SlideShare a Scribd company logo
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Secure Multi-Party Computation Based Privacy
Preserving Extreme Learning Machine Algorithm
Over Vertically Distributed Data
Ferhat ¨Ozg¨ur C¸atak
ozgur.catak@tubitak.gov.tr
T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute
Kocaeli, Turkey
Nov. 10 2015
The 2015 International Data Mining and Cybersecurity Workshop
With ICONIP2015
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Table of Contents
1 Introduction
Secure Multiparty Computation
Contributions
2 Preliminaries
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
3 Privacy-preserving ELM over vertically partitioned data
Privacy-preserving ELM
4 Experiments
Experimental setup
Simulation Results
5 Conclusions
Conclusions
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Secure Multiparty Computation
Contributions
Table of Contents
1 Introduction
Secure Multiparty Computation
Contributions
2 Preliminaries
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
3 Privacy-preserving ELM over vertically partitioned data
Privacy-preserving ELM
4 Experiments
Experimental setup
Simulation Results
5 Conclusions
Conclusions
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Secure Multiparty Computation
Contributions
Secure Multiparty Computation (SMC)
Definition
SMC : The goal of creating methods for parties to jointly compute
a function over their inputs while keeping those inputs private.
In an MPC,
a given number of participants, p1, p2, · · · , pN
each has private data, respectively d1, d2, · · · , dN
Participants want to compute the value of a public function on
that private data:
F(d1, d2, ..., dN ) while keeping their own inputs secret.
Challenges :
To protect each participant’s private data, and intermediate results
The computation/communication cost introduced to each
participant shall be affordable
Training data is arbitrarily partitioned
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Secure Multiparty Computation
Contributions
Contributions
Main contributions of the work
Privacy-preserving Extreme Learning Machine (ELM) training
model
Global ELM classification model from the distributed data sets in
multiple parties
Training data set is vertically partitioned among the parties
The final distributed model is constructed at an independent party
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Table of Contents
1 Introduction
Secure Multiparty Computation
Contributions
2 Preliminaries
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
3 Privacy-preserving ELM over vertically partitioned data
Privacy-preserving ELM
4 Experiments
Experimental setup
Simulation Results
5 Conclusions
Conclusions
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Extreme Learning Machine (ELM)
Learning Without Iterative Tuning
All hidden node parameters can be randomly generated without the
knowledge of the training data. That is, for any continuous target
function f and any randomly generated sequence
limL→∞ ||f (x) − fL(x)|| = limL→∞ ||f (x) −
L
i=1 βi G(ai , bi , x)|| = 0
holds with probability one if βi is chosen to minimize
||f (x) − fL(x)||, ∀i
G.-B. Huang, et al., ”Universal approximation using incremental constructive
feedforward networks with random hidden nodes,” IEEE Transactions on Neural
Networks, vol. 17, no. 4, pp. 879-892, 2006.
G.-B. Huang, et al., ”Convex incremental extreme learning machine,”
Neurocomputing, vol. 70, pp. 3056-3062, 2007.
G.-B. Huang, et al., ”Enhanced random search based incremental extreme learning
machine,” Neurocomputing, vol. 71, pp. 3460-3468, 2008.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Extreme Learning Machine (ELM)
Figure: Generalized SLFN
Mathematical Model
For N arbitrary distinct samples
(xi , ti ) ∈ Rn × Rm, SLFNs with L
hidden nodes each with output
function, G(ai , bi , x) are
mathematically modeled as
L
i=1
βi G(ai , bi , xj ) = tj , j = 1, ..., N
(1)
(ai , bi ): hidden node parameters.
βi : the weight vector connecting the
ith hidden node and the output node.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Extreme Learning Machine (ELM)
Mathematical Model
L
i=1 βi G(ai , bi , xj ) = tj , j = 1, ..., N is equivalent to Hβ = T where,



h(x1)
...
h(xN)


 =



G(a1, b1, x1) · · · G(aL, bL, x1)
...
...
...
G(a1, b1, xN) · · · G(aL, bL, xN)



N×L
(2)
β =



βT
1
...
βT
L



L×m
ve T =



tT
1
...
tT
N



N×m
(3)
H, is called the hidden layer output matrix of the neural network, the ith
column of H is the output of the ith hidden node with respect to inputs ,
x1, ..., xn
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Extreme Learning Machine (ELM)
Three-Step Learning Model
Given a training set D = {(xi , ti )|xi ∈ Rn
, ti ∈ Rm
, i = 1, · · · , N}, hidden
node output function G(a, b, x), and the number of hidden nodes L,
1 Assign randomly hidden node parameters (ai , bi ), i = 1, · · · , L.
2 Calculate the hidden layer output matrix H.
3 Calculate the output weight β = Ht
T.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Secure Multi Party Computation
Secure Multi-Party Computation
The problem of n players to compute an agreed function f of their
inputs
In vertically partitioned data, each party holds different attributes of
same data set.
The partition strategy is shown in Figure 2.
x1,1 · · · x1,t−1 · · · x1,t · · · x1,k
x2,1 · · · x2,t−1 · · · x2,t · · · x2,k
...
...
...
...
...
...
...
xm,1 · · · xm,t−1 · · · xm,t · · · xm,k














