2 x    )
       y ⋅ x −3 e 2 x = 2 e 2 x + C ;                  y ( x ) = 2 x 3 + C x 3 e −2 x

24.    ρ = exp           ( ∫ 3x /( x   2
                                                        )
                                           + 4) dx = e3ln( x
                                                                               2
                                                                                   + 4) / 2
                                                                                              = ( x 2 + 4)3/ 2 ;                               (                       )
                                                                                                                                           Dx y ⋅ ( x 2 + 4)3/ 2 = x ( x 2 + 4)1/ 2

       y ⋅ ( x 2 + 4)3/ 2 = 1 ( x 2 + 4)3/ 2 + C ;
                            3                                                          y ( x) =               1
                                                                                                              3   + C ( x 2 + 4) −3/ 2

       y (0) = 1 implies C = 16 so y ( x) =
                              3
                                                                                                  1
                                                                                                  3   + 16 ( x 2 + 4) −3/ 2
                                                                                                         3


25.   First we calculate

                                   + 3x dx = + 3x − 3x # dx =
                                   , x + 1 , ! x + 1$
                                                3
                                                                                                                                     3 2
                                   -        2
                                             -                                                2
                                                                                                                                     2
                                                                                                                                       x − ln( x 2 + 1) .


      It follows that ρ = ( x 2 + 1) −3/ 2 exp(3x 2 / 2) and thence that

                                           (
                                    Dx y ⋅ ( x 2 + 1) −3/ 2 exp(3x 2 / 2) = 6 x ( x 2 + 4)−5 / 2 ,                )
                                                         −3/ 2
                                    y ⋅ ( x + 1)2
                                                                    exp(3x / 2) = − 2( x 2 + 4) −3/ 2 + C ,
                                                                                        2


                                    y ( x) = − 2 exp(3 x 2 / 2) + C ( x 2 + 1)3/ 2 exp(−3x 2 / 2).

      Finally, y(0) = 1 implies that C = 3 so the desired particular solution is

                                    y ( x ) = − 2 exp(3x 2 / 2) + 3( x 2 + 1)3/ 2 exp(−3 x 2 / 2).




Section 1.5                                                                                                                                                                     3
26.   With x′ = dx / dy , the differential equation is y 3 x′ + 4 y 2 x = 1. Then with y as the
      independent variable we calculate

               ρ ( y ) = exp            ( ∫ (4 / y) dy ) = e                 4ln y
                                                                                          = y4;                  (       )
                                                                                                              Dy x ⋅ y 4 = y

                            1 2                                                   1    C
               x ⋅ y4 =       y + C;                       x( y ) =                 2
                                                                                      + 4
                            2                                                    2y    y

27.   With x′ = dx / dy , the differential equation is x′ − x = y e y . Then with y as the
      independent variable we calculate

               ρ ( y ) = exp            ( ∫ (−1) dy ) = e               −y
                                                                             ;                (
                                                                                          Dy x ⋅ e − y        )=     y

               x ⋅ e− y =       1
                                2   y 2 + C;               x( y ) =           (   1
                                                                                  2   y2 + C ey    )
28.   With x′ = dx / dy , the differential equation is (1 + y 2 ) x′ − 2 y x = 1. Then with y as the
      independent variable we calculate

               ρ ( y ) = exp            ( ∫ (−2 y /(1 + y ) dy ) = e2                         − ln( y 2 +1)
                                                                                                               = (1 + y 2 )−1

                  (                             )
               Dy x ⋅ (1 + y 2 )−1 = (1 + y 2 ) −2

      An integral table (or trigonometric substitution) now yields

                 x     ⌠ dy                                        1 y                      
                     =                                        =             + tan −1 y + C 
               1+ y2                    (              )           2  1+ y
                                                       2                    2
                       ⌡ 1+ y
                              2
                                                                                             

               x( y ) =     1
                            2
                                 y + 1 + y2
                                           (              )( tan      −1
                                                                            y+C 
                                                                                         )

29.    ρ = exp   ( ∫ (−2 x) dx ) = e ;          − x2
                                                                   (
                                                               Dx y ⋅ e − x
                                                                                  2

