SlideShare a Scribd company logo
SENSOR DATA
IN BUSINESS
NIKO VUOKKO – SHARPER SHAPE
BIG DATA – IS IT JUST LARGE DATA?
• Data is gathered from multiple sources of varying quality
• Operational use of data is often awkward
• ”Data to knowledge” is a necessary intermediate step, but it’s
nothing more than intermediate
WHO GENERATES DATA?
Human-generated data:
• 5K tweets / s
• 25K events / s from a mobile game (about 200 GB / day)
• 40K Google searches / s
Machine-generated data:
• 5M bids / s at US options market
• 120 MB / s of diagnostics from a single gas turbine
• 1 PB / s at collision time from CERN LHC accelerator
SENSOR DATA
• Generated by machines
• May monitor a controlled subject: the myriad of sensors in a nuclear plant
• May observe the natural environment: ESA Copernicus satellites
• The Big Data upheaval has raised expectations about possibilities
OBSERVING THE ENVIRONMENT WITH SENSORS
• In data solutions often ”the real world comes and botches everything”
• Machine-generated data can usually avoid this problem
• Observing the environment with sensors, however, is an exception
WHAT ENVIRONMENT COULD WE OBSERVE?
• Space
• Natural phenomenons
• Human activity in large scale
• Infrastructure
MONITORING INFRASTRUCTURE
• We place high expectations for our public infrastructure
• Disruptions and breakdowns are very expensive
• The amount of infrastructure is colossal
• Typical infrastructure permits only external monitoring
WHY IS MONITORING INFRASTRUCTURE SO
EXPENSIVE?
• Monitoring needs to be extensive, continuous and diverse
• Many important observations are vague and cryptic even for a human
• Mistakes are very costly
HOW COULD WE SAVE ON THIS?
• Separate the data collection and evaluation phases
• Automate both!
• Machines can reliably run large and complex evaluations
• The data will have many unexpected use cases once it exists
DATA COLLECTION WITH UAVS
• UAVs minimize the data collection costs
• Access to hard-to-reach places
• Technology advances rapidly --> prices will drop further
• Europe has a single company with legal permits for BVLOS flights
AUTOMATIC EVALUATION OF THE DATA
• Machine is by far faster and more reliable evaluator than a human
• Proper use and complexity of data has been the historical problem
• Digitization of information allows for wholly new solutions
THE FUTURE OF SENSOR DATA
• Sensor size and cost will drop while quality and capabilities grow
• The last obstacle: Efficient distributed data gathering is only now
becoming feasible
• Massive potential of totally uprooting old business models
Sensor Data in Business

More Related Content

PDF
Sensor Analytics Ecosystems bringing value to IoT
Joseph A di Paolantonio
 
PDF
MT32 How relational (SQL) and unstructured data (Hadoop) learned to get along
Dell EMC World
 
PPT
Architectural cncepts: Chip Multithreaded Era
Marcelo Arbore
 
PPTX
Your brain is too small to manage your business
Christopher Bishop
 
PPTX
Managing infrastructure for an Internet of Things, Rachel Chalmers n•fluence ...
CA Nimsoft
 
PPTX
Green Code Lab Challenge 2014 - Green IT Applied To Public Works
Willy Lambert
 
PPTX
CaBALondon 05 Sarah Taigel, UEA
CaBASupport
 
PDF
Christoph Barrett - Policy Informatics at Societal Scale
Global Risk Forum GRFDavos
 
Sensor Analytics Ecosystems bringing value to IoT
Joseph A di Paolantonio
 
MT32 How relational (SQL) and unstructured data (Hadoop) learned to get along
Dell EMC World
 
Architectural cncepts: Chip Multithreaded Era
Marcelo Arbore
 
Your brain is too small to manage your business
Christopher Bishop
 
Managing infrastructure for an Internet of Things, Rachel Chalmers n•fluence ...
CA Nimsoft
 