P1 · · · Pk
D =
Figure: Vertically partitioned data set D.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Secure Multi-Party Addition I
Secure Multi-Party Addition
Assume k ≥ 3 parties, P0, · · · , Pk−1, with party Pi holding value vi
Aim is to compute v =
k−1
i=0
vi
Sum of vi lies in F
P0 randomly chooses a number R ∈ F
P0 adds R to its local value v0,
Sends v0 = R + v0mod|F| to P1
The remaining parties Pi , i = 1, · · · , k − 1
Pi receives V = R +
i−1
j=0
vj mod|F|
Pi sends R + j=1
ivj mod|F| = (vi + V )mod|F|
Finally, P0, subtracts R from the final message to compute actual
results.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Secure Multi-Party Addition II
Party0
x0 , R ∈ F
Party1
x1
Party2
x2
Partyk
xk
V = R + x0mod|F|
V = R +
i−1
j=0 xjmod|F|
(xi + V )mod|F|
Figure: Secure Multi-Party Addition.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
Secure Multi-Party Addition III
Algorithm 1: Secure multi-party addition
1: procedure SMA(P)
2: P0 : R ← rand(F) P0 randomly chooses a number R
3: V ← R + x0 mod F
4: P0 sends V to node P1
5: for i = 1, · · · , k − 1 do
6: Pi receives V = R +
i−1
j=0
xj mod F
7: Pi computes V = R +
i
j=1
xj mod F = ((xi + V ) mod F)
8: Pi sends V to node Pi+1
9: P0 : V ← (V − R) = (V − R mod F) Actual addition result
10: end procedure
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Privacy-preserving ELM
Table of Contents
1 Introduction
Secure Multiparty Computation
Contributions
2 Preliminaries
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
3 Privacy-preserving ELM over vertically partitioned data
Privacy-preserving ELM
4 Experiments
Experimental setup
Simulation Results
5 Conclusions
Conclusions
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Privacy-preserving ELM
Privacy-preserving ELM I
1 Master party creates weight matrix, W ∈ RL×N
2 Master party distributes partition W with same feature size for each
parties.
3 Party P0 creates a random matrix,
R =



rand1,1(F) · · · rand1,L(F)
...
...
...
randN,1(F) · · · randN,L(F)



N×L
4 Party P0 creates perturbated output,
V = R +



x0
1 · w0
1 + b0
1 · · · x0
1 · w0
L + b0
L
...
...
...
x0
N · w0
1 + b0
1 · · · x0
N · w0
L + b0
L



5 for i = 1, · · · , k − 1
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Privacy-preserving ELM
Privacy-preserving ELM II
Pi computes V = V +



xi
1 · wi
1 + bi
1 · · · xi
1 · wi
L + bi
L
...
...
...
xi
N · wi
1 + bi
1 · · · xi
L · wi
N + bi
N



Pi sends V to Pi+1
6 P0 subtracts random matrix, R, from the received matrix V.
H = (V − R) mod F
7 Hidden layer node weight vector, β, is calculated. β = H†
· T
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Privacy-preserving ELM
Privacy-preserving ELM III
P arty0
x0
, w, H0
,R ∈ F,
Party1
x1
, H1
, w
Party2
x2
, H2
, w
Partyk
xk−1
,
Hk−1
, w
V0 = R +
H0
mod|F|
V1 = V0+H1
mod|F|
V2 = V1 + H2
mod|F|
Vk = Vk−1 + Hk
mod|F|
Hi
=




G(w1, b1, xi
1) · · · G(wL, bL, xi
1)
.
.
.
...
.
.
.
G(w1, b1, xi
N ) · · · G(wL, bL, xi
N )




N×L
R =




rand1,1(F) · · · rand1,L(F)
.
.
.
...
.
.
.
randN,1(F) · · · randN,L(F)