                                                                                      )=e      − x2
                                                                                                      ;        y ⋅ e − x = C + ∫ e −t dt
                                                                                                                     2          x

                                                                                                                                0
                                                                                                                                    2




       y ( x ) = e (C + erf ( x) )
                 − x2               π
                                    2



30.   After division of the given equation by 2x, multiplication by the integrating factor
      ρ = x–1/2 yields

                                                    x −1/ 2 y ′ − 1 x −3/ 2 y = x −1/ 2 cos x,
                                                                  2

                                                           2            7
                                                    Dx x −1/ 2 y = x −1/ 2 cos x,

                                                    x −1 / 2 y = C +              I
                                                                                  1
                                                                                      x
                                                                                          t −1/ 2 cos t dt.


Section 1.5                                                                                                                                4
The initial condition y(1) = 0 implies that C = 0, so the desired particular solution is

                                  y( x ) = x 1 / 2   I
                                                     1
                                                         x
                                                             t −1/ 2 cos t dt .


              yc = C e ∫ (− P ) = − P yc , so yc + P yc = 0.
                      − P dx
31.   (a)      ′                               ′

                            − P dx                − P dx
              y′p = ( − P) e ∫ ⋅ ⌠  Q e ∫  dx  + e ∫ ⋅ Q e ∫
                                           P dx                  P dx
      (b)                                                          = − Py p + Q
                                   ⌡           

32.   (a)     If y = A cos x + B sin x then

                      y′ + y = ( A + B) cos x + ( B − A)sin x = 2sin x

      provided that A = –1 and B = 1. These coefficient values give the particular solution
      yp(x) = sin x – cos x.

      (b)     The general solution of the equation y′ + y = 0 is y(x) = Ce–x so addition to the
      particular solution found in part (a) gives y(x) = Ce–x + sin x – cos x.

      (c)     The initial condition y(0) = 1 implies that C = 2, so the desired particular
      solution is y(x) = 2e–x + sin x – cos x.

33.   The amount x(t ) of salt (in kg) after t seconds satisfies the differential equation
      x′ = − x / 200, so x(t ) = 100 e− t / 200 . Hence we need only solve the equation
      10 = 100 e − t / 200 for t = 461 sec = 7 min 41 sec (approximately).

34.   Let x(t ) denote the amount of pollutants in the lake after t days, measured in millions of
      cubic feet. Then x(t ) satisfies the linear differential equation dx / dt = 1/ 4 − x /16 with
      solution x(t ) = 4 + 16 e − t /16 satisfying x(0) = 20. The value of t such that x = 8 is
      t = 16 ln 4 ≈ 22.2 days. For a complete solution see Example 4 in Section 7.6 of Edwards
      and Penney, Calculus with Analytic Geometry (5th edition, Prentice-Hall, 1998).

35.   The only difference from the Example 4 solution in the textbook is that V = 1640 km3
      and r = 410 km3/yr for Lake Ontario, so the time required is

                                  V
                            t =     ln 4 = 4 ln 4 ≈ 5.5452 years.
                                  r

36.   (a)    The volume of brine in the tank after t min is V(t) = 60 – t gal, so the initial
      value problem is




Section 1.5                                                                               5
dx       3x
                                      = 2−        ,                   x (0 ) = 0.
                                   dt      60 − t
      The solution is
                                                             (60 − t )3
                                        x (t ) = (60 − t ) −            .
                                                               3600

      (b)     The maximum amount ever in the tank is 40 / 3 ≈ 23.09 lb. This occurs after
      t = 60 − 20 3 ≈ 25 / 36 min.

37.   The volume of brine in the tank after t min is V(t) = 100 + 2t gal, so the initial value
      problem is
                            dx            3x
                                = 5−           ,      x (0) = 50.
                            dt        100 + 2t

      The integrating factor ρ (t ) = (100 + 2t)3/2 leads to the solution

                                                                   50000
                                    x(t ) = (100 + 2t ) −                       .
                                                                (100 + 2t )3/ 2

      such that x(0) = 50. The tank is full after t = 150 min, at which time
      x(150) = 393.75 lb.