Green Code Lab Challenge 2014 - Green IT Applied To Public Works
Willy Lambert
 
CaBALondon 05 Sarah Taigel, UEA
CaBASupport
 
Christoph Barrett - Policy Informatics at Societal Scale
Global Risk Forum GRFDavos
 

What's hot (20)

PPTX
Reginald Desroches - Building Disaster Reslience
Global Risk Forum GRFDavos
 
PDF
Big Data is not Rocket Science
larsgeorge
 
PDF
"Another Set of Eyes: Machine Vision Automation Solutions for In Vitro Diagno...
Edge AI and Vision Alliance
 
PPTX
Microsoft's project natick(underwater datacentre)
Mukund Agarwal
 
PPTX
VFB 2013 - HP Labs - Horizon Scanning - Technology Trends
Science City Bristol
 
PDF
Project Natick-Data centers under the sea
Vishnu Singh Chundawat
 
PPT
Big Data on The Cloud
Putchong Uthayopas
 
PPT
Green IT - Unitedworld School of Business
Arnab Roy Chowdhury
 
PDF
Ph semat overview
International WaterCentre
 
PPTX
Underwater Cloud Storage
AkashBorse2
 
PDF
The internet of things, do we need all that data?
Christian Verstraete
 
PDF
Controlling cloud costs with analytics
RightScale
 
PDF
Tiny intelligent computers and sensors - Open Hardware Event 2020
Jan Jongboom
 
PDF
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Matt Stubbs
 
PDF
Indexing the Real World Sensor Networks (at RE.WORK Internet of Things Summit...
Rainer Sternfeld
 
PDF
BDIA Findings
Inside Analysis
 
PPTX
Microsoft presentation
Pinar Ozduble
 
PPTX
OpenStack - What is it and why you should know about it!
OpenStack
 
PPTX
Green it or green computing
jainema23
 
Reginald Desroches - Building Disaster Reslience
Global Risk Forum GRFDavos
 
Big Data is not Rocket Science
larsgeorge
 
"Another Set of Eyes: Machine Vision Automation Solutions for In Vitro Diagno...
Edge AI and Vision Alliance
 
Microsoft's project natick(underwater datacentre)
Mukund Agarwal
 
VFB 2013 - HP Labs - Horizon Scanning - Technology Trends
Science City Bristol
 
Project Natick-Data centers under the sea
Vishnu Singh Chundawat
 
Big Data on The Cloud
Putchong Uthayopas
 
Green IT - Unitedworld School of Business
Arnab Roy Chowdhury
 
Ph semat overview
International WaterCentre
 
Underwater Cloud Storage
AkashBorse2
 
The internet of things, do we need all that data?
Christian Verstraete
 
Controlling cloud costs with analytics
RightScale
 
Tiny intelligent computers and sensors - Open Hardware Event 2020
Jan Jongboom
 
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Matt Stubbs
 
Indexing the Real World Sensor Networks (at RE.WORK Internet of Things Summit...
Rainer Sternfeld
 
BDIA Findings
Inside Analysis
 
Microsoft presentation
Pinar Ozduble
 
OpenStack - What is it and why you should know about it!
OpenStack
 
Green it or green computing
jainema23
 
Ad

Viewers also liked (7)

PPTX
Metrics @ App Academy
Niko Vuokko
 
PDF
Opportunities in Sensor Networks and Big Data in 2014 (for NIKKEI Big Data Co...
Rainer Sternfeld
 
PPTX
In-Time Sensor Data Analysis and Pattern Detection
Jordan Barrette
 
PDF
The sensor data challenge - Innovations (not only) for the Internet of Things
Stephan Reimann
 
PDF
Marvin, Data Science & Spark – haben wir ohne Mathematik und Technik noch ein...
Stephan Reimann
 
PDF
IoT ( M2M) - Big Data - Analytics: Emulation and Demonstration
CHAKER ALLAOUI
 
PDF
Tiny Sensors, Big Data
Jake Galbreath
 
Metrics @ App Academy
Niko Vuokko
 
Opportunities in Sensor Networks and Big Data in 2014 (for NIKKEI Big Data Co...
Rainer Sternfeld
 