N×L
H = (V − R) mod F
Figure: Overview of privacy-preserving ELM learning.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Experimental setup
Simulation Results
Table of Contents
1 Introduction
Secure Multiparty Computation
Contributions
2 Preliminaries
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
3 Privacy-preserving ELM over vertically partitioned data
Privacy-preserving ELM
4 Experiments
Experimental setup
Simulation Results
5 Conclusions
Conclusions
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Experimental setup
Simulation Results
Experimental setup I
Our approach is applied to six different data sets to verify its model
effectivity and efficiency.
Table: Description of the testing data sets used in the experiments.
Data set #Train #Classes #Attributes
australian 690 2 14
colon-cancer 62 2 2,000
diabetes 768 2 8
duke breast cancer 44 2 7,129
heart 270 2 13
ionosphere 351 2 34
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Experimental setup
Simulation Results
Simulation Results I
The number of party size, k: from 3 to number of feature n, of the
data set
For instance, k = 3, and n = 14, then the first two party have 5
attributes, and last party has 4 attributes.
The accuracy of secure multi-party computation based ELM is
exactly same for the traditional ELM training algorithm.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Experimental setup
Simulation Results
Simulation Results II
Figure shows results of our simulations.
Time scale becomes its steady state position when number of parties
k, moves closer to number of attributes, n.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10
−1
10
0
10
1
10
2
10
3
AttributeS ize(n)
P artyS ize(k)
Timescale
australian colon−cancer diabetes duke heart ionosphere
Figure: Vertically partitioned data set D.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Conclusions
Table of Contents
1 Introduction
Secure Multiparty Computation
Contributions
2 Preliminaries
ELM
Secure Multi Party Computation
Secure Multi-Party Addition
3 Privacy-preserving ELM over vertically partitioned data
Privacy-preserving ELM
4 Experiments
Experimental setup
Simulation Results
5 Conclusions
Conclusions
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Conclusions
Conclusions
Summary
ELM learning algorithm, a new method.
ELM outperforms traditional Single Layer Feed-forward Neural-networks and
Support Vector Machines for Big Data 1
In all fields that ELM is applied (i.e. medical records, business, government),
privacy is a major concern.
Conclusions
Privacy-preserving learning model is proposed in vertically partitioned data
In multi-party partitioning without sharing the data of each site to
the others.
Master party divides weight vector, and each party calculates the activation
function result with its data and weight vector.
1Cambria, Erik, et al. ”Extreme learning machines [trends & controversies].”
Intelligent Systems, IEEE 28.6 (2013): 30-59.
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
Introduction
Preliminaries
Privacy-preserving ELM over vertically partitioned data
Experiments
Conclusions
Conclusions
Thank You
Ferhat ¨Ozg¨ur C¸atak
ozgur.catak@tubitak.gov.tr
Ferhat ¨Ozg¨ur C¸atak ozgur.catak@tubitak.gov.tr T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin

More Related Content

What's hot (19)

PPTX
Developing Document Image Retrieval System
Konstantinos Zagoris
 
PPTX
Unsupervised Feature Learning
Amgad Muhammad
 
PDF
Dynamic Two-Stage Image Retrieval from Large Multimodal Databases
Konstantinos Zagoris
 
PDF
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
Preferred Networks
 
PDF
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
PyData
 
PPTX
Automatic Image Annotation
Konstantinos Zagoris
 
PPTX
analysis on concealing information within non secret data
Vema Reddy
 
PDF
Compressed sensing techniques for sensor data using unsupervised learning
Song Cui, Ph.D
 
PDF
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
Cemal Ardil
 
PPTX
Piotr Mirowski - Review Autoencoders (Deep Learning) - CIUUK14
Daniel Lewis
 
PPTX
Accelerating Deep Learning Inference 
on Mobile Systems
Darian Frajberg
 
PDF
A Novel GA-SVM Model For Vehicles And Pedestrial Classification In Videos
ijtsrd
 
PDF
Data Steganography for Optical Color Image Cryptosystems
CSCJournals
 
PDF
J04401066071
ijceronline
 
PDF
Making Robots Learn
inside-BigData.com
 
PDF
Semi-supervised learning approach using modified self-training algorithm to c...
IJECEIAES
 
PDF
Framework for Contextual Outlier Identification using Multivariate Analysis a...
IJECEIAES
 
PPTX
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
PyData
 
PDF
A R T I F I C I A L N E U R A L N E T W O R K S J N T U M O D E L P A P ...
guest3f9c6b
 
Developing Document Image Retrieval System
Konstantinos Zagoris
 
Unsupervised Feature Learning
Amgad Muhammad
 
Dynamic Two-Stage Image Retrieval from Large Multimodal Databases
Konstantinos Zagoris
 
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
Preferred Networks
 
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
PyData
 
Automatic Image Annotation
Konstantinos Zagoris
 
analysis on concealing information within non secret data
Vema Reddy
 
Compressed sensing techniques for sensor data using unsupervised learning
Song Cui, Ph.D
 