38.   (a)     dx / dt = − x / 20 and x(0) = 50 so x(t ) = 50 e− t / 20 .

      (b)     The solution of the linear differential equation

                                  dy    5x   5y  5             1
                                     =     −    = e − t / 20 −    y
                                  dt   100 200   2             40

      with y(0) = 50 is
                                       y(t ) = 150 e − t / 40 − 100 e − t / 20 .

      (c)     The maximum value of y occurs when

              y′(t ) = −
                           15 − t / 40
                            4
                              e
                                                        5
                                                                  (                )
                                       + 5e − t / 20 = − e − t / 40 3 − 4e − t / 40 = 0 .
                                                        4

      We find that ymax = 56.25 lb when t = 40 ln(4/3) ≈ 11.51 min.

39.   (a)     The initial value problem

                                     dx     x
                                        = − ,                   x (0) = 100
                                     dt    10




Section 1.5                                                                                 6
for Tank 1 has solution x (t ) = 100 e − t /10 . Then the initial value problem

                            dy    x   y                  y
                               =    −   = 10 e − t /10 − ,                     y( 0 ) = 0
                            dt   10 10                  10

      for Tank 2 has solution y (t ) = 10t e − t /10 .

      (b)     The maximum value of y occurs when

                        y′(t ) = 10 e − t /10 − t e − t /10 = 0

      and thus when t = 10. We find that ymax = y(10) = 100e–1 ≈ 36.79 gal.

40.   (b)                                                               2 7
              Assuming inductively that xn = t n e − t / 2 / n ! 2 n , the equation for xn+1 is

                               dxn +1  1    1        t n e−t / 2 1
                                      = xn − xn +1 =            − xn +1 .
                                dt     2    2        n ! 2 n +1 2

      We easily solve this first–order equation with x n+1 ( 0) = 0 and find that

                                                          t n +1 e − t / 2
                                             x n +1 =                      ,
                                                        (n + 1)! 2 n +1

      thereby completing the proof by induction.

41.   (a)     A'(t) = 0.06A + 0.12S = 0.06 A + 3.6 e0.05t

      (b)     The solution with A(0) = 0 is

                                           A(t) = 360(e0.06 t – e0.05 t),

      so A(40) ≈ 1308.283 thousand dollars.

42.   The mass of the hailstone at time t is m = ( 4 / 3)πr 3 = ( 4 / 3)πk 3t 3 . Then the equation
      d(mv)/dt = mg simplifies to

                                           tv' + 3v = gt.

      The solution satisfying the initial condition v(0) = 0 is v(t) = gt/4, so v'(t) = g/4.

43.   The solution of the initial value problem y ′ = x − y, y( −5) = y0 is

                                       y( x ) = x − 1 + ( y0 + 6)e − x − 5 .



Section 1.5                                                                                   7
Substituting x = 5, we therefore solve the equation 4 + ( y0 + 6)e −10 = y1
      with y1 = 3.998, 3.999, 4, 4.001, 4.002 for the desired initial values
      y0 = –50.0529, –28.0265, –6.0000, 16.0265, 38.0529, respectively.

44.   The solution of the initial value problem y ′ = x + y, y( −5) = y0 is

                                 y( x ) = − x − 1 + ( y0 − 4)e x + 5 .

      Substituting x = 5, we therefore solve the equation −6 + ( y0 − 4)e10 = y1
      with y1 = –10, –5, 0, 5, 10 for the desired initial values
      y0 = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively.