In-Time Sensor Data Analysis and Pattern Detection
Jordan Barrette
 
The sensor data challenge - Innovations (not only) for the Internet of Things
Stephan Reimann
 
Marvin, Data Science & Spark – haben wir ohne Mathematik und Technik noch ein...
Stephan Reimann
 
IoT ( M2M) - Big Data - Analytics: Emulation and Demonstration
CHAKER ALLAOUI
 
Tiny Sensors, Big Data
Jake Galbreath
 
Ad

Similar to Sensor Data in Business (20)

PDF
Real-time, Sensor-based Monitoring of Shipping Containers
benaam
 
PPTX
NextGen environmental sensing at the National Arboretum
TimeScience
 
PPTX
Artificial intelligence (AI) + Sensors + Aeronautics
waleed zahid kayani
 
PPTX
Real time visualization of structured things
Nurul Amin Choudhury
 
PDF
Deterministic and high throughput data processing for CubeSats
Pablo Ghiglino
 
PPT
Rich, Real-time Mobile User Experiences @Devoxx UK
Andy Piper
 
PPT
Computer by neeraj sabarwal
Sanjay Patil
 
PPTX
TraitCapture: NextGen Monitoring and Visualization from seed to ecosystem
TimeScience
 
PDF
Industrial Data Science
Niko Vuokko
 
PDF
Reducing energy consumption of computing
NGUYEN VAN LUONG
 
PDF
PXL Data Engineering Workshop By Selligent
Jonny Daenen
 
PDF
TeamSurv presentation to UK Hydrographic Society, 2011
Tim Thornton
 
PPTX
Automation of the Drilling System: What has been done, what is being done, an...
Society of Petroleum Engineers
 
PDF
The Internet-of-things: Architecting for the deluge of data
bcantrill
 
PDF
Science DMZ as a Service: Creating Science Super- Facilities with GENI
US-Ignite
 
PDF
Hydrographic and marine software Solutions
Hydrographic Society Benelux
 
PPTX
CCTV in the CLOUD
Riccardo Mazzurco
 
PPT
wirelss sensor network
rasyidi usman
 
PPT
ERU-2-wsn.ppt
SahanaMk2
 
PPT
ERU-2-wsn.ppt
Juan Pablo Gasparrini
 
Real-time, Sensor-based Monitoring of Shipping Containers
benaam
 
NextGen environmental sensing at the National Arboretum
TimeScience
 
Artificial intelligence (AI) + Sensors + Aeronautics
waleed zahid kayani
 
Real time visualization of structured things
Nurul Amin Choudhury
 
Deterministic and high throughput data processing for CubeSats
Pablo Ghiglino
 
Rich, Real-time Mobile User Experiences @Devoxx UK
Andy Piper
 
Computer by neeraj sabarwal
Sanjay Patil
 
TraitCapture: NextGen Monitoring and Visualization from seed to ecosystem
TimeScience
 
Industrial Data Science
Niko Vuokko
 
Reducing energy consumption of computing
NGUYEN VAN LUONG
 
PXL Data Engineering Workshop By Selligent
Jonny Daenen
 
TeamSurv presentation to UK Hydrographic Society, 2011
Tim Thornton
 
Automation of the Drilling System: What has been done, what is being done, an...
Society of Petroleum Engineers
 
The Internet-of-things: Architecting for the deluge of data
bcantrill
 
Science DMZ as a Service: Creating Science Super- Facilities with GENI
US-Ignite
 
Hydrographic and marine software Solutions
Hydrographic Society Benelux
 
CCTV in the CLOUD
Riccardo Mazzurco
 
wirelss sensor network
rasyidi usman
 
ERU-2-wsn.ppt
SahanaMk2
 
ERU-2-wsn.ppt
Juan Pablo Gasparrini
 

More from Niko Vuokko (6)

PPTX
Analytics in business
Niko Vuokko
 
PPTX