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
Cemal Ardil
 
Piotr Mirowski - Review Autoencoders (Deep Learning) - CIUUK14
Daniel Lewis
 
Accelerating Deep Learning Inference 
on Mobile Systems
Darian Frajberg
 
A Novel GA-SVM Model For Vehicles And Pedestrial Classification In Videos
ijtsrd
 
Data Steganography for Optical Color Image Cryptosystems
CSCJournals
 
J04401066071
ijceronline
 
Making Robots Learn
inside-BigData.com
 
Semi-supervised learning approach using modified self-training algorithm to c...
IJECEIAES
 
Framework for Contextual Outlier Identification using Multivariate Analysis a...
IJECEIAES
 
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
PyData
 
A R T I F I C I A L N E U R A L N E T W O R K S J N T U M O D E L P A P ...
guest3f9c6b
 

Viewers also liked (20)

PPTX
android os by yogesh jadhav
Student
 
PPTX
Secure Multiparty Computation - a technology with promises for privacy
Jakob Illeborg Pagter
 
PPTX
Secure Multiparty Computation or: How I learned to stop worrying and love the...
Jakob Illeborg Pagter
 
PPTX
Secure e voting system
Monira Monir
 
PPTX
Tablo oluşturma
İsmail Keskin
 
PDF
Dağıtık Sistemler İçin Mahremiyet Korumalı Uç Öğrenme Makinesi Sınıflandırma ...
Ferhat Ozgur Catak
 
PPTX
Hesaplamalarım
İsmail Keskin
 
PDF
Network ve Sistem 101 etkinliği
Ahmet Han
 
PPT
Embracing Distributed Version Control
Nowell Strite
 
PDF
IP Security
S H
 
PDF
Network101 murat arslan
MURAT ARSLAN
 
PPT
Visual cryptography1
Pratiksha Patil
 
PPT
The Agile Process - Taming Your Process To Work For You
Nowell Strite
 
PPT
BSides Philly Finding a Company's BreakPoint
Andrew McNicol
 
PPTX
Bilgelik hikayeleri
Aytekin Özel
 
PDF
Phương pháp học đại học
University of Technology
 
ODP
Dili kullanmak
Aytekin Özel
 
PPTX
Verilerimi düzenliyorum
İsmail Keskin
 
PDF
Why learn python in 2017?
Karolis Ramanauskas
 
PPT
PROJE SÜREÇ YÖNETİMİ
turkates
 
android os by yogesh jadhav
Student
 
Secure Multiparty Computation - a technology with promises for privacy
Jakob Illeborg Pagter
 
Secure Multiparty Computation or: How I learned to stop worrying and love the...
Jakob Illeborg Pagter
 
Secure e voting system
Monira Monir
 
Tablo oluşturma
İsmail Keskin
 
Dağıtık Sistemler İçin Mahremiyet Korumalı Uç Öğrenme Makinesi Sınıflandırma ...
Ferhat Ozgur Catak
 
Hesaplamalarım
İsmail Keskin
 
Network ve Sistem 101 etkinliği
Ahmet Han
 
Embracing Distributed Version Control
Nowell Strite
 
IP Security
S H
 
Network101 murat arslan
MURAT ARSLAN
 
Visual cryptography1
Pratiksha Patil
 
The Agile Process - Taming Your Process To Work For You
Nowell Strite
 
BSides Philly Finding a Company's BreakPoint
Andrew McNicol
 
Bilgelik hikayeleri
Aytekin Özel
 
Phương pháp học đại học
University of Technology
 
Dili kullanmak
Aytekin Özel
 
Verilerimi düzenliyorum
İsmail Keskin
 
Why learn python in 2017?
Karolis Ramanauskas
 
PROJE SÜREÇ YÖNETİMİ
turkates
 
Ad

Similar to Secure Multi-Party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data (20)

PDF
TFFN: Two Hidden Layer Feed Forward Network using the randomness of Extreme L...
Nimai Chand Das Adhikari
 
PDF
High performance extreme learning machines a complete toolbox for big data a...
redpel dot com
 
PDF
elm
Xiaoyu Sun
 
PDF
A Survey of Deep Learning Algorithms for Malware Detection
IJCSIS Research Publications
 
PDF
Reservoir computing fast deep learning for sequences
Claudio Gallicchio
 
PPTX
Claudio Gallicchio - Deep Reservoir Computing for Structured Data
MeetupDataScienceRoma
 
DOCX
Privacy preserving back propagation neural network learning over arbitrarily ...
IEEEFINALYEARPROJECTS
 
PDF
Electricity Demand Forecasting Using ANN
Naren Chandra Kattla
 
PPTX
Privacy ml session_gdg
Sharmistha Chatterjee
 
PDF
Back-Propagation Neural Network Learning with Preserved Privacy using Cloud C...
IOSR Journals
 