Section 1.5                                                                         8

More Related Content

PDF
Sect1 4
PDF
Sect1 2
PPTX
Antiderivatives nako sa calculus official
PDF
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
PDF
Stepenovanje
PDF
Calculus First Test 2011/10/20
PDF
TABLA DE DERIVADAS
PDF
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
Sect1 4
Sect1 2
Antiderivatives nako sa calculus official
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Stepenovanje
Calculus First Test 2011/10/20
TABLA DE DERIVADAS
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)

What's hot (20)

PDF
Calculus Final Exam
PDF
01 derivadas
PDF
PDF
Lesson 15: The Chain Rule
PPT
Matematika Ekonomi Diferensiasi fungsi sederhana
DOC
Simultaneous eqn2
PDF
Week 2
PDF
Chapter 15
PDF
Actividad 4 calculo diferencial
PDF
Ism et chapter_6
PDF
Example triple integral
PDF
Engr 213 midterm 1a sol 2009
DOCX
Função afim resumo teórico e exercícios - celso brasil
PDF
Chapter 09
PDF
Solved exercises simple integration
PDF
Chapter 07
PDF
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
PDF
Chapter 04
PDF
S101-52國立新化高中(代理)
Calculus Final Exam
01 derivadas
Lesson 15: The Chain Rule
Matematika Ekonomi Diferensiasi fungsi sederhana
Simultaneous eqn2
Week 2
Chapter 15
Actividad 4 calculo diferencial
Ism et chapter_6
Example triple integral
Engr 213 midterm 1a sol 2009
Função afim resumo teórico e exercícios - celso brasil
Chapter 09
Solved exercises simple integration
Chapter 07
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Chapter 04
S101-52國立新化高中(代理)
Ad

Similar to Sect1 5 (20)

KEY
0408 ch 4 day 8
PDF
Emat 213 midterm 1 fall 2005
PPTX
UNDETERMINED COEFFICIENT
PDF
Sect5 3
PDF
Emat 213 midterm 1 winter 2006
PDF
Lesson 29: Integration by Substition (worksheet solutions)
PDF
Normal
PDF
Engr 213 midterm 1a sol 2010
POT
PDF
Lesson 28: Integration by Substitution (worksheet solutions)
PDF
Math refresher
DOCX
Integration SPM
PDF
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
PDF
Sect1 1
PDF
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
DOC
last lecture in infinite series
PDF
Engr 213 sample midterm 2b sol 2010
PDF
Engr 213 midterm 1b sol 2010
PDF
Ism et chapter_3
PDF
Ism et chapter_3
0408 ch 4 day 8
Emat 213 midterm 1 fall 2005
UNDETERMINED COEFFICIENT
Sect5 3
Emat 213 midterm 1 winter 2006
Lesson 29: Integration by Substition (worksheet solutions)
Normal
Engr 213 midterm 1a sol 2010
Lesson 28: Integration by Substitution (worksheet solutions)
Math refresher
Integration SPM
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Sect1 1
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
last lecture in infinite series
Engr 213 sample midterm 2b sol 2010
Engr 213 midterm 1b sol 2010
Ism et chapter_3
Ism et chapter_3
Ad

More from inKFUPM (20)

DOC
Tb10
DOC
Tb18
DOC
Tb14
DOC
Tb13
DOC
Tb17
DOC
Tb16
DOC
Tb15
DOC
Tb12
DOC
Tb11
DOC
Tb09
DOC
Tb05
DOC
Tb07
DOC
Tb04
DOC
Tb02
DOC
Tb03
DOC
Tb06
DOC
Tb01
DOC
Tb08
PDF
21221
PDF
Sect5 6
Tb10
Tb18
Tb14
Tb13
Tb17
Tb16
Tb15
Tb12
Tb11
Tb09
Tb05
Tb07
Tb04
Tb02
Tb03
Tb06
Tb01
Tb08
21221
Sect5 6

Sect1 5

  • 1. SECTION 1.5 LINEAR FIRST-ORDER EQUATIONS 1. ( ) ρ = exp ∫ 1 dx = e x ; ( Dx y ⋅ e x = 2e x ; ) y ⋅ e x = 2e x + C ; y ( x) = 2 + Ce − x y (0) = 0 implies C = − 2 so y ( x) = 2 − 2e − x 2. ρ = exp ( ∫ (−2) dx ) = e −2 x ; ( Dx y ⋅ e −2 x = 3; ) y ⋅ e −2 x = 3 x + C ; y ( x) = (3 x + C )e2 x y (0) = 0 implies C = 0 so y ( x) = 3x e 2 x 3. ρ = exp ( ∫ 3 dx ) = e 3x ; ( Dx y ⋅ e3 x = 2 x; ) y ⋅ e3 x = x 2 + C ; y ( x ) = ( x 2 + C ) e −3 x 4. ρ = exp ( ∫ (−2 x) dx ) = e − x2 ; ( Dx y ⋅ e − x 2 ) = 1; y ⋅ e− x = x + C; 2 y ( x ) = ( x + C )e x 2 5. ρ = exp ( ∫ (2 / x) dx ) = e 2ln x = x2 ; ( ) Dx y ⋅ x 2 = 3x 2 ; y ⋅ x 2 = x3 + C y( x) = x + C / x2 ; y (1) = 5 implies C = 4 so y ( x) = x + 4 / x 2 6. ρ = exp ( ∫ (5 / x) dx ) = e 5ln x = x5 ; ( ) Dx y ⋅ x 5 = 7 x 6 ; y ⋅ x5 = x 7 + C y( x) = x 2 + C / x5 ; y (2) = 5 implies C = 32 so y ( x) = x 2 + 32 / x 5 7. ρ = exp ( ∫ (1/ 2 x) dx ) = e (ln x ) / 2 = x; ( Dx y ⋅ x = 5; ) y ⋅ x = 5x + C y( x) = 5 x + C / x 8. ρ = exp ( ∫ (1/ 3x) dx ) = e (ln x ) / 3 = 3 x; ( Dx y ⋅ 3 x = 4 3 x ; ) y ⋅ 3 x = 3x4 / 3 + C y ( x ) = 3 x + Cx −1/ 3 9. ρ = exp ( ∫ (−1/ x) dx ) = e − ln x = 1/ x; Dx ( y ⋅1/ x ) = 1/ x; y ⋅1/ x = ln x + C y ( x ) = x ln x + C x; y (1) = 7 implies C = 7 so y ( x) = x ln x + 7 x 10. ρ = exp ( ∫ (−3 / 2 x) dx ) = e ( −3ln x ) / 2 = x −3/ 2 ; ( ) Dx y ⋅ x −3/ 2 = 9 x1/ 2 / 2; y ⋅ x −3/ 2 = 3x 3/ 2 + C Section 1.5 1
  • 2. y ( x) = 3 x 3 + Cx 3/ 2 11. ρ = exp ( ∫ (1/ x − 3) dx ) = e ln x −3 x = x e −3 x ; ( Dx y ⋅ x e −3 x = 0; ) y ⋅ x e −3 x = C y ( x ) = C x −1e3 x ; y (1) = 0 implies C = 0 so y ( x) ≡ 0 (constant) 12. ρ = exp ( ∫ (3 / x) dx ) = e 3 ln x = x3 ; ( Dx y ⋅ x3 = 2 x 7 ; ) y ⋅ x 3 = 1 x8 + C 4 y( x) = 1 4 x 5 + C x −3 ; y (2) = 1 implies C = 56 so y ( x) = 1 4 x 5 + 56 x −3 13. ( ) ρ = exp ∫ 1 dx = e x ; ( Dx y ⋅ e x = e 2 x ; ) y ⋅ e x = 1 e2 x + C 2 y ( x) = 1 2 e x + C e− x ; y (0) = 1 implies C = 1 2 so y ( x) = 1 2 e x + 1 e− x 2 14. ρ = exp ( ∫ (−3/ x) dx ) = e −3ln x = x −3 ; ( Dx y ⋅ x −3 = x −1 ; ) y ⋅ x −3 = ln x + C y ( x) = x 3 ln x + C x 3 ; y (1) = 10 implies C = 10 so y ( x ) = x 3 ln x + 10 x 3 15. ρ = exp ( ∫ 2 x dx ) = e x2 ; ( Dx y ⋅ e x 2 ) = xe x2 ; y ⋅ ex = 1 ex + C 2 2 2 y ( x) = + C e− x ; y (0) = −2 implies C = − 5 so y ( x ) = − 5 e− x 2 2 1 1 2 2 2 2 16. ρ = exp ( ∫ cos x dx ) = e sin x ; ( ) Dx y ⋅ esin x = esin x cos x; y ⋅ esin x = esin x + C y ( x ) = 1 + C e − sin x ; y (π ) = 2 implies C = 1 so y ( x ) = 1 + e− sin x 17. ( ) ρ = exp ∫ 1/(1 + x) dx = eln(1+ x ) = 1 + x; Dx ( y ⋅ (1 + x )) = cos x; y ⋅ (1 + x ) = sin x + C C + sin x 1 + sin x y( x) = ; y (0) = 1 implies C = 1 so y ( x ) = 1+ x 1+ x 18. ρ = exp ( ∫ (−2 / x) dx ) = e −2ln x = x −2 ; ( Dx y ⋅ x −2 = cos x; ) y ⋅ x −2 = sin x + C y ( x ) = x 2 (sin x + C ) 19. ρ = exp ( ∫ cot x dx ) = e ln(sin x ) = sin x; Dx ( y ⋅ sin x ) = sin x cos x y ⋅ sin x = 1 sin 2 x + C ; 2 y ( x) = 1 2 sin x + C csc x Section 1.5 2