PDF
L017217579
IOSR Journals
 
PDF
Ppback propagation-bansal-zhong-2010
girivaishali
 
PPTX
expeditions praneeth_june-2021
Praneeth Vepakomma
 
PDF
N1802029295
IOSR Journals
 
PDF
2012 mdsp pr06  hmm
nozomuhamada
 
PPT
Neural networks,Single Layer Feed Forward
RohiniRajaramPandian
 
ODP
Introduction to RBM for written digits recognition
Sergey Kharagorgiev
 
PDF
Thesis Presentation_Extreme Learning Machine_Nimai_SC14M045
Nimai Chand Das Adhikari
 
PPTX
MS SQL SERVER: Neural network and logistic regression
sqlserver content
 
PPTX
MS SQL SERVER:Microsoft neural network and logistic regression
DataminingTools Inc
 
TFFN: Two Hidden Layer Feed Forward Network using the randomness of Extreme L...
Nimai Chand Das Adhikari
 
High performance extreme learning machines a complete toolbox for big data a...
redpel dot com
 
A Survey of Deep Learning Algorithms for Malware Detection
IJCSIS Research Publications
 
Reservoir computing fast deep learning for sequences
Claudio Gallicchio
 
Claudio Gallicchio - Deep Reservoir Computing for Structured Data
MeetupDataScienceRoma
 
Privacy preserving back propagation neural network learning over arbitrarily ...
IEEEFINALYEARPROJECTS
 
Electricity Demand Forecasting Using ANN
Naren Chandra Kattla
 
Privacy ml session_gdg
Sharmistha Chatterjee
 
Back-Propagation Neural Network Learning with Preserved Privacy using Cloud C...
IOSR Journals
 
L017217579
IOSR Journals
 
Ppback propagation-bansal-zhong-2010
girivaishali
 
expeditions praneeth_june-2021
Praneeth Vepakomma
 
N1802029295
IOSR Journals
 
2012 mdsp pr06  hmm
nozomuhamada
 
Neural networks,Single Layer Feed Forward
RohiniRajaramPandian
 
Introduction to RBM for written digits recognition
Sergey Kharagorgiev
 
Thesis Presentation_Extreme Learning Machine_Nimai_SC14M045
Nimai Chand Das Adhikari
 
MS SQL SERVER: Neural network and logistic regression
sqlserver content
 
MS SQL SERVER:Microsoft neural network and logistic regression
DataminingTools Inc
 
Ad

More from Ferhat Ozgur Catak (19)

PDF
Siber Güvenlik ve Yapay Zeka
Ferhat Ozgur Catak
 
PDF
Siber Güvenlik ve Yapay Zeka
Ferhat Ozgur Catak
 
PDF
Windows Hacking 2
Ferhat Ozgur Catak
 
PDF
Windows hacking 1
Ferhat Ozgur Catak
 
PDF
Pivoting ve Tunneling
Ferhat Ozgur Catak
 
PDF
Ddos Sızma Testleri - 2
Ferhat Ozgur Catak
 
PDF
Dağıtık Servis Dışı Bırakma Saldırıları
Ferhat Ozgur Catak
 
PDF
Sosyal muhendislik 1
Ferhat Ozgur Catak
 
PDF
Veritabanı Sızma Testleri - Hafta 3
Ferhat Ozgur Catak
 
PDF
Veritabanı Sızma Testleri - 2
Ferhat Ozgur Catak
 
PDF
Veritabanı Sızma Testleri - Keşif
Ferhat Ozgur Catak
 
PDF
Kesif ve Zafiyet Tarama
Ferhat Ozgur Catak
 
PDF
Sızma Testi ve Güvenlik Denetlemeleri - Temel Linux Bilgisi
Ferhat Ozgur Catak
 
PDF
Sızma Testi ve Güvenlik Denetlemeleri - Giriş
Ferhat Ozgur Catak
 
PDF
Eşle/İndirge Yöntemi Kullanılarak Destek Vektör Makinesi Algoritması ile Yü...
Ferhat Ozgur Catak
 
PDF
Rassal Bölümlenmiş Veri Üzerinde Aşırı Öğrenme Makinesi ve Topluluk Algoritma...
Ferhat Ozgur Catak
 
PDF
MapReduce based SVM
Ferhat Ozgur Catak
 
PDF
Fuzzy Analytic Hierarchy Based DBMS Selection In Turkish National Identity Ca...
Ferhat Ozgur Catak
 