  • 3. 20. ρ = exp ( ∫ (−1 − x) dx ) = e − x − x2 / 2 ; ( Dx y ⋅ e − x − x 2 /2 ) = (1 + x) e − x − x2 / 2 y ⋅ e− x− x = − e− x− x + C; y ( x) = − 1 + C e − x− x 2 2 2 /2 /2 /2 y (0) = 0 implies C = 1 so y ( x ) = − 1 + e − x − x 2 /2 21. ρ = exp ( ∫ (−3 / x) dx ) = e −3ln x = x −3 ; ( Dx y ⋅ x −3 = cos x; ) y ⋅ x −3 = sin x + C y ( x) = x 3 sin x + C x 3 ; y (2π ) = 0 implies C = 0 so y ( x) = x 3 sin x 22. ρ = exp ( ∫ (−2 x) dx ) = e − x2 ; ( Dx y ⋅ e − x 2 ) = 3x ; 2 y ⋅ e− x = x3 + C 2 ( y ( x) = x 3 + C e − x ; ) y (0) = 5 implies C = 5 so y ( x ) = x 3 + 5 e − x ( ) 2 2 23. ρ = exp ( ∫ (2 − 3 / x) dx ) = e 2 x −3ln x = x −3e 2 x ; ( Dx y ⋅ x −3e 2 x = 4 e 2 x ) y ⋅ x −3 e 2 x = 2 e 2 x + C ; y ( x ) = 2 x 3 + C x 3 e −2 x 24. ρ = exp ( ∫ 3x /( x 2 ) + 4) dx = e3ln( x 2 + 4) / 2 = ( x 2 + 4)3/ 2 ; ( ) Dx y ⋅ ( x 2 + 4)3/ 2 = x ( x 2 + 4)1/ 2 y ⋅ ( x 2 + 4)3/ 2 = 1 ( x 2 + 4)3/ 2 + C ; 3 y ( x) = 1 3 + C ( x 2 + 4) −3/ 2 y (0) = 1 implies C = 16 so y ( x) = 3 1 3 + 16 ( x 2 + 4) −3/ 2 3 25. First we calculate + 3x dx = + 3x − 3x # dx = , x + 1 , ! x + 1$ 3 3 2 - 2 - 2 2 x − ln( x 2 + 1) . It follows that ρ = ( x 2 + 1) −3/ 2 exp(3x 2 / 2) and thence that ( Dx y ⋅ ( x 2 + 1) −3/ 2 exp(3x 2 / 2) = 6 x ( x 2 + 4)−5 / 2 , ) −3/ 2 y ⋅ ( x + 1)2 exp(3x / 2) = − 2( x 2 + 4) −3/ 2 + C , 2 y ( x) = − 2 exp(3 x 2 / 2) + C ( x 2 + 1)3/ 2 exp(−3x 2 / 2). Finally, y(0) = 1 implies that C = 3 so the desired particular solution is y ( x ) = − 2 exp(3x 2 / 2) + 3( x 2 + 1)3/ 2 exp(−3 x 2 / 2). Section 1.5 3
  • 4. 26. With x′ = dx / dy , the differential equation is y 3 x′ + 4 y 2 x = 1. Then with y as the independent variable we calculate ρ ( y ) = exp ( ∫ (4 / y) dy ) = e 4ln y = y4; ( ) Dy x ⋅ y 4 = y 1 2 1 C x ⋅ y4 = y + C; x( y ) = 2 + 4 2 2y y 27. With x′ = dx / dy , the differential equation is x′ − x = y e y . Then with y as the independent variable we calculate ρ ( y ) = exp ( ∫ (−1) dy ) = e −y ; ( Dy x ⋅ e − y )= y x ⋅ e− y = 1 2 y 2 + C; x( y ) = ( 1 2 y2 + C ey ) 28. With x′ = dx / dy , the differential equation is (1 + y 2 ) x′ − 2 y x = 1. Then with y as the independent variable we calculate ρ ( y ) = exp ( ∫ (−2 y /(1 + y ) dy ) = e2 − ln( y 2 +1) = (1 + y 2 )−1 ( ) Dy x ⋅ (1 + y 2 )−1 = (1 + y 2 ) −2 An integral table (or trigonometric substitution) now yields x ⌠ dy 1 y  =  =  + tan −1 y + C  1+ y2 ( ) 2  1+ y 2 2 ⌡ 1+ y 2  x( y ) = 1 2  y + 1 + y2  ( )( tan −1 y+C   ) 29. ρ = exp ( ∫ (−2 x) dx ) = e ; − x2 ( Dx y ⋅ e − x 2 )=e − x2 ; y ⋅ e − x = C + ∫ e −t dt 2 x 0 2 y ( x ) = e (C + erf ( x) ) − x2 π 2 30. After division of the given equation by 2x, multiplication by the integrating factor ρ = x–1/2 yields x −1/ 2 y ′ − 1 x −3/ 2 y = x −1/ 2 cos x, 2 2 7 Dx x −1/ 2 y = x −1/ 2 cos x, x −1 / 2 y = C + I 1 x t −1/ 2 cos t dt. Section 1.5 4
  • 5. The initial condition y(1) = 0 implies that C = 0, so the desired particular solution is y( x ) = x 1 / 2 I 1 x t −1/ 2 cos t dt . yc = C e ∫ (− P ) = − P yc , so yc + P yc = 0. − P dx 31. (a) ′ ′ − P dx   − P dx y′p = ( − P) e ∫ ⋅ ⌠  Q e ∫  dx  + e ∫ ⋅ Q e ∫ P dx P dx (b)   = − Py p + Q ⌡    32. (a) If y = A cos x + B sin x then y′ + y = ( A + B) cos x + ( B − A)sin x = 2sin x provided that A = –1 and B = 1. These coefficient values give the particular solution yp(x) = sin x – cos x. (b) The general solution of the equation y′ + y = 0 is y(x) = Ce–x so addition to the particular solution found in part (a) gives y(x) = Ce–x + sin x – cos x. (c) The initial condition y(0) = 1 implies that C = 2, so the desired particular solution is y(x) = 2e–x + sin x – cos x. 33. The amount x(t ) of salt (in kg) after t seconds satisfies the differential equation x′ = − x / 200, so x(t ) = 100 e− t / 200 . Hence we need only solve the equation 10 = 100 e − t / 200 for t = 461 sec = 7 min 41 sec (approximately). 34. Let x(t ) denote the amount of pollutants in the lake after t days, measured in millions of cubic feet. Then x(t ) satisfies the linear differential equation dx / dt = 1/ 4 − x /16 with solution x(t ) = 4 + 16 e − t /16 satisfying x(0) = 20. The value of t such that x = 8 is t = 16 ln 4 ≈ 22.2 days. For a complete solution see Example 4 in Section 7.6 of Edwards and Penney, Calculus with Analytic Geometry (5th edition, Prentice-Hall, 1998). 35. The only difference from the Example 4 solution in the textbook is that V = 1640 km3 and r = 410 km3/yr for Lake Ontario, so the time required is V t = ln 4 = 4 ln 4 ≈ 5.5452 years. r 36. (a) The volume of brine in the tank after t min is V(t) = 60 – t gal, so the initial value problem is Section 1.5 5