PPTX
Korelasyon tabanlı nitelik seçimi
Ferhat Ozgur Catak
 
Siber Güvenlik ve Yapay Zeka
Ferhat Ozgur Catak
 
Siber Güvenlik ve Yapay Zeka
Ferhat Ozgur Catak
 
Windows Hacking 2
Ferhat Ozgur Catak
 
Windows hacking 1
Ferhat Ozgur Catak
 
Pivoting ve Tunneling
Ferhat Ozgur Catak
 
Ddos Sızma Testleri - 2
Ferhat Ozgur Catak
 
Dağıtık Servis Dışı Bırakma Saldırıları
Ferhat Ozgur Catak
 
Sosyal muhendislik 1
Ferhat Ozgur Catak
 
Veritabanı Sızma Testleri - Hafta 3
Ferhat Ozgur Catak
 
Veritabanı Sızma Testleri - 2
Ferhat Ozgur Catak
 
Veritabanı Sızma Testleri - Keşif
Ferhat Ozgur Catak
 
Kesif ve Zafiyet Tarama
Ferhat Ozgur Catak
 
Sızma Testi ve Güvenlik Denetlemeleri - Temel Linux Bilgisi
Ferhat Ozgur Catak
 
Sızma Testi ve Güvenlik Denetlemeleri - Giriş
Ferhat Ozgur Catak
 
Eşle/İndirge Yöntemi Kullanılarak Destek Vektör Makinesi Algoritması ile Yü...
Ferhat Ozgur Catak
 
Rassal Bölümlenmiş Veri Üzerinde Aşırı Öğrenme Makinesi ve Topluluk Algoritma...
Ferhat Ozgur Catak
 
MapReduce based SVM
Ferhat Ozgur Catak
 
Fuzzy Analytic Hierarchy Based DBMS Selection In Turkish National Identity Ca...
Ferhat Ozgur Catak
 
Korelasyon tabanlı nitelik seçimi
Ferhat Ozgur Catak
 

Recently uploaded (20)

PPTX
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
PPTX
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
PPTX
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
 
PDF
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
PPTX
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
PPTX
b6057ea5-8e8c-4415-90c0-ed8e9666ffcd.pptx
Anees487379
 
PPTX
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PPTX
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
PDF
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
PDF
Choosing the Right Database for Indexing.pdf
Tamanna
 
PDF
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
PDF
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
PDF
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PDF
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
PDF
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna
 
SlideEgg_501298-Agentic AI.pptx agentic ai
530BYManoj
 
Merits and Demerits of DBMS over File System & 3-Tier Architecture in DBMS
MD RIZWAN MOLLA
 
apidays Munich 2025 - Building an AWS Serverless Application with Terraform, ...
apidays
 
b6057ea5-8e8c-4415-90c0-ed8e9666ffcd.pptx
Anees487379
 
Listify-Intelligent-Voice-to-Catalog-Agent.pptx
nareshkottees
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
apidays Singapore 2025 - From Data to Insights: Building AI-Powered Data APIs...
apidays
 
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
Choosing the Right Database for Indexing.pdf
Tamanna
 
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
AUDITABILITY & COMPLIANCE OF AI SYSTEMS IN HEALTHCARE
GAHI Youssef
 

Secure Multi-Party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data

  • 1. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Secure Multi-Party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, Turkey Nov. 10 2015 The 2015 International Data Mining and Cybersecurity Workshop With ICONIP2015 Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 2. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Table of Contents 1 Introduction Secure Multiparty Computation Contributions 2 Preliminaries ELM Secure Multi Party Computation Secure Multi-Party Addition 3 Privacy-preserving ELM over vertically partitioned data Privacy-preserving ELM 4 Experiments Experimental setup Simulation Results 5 Conclusions Conclusions Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 3. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Secure Multiparty Computation Contributions Table of Contents 1 Introduction Secure Multiparty Computation Contributions 2 Preliminaries ELM Secure Multi Party Computation Secure Multi-Party Addition 3 Privacy-preserving ELM over vertically partitioned data Privacy-preserving ELM 4 Experiments Experimental setup Simulation Results 5 Conclusions Conclusions Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 4. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Secure Multiparty Computation Contributions Secure Multiparty Computation (SMC) Definition SMC : The goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. In an MPC, a given number of participants, p1, p2, · · · , pN each has private data, respectively d1, d2, · · · , dN Participants want to compute the value of a public function on that private data: F(d1, d2, ..., dN ) while keeping their own inputs secret. Challenges : To protect each participant’s private data, and intermediate results The computation/communication cost introduced to each participant shall be affordable Training data is arbitrarily partitioned Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 5. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Secure Multiparty Computation Contributions Contributions Main contributions of the work Privacy-preserving Extreme Learning Machine (ELM) training model Global ELM classification model from the distributed data sets in multiple parties Training data set is vertically partitioned among the parties The final distributed model is constructed at an independent party Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 6. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Table of Contents 1 Introduction Secure Multiparty Computation Contributions 2 Preliminaries ELM Secure Multi Party Computation Secure Multi-Party Addition 3 Privacy-preserving ELM over vertically partitioned data Privacy-preserving ELM 4 Experiments Experimental setup Simulation Results 5 Conclusions Conclusions Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 7. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Extreme Learning Machine (ELM) Learning Without Iterative Tuning All hidden node parameters can be randomly generated without the knowledge of the training data. That is, for any continuous target function f and any randomly generated sequence limL→∞ ||f (x) − fL(x)|| = limL→∞ ||f (x) − L i=1 βi G(ai , bi , x)|| = 0 holds with probability one if βi is chosen to minimize ||f (x) − fL(x)||, ∀i G.-B. Huang, et al., ”Universal approximation using incremental constructive feedforward networks with random hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006. G.-B. Huang, et al., ”Convex incremental extreme learning machine,” Neurocomputing, vol. 70, pp. 3056-3062, 2007. G.-B. Huang, et al., ”Enhanced random search based incremental extreme learning machine,” Neurocomputing, vol. 71, pp. 3460-3468, 2008. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 8. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Extreme Learning Machine (ELM) Figure: Generalized SLFN Mathematical Model For N arbitrary distinct samples (xi , ti ) ∈ Rn × Rm, SLFNs with L hidden nodes each with output function, G(ai , bi , x) are mathematically modeled as L i=1 βi G(ai , bi , xj ) = tj , j = 1, ..., N (1) (ai , bi ): hidden node parameters. βi : the weight vector connecting the ith hidden node and the output node. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 9. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Extreme Learning Machine (ELM) Mathematical Model L i=1 βi G(ai , bi , xj ) = tj , j = 1, ..., N is equivalent to Hβ = T where,    h(x1) ... h(xN)    =    G(a1, b1, x1) · · · G(aL, bL, x1) ... ... ... G(a1, b1, xN) · · · G(aL, bL, xN)    N×L (2) β =    βT 1 ... βT L    L×m ve T =    tT 1 ... tT N    N×m (3) H, is called the hidden layer output matrix of the neural network, the ith column of H is the output of the ith hidden node with respect to inputs , x1, ..., xn Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 10. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Extreme Learning Machine (ELM) Three-Step Learning Model Given a training set D = {(xi , ti )|xi ∈ Rn , ti ∈ Rm , i = 1, · · · , N}, hidden node output function G(a, b, x), and the number of hidden nodes L, 1 Assign randomly hidden node parameters (ai , bi ), i = 1, · · · , L. 2 Calculate the hidden layer output matrix H. 3 Calculate the output weight β = Ht T. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 11. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Secure Multi Party Computation Secure Multi-Party Computation The problem of n players to compute an agreed function f of their inputs In vertically partitioned data, each party holds different attributes of same data set. The partition strategy is shown in Figure 2. x1,1 · · · x1,t−1 · · · x1,t · · · x1,k x2,1 · · · x2,t−1 · · · x2,t · · · x2,k ... ... ... ... ... ... ... xm,1 · · · xm,t−1 · · · xm,t · · · xm,k               P1 · · · Pk D = Figure: Vertically partitioned data set D. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 12. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Secure Multi-Party Addition I Secure Multi-Party Addition Assume k ≥ 3 parties, P0, · · · , Pk−1, with party Pi holding value vi Aim is to compute v = k−1 i=0 vi Sum of vi lies in F P0 randomly chooses a number R ∈ F P0 adds R to its local value v0, Sends v0 = R + v0mod|F| to P1 The remaining parties Pi , i = 1, · · · , k − 1 Pi receives V = R + i−1 j=0 vj mod|F| Pi sends R + j=1 ivj mod|F| = (vi + V )mod|F| Finally, P0, subtracts R from the final message to compute actual results. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 13. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Secure Multi-Party Addition II Party0 x0 , R ∈ F Party1 x1 Party2 x2 Partyk xk V = R + x0mod|F| V = R + i−1 j=0 xjmod|F| (xi + V )mod|F| Figure: Secure Multi-Party Addition. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 14. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions ELM Secure Multi Party Computation Secure Multi-Party Addition Secure Multi-Party Addition III Algorithm 1: Secure multi-party addition 1: procedure SMA(P) 2: P0 : R ← rand(F) P0 randomly chooses a number R 3: V ← R + x0 mod F 4: P0 sends V to node P1 5: for i = 1, · · · , k − 1 do 6: Pi receives V = R + i−1 j=0 xj mod F 7: Pi computes V = R + i j=1 xj mod F = ((xi + V ) mod F) 8: Pi sends V to node Pi+1 9: P0 : V ← (V − R) = (V − R mod F) Actual addition result 10: end procedure Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 15. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Privacy-preserving ELM Table of Contents 1 Introduction Secure Multiparty Computation Contributions 2 Preliminaries ELM Secure Multi Party Computation Secure Multi-Party Addition 3 Privacy-preserving ELM over vertically partitioned data Privacy-preserving ELM 4 Experiments Experimental setup Simulation Results 5 Conclusions Conclusions Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 16. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Privacy-preserving ELM Privacy-preserving ELM I 1 Master party creates weight matrix, W ∈ RL×N 2 Master party distributes partition W with same feature size for each parties. 3 Party P0 creates a random matrix, R =    rand1,1(F) · · · rand1,L(F) ... ... ... randN,1(F) · · · randN,L(F)    N×L 4 Party P0 creates perturbated output, V = R +    x0 1 · w0 1 + b0 1 · · · x0 1 · w0 L + b0 L ... ... ... x0 N · w0 1 + b0 1 · · · x0 N · w0 L + b0 L    5 for i = 1, · · · , k − 1 Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 17. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Privacy-preserving ELM Privacy-preserving ELM II Pi computes V = V +    xi 1 · wi 1 + bi 1 · · · xi 1 · wi L + bi L ... ... ... xi N · wi 1 + bi 1 · · · xi L · wi N + bi N    Pi sends V to Pi+1 6 P0 subtracts random matrix, R, from the received matrix V. H = (V − R) mod F 7 Hidden layer node weight vector, β, is calculated. β = H† · T Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 18. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Privacy-preserving ELM Privacy-preserving ELM III P arty0 x0 , w, H0 ,R ∈ F, Party1 x1 , H1 , w Party2 x2 , H2 , w Partyk xk−1 , Hk−1 , w V0 = R + H0 mod|F| V1 = V0+H1 mod|F| V2 = V1 + H2 mod|F| Vk = Vk−1 + Hk mod|F| Hi =     G(w1, b1, xi 1) · · · G(wL, bL, xi 1) . . . ... . . . G(w1, b1, xi N ) · · · G(wL, bL, xi N )     N×L R =     rand1,1(F) · · · rand1,L(F) . . . ... . . . randN,1(F) · · · randN,L(F)     N×L H = (V − R) mod F Figure: Overview of privacy-preserving ELM learning. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 19. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Experimental setup Simulation Results Table of Contents 1 Introduction Secure Multiparty Computation Contributions 2 Preliminaries ELM Secure Multi Party Computation Secure Multi-Party Addition 3 Privacy-preserving ELM over vertically partitioned data Privacy-preserving ELM 4 Experiments Experimental setup Simulation Results 5 Conclusions Conclusions Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 20. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Experimental setup Simulation Results Experimental setup I Our approach is applied to six different data sets to verify its model effectivity and efficiency. Table: Description of the testing data sets used in the experiments. Data set #Train #Classes #Attributes australian 690 2 14 colon-cancer 62 2 2,000 diabetes 768 2 8 duke breast cancer 44 2 7,129 heart 270 2 13 ionosphere 351 2 34 Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 21. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Experimental setup Simulation Results Simulation Results I The number of party size, k: from 3 to number of feature n, of the data set For instance, k = 3, and n = 14, then the first two party have 5 attributes, and last party has 4 attributes. The accuracy of secure multi-party computation based ELM is exactly same for the traditional ELM training algorithm. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 22. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Experimental setup Simulation Results Simulation Results II Figure shows results of our simulations. Time scale becomes its steady state position when number of parties k, moves closer to number of attributes, n. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10 −1 10 0 10 1 10 2 10 3 AttributeS ize(n) P artyS ize(k) Timescale australian colon−cancer diabetes duke heart ionosphere Figure: Vertically partitioned data set D. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 23. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Conclusions Table of Contents 1 Introduction Secure Multiparty Computation Contributions 2 Preliminaries ELM Secure Multi Party Computation Secure Multi-Party Addition 3 Privacy-preserving ELM over vertically partitioned data Privacy-preserving ELM 4 Experiments Experimental setup Simulation Results 5 Conclusions Conclusions Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 24. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Conclusions Conclusions Summary ELM learning algorithm, a new method. ELM outperforms traditional Single Layer Feed-forward Neural-networks and Support Vector Machines for Big Data 1 In all fields that ELM is applied (i.e. medical records, business, government), privacy is a major concern. Conclusions Privacy-preserving learning model is proposed in vertically partitioned data In multi-party partitioning without sharing the data of each site to the others. Master party divides weight vector, and each party calculates the activation function result with its data and weight vector. 1Cambria, Erik, et al. ”Extreme learning machines [trends & controversies].” Intelligent Systems, IEEE 28.6 (2013): 30-59. Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin
  • 25. Introduction Preliminaries Privacy-preserving ELM over vertically partitioned data Experiments Conclusions Conclusions Thank You Ferhat ¨Ozg¨ur C¸atak [email protected] Ferhat ¨Ozg¨ur C¸atak [email protected] T¨UB˙ITAK - B˙ILGEM - Cyber Security Institute Kocaeli, TurkeySecure Multi-Party Computation Based Privacy Preserving Extreme Learnin