  • 6. dx 3x = 2− , x (0 ) = 0. dt 60 − t The solution is (60 − t )3 x (t ) = (60 − t ) − . 3600 (b) The maximum amount ever in the tank is 40 / 3 ≈ 23.09 lb. This occurs after t = 60 − 20 3 ≈ 25 / 36 min. 37. The volume of brine in the tank after t min is V(t) = 100 + 2t gal, so the initial value problem is dx 3x = 5− , x (0) = 50. dt 100 + 2t The integrating factor ρ (t ) = (100 + 2t)3/2 leads to the solution 50000 x(t ) = (100 + 2t ) − . (100 + 2t )3/ 2 such that x(0) = 50. The tank is full after t = 150 min, at which time x(150) = 393.75 lb. 38. (a) dx / dt = − x / 20 and x(0) = 50 so x(t ) = 50 e− t / 20 . (b) The solution of the linear differential equation dy 5x 5y 5 1 = − = e − t / 20 − y dt 100 200 2 40 with y(0) = 50 is y(t ) = 150 e − t / 40 − 100 e − t / 20 . (c) The maximum value of y occurs when y′(t ) = − 15 − t / 40 4 e 5 ( ) + 5e − t / 20 = − e − t / 40 3 − 4e − t / 40 = 0 . 4 We find that ymax = 56.25 lb when t = 40 ln(4/3) ≈ 11.51 min. 39. (a) The initial value problem dx x = − , x (0) = 100 dt 10 Section 1.5 6
  • 7. for Tank 1 has solution x (t ) = 100 e − t /10 . Then the initial value problem dy x y y = − = 10 e − t /10 − , y( 0 ) = 0 dt 10 10 10 for Tank 2 has solution y (t ) = 10t e − t /10 . (b) The maximum value of y occurs when y′(t ) = 10 e − t /10 − t e − t /10 = 0 and thus when t = 10. We find that ymax = y(10) = 100e–1 ≈ 36.79 gal. 40. (b) 2 7 Assuming inductively that xn = t n e − t / 2 / n ! 2 n , the equation for xn+1 is dxn +1 1 1 t n e−t / 2 1 = xn − xn +1 = − xn +1 . dt 2 2 n ! 2 n +1 2 We easily solve this first–order equation with x n+1 ( 0) = 0 and find that t n +1 e − t / 2 x n +1 = , (n + 1)! 2 n +1 thereby completing the proof by induction. 41. (a) A'(t) = 0.06A + 0.12S = 0.06 A + 3.6 e0.05t (b) The solution with A(0) = 0 is A(t) = 360(e0.06 t – e0.05 t), so A(40) ≈ 1308.283 thousand dollars. 42. The mass of the hailstone at time t is m = ( 4 / 3)πr 3 = ( 4 / 3)πk 3t 3 . Then the equation d(mv)/dt = mg simplifies to tv' + 3v = gt. The solution satisfying the initial condition v(0) = 0 is v(t) = gt/4, so v'(t) = g/4. 43. The solution of the initial value problem y ′ = x − y, y( −5) = y0 is y( x ) = x − 1 + ( y0 + 6)e − x − 5 . Section 1.5 7
  • 8. Substituting x = 5, we therefore solve the equation 4 + ( y0 + 6)e −10 = y1 with y1 = 3.998, 3.999, 4, 4.001, 4.002 for the desired initial values y0 = –50.0529, –28.0265, –6.0000, 16.0265, 38.0529, respectively. 44. The solution of the initial value problem y ′ = x + y, y( −5) = y0 is y( x ) = − x − 1 + ( y0 − 4)e x + 5 . Substituting x = 5, we therefore solve the equation −6 + ( y0 − 4)e10 = y1 with y1 = –10, –5, 0, 5, 10 for the desired initial values y0 = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively. Section 1.5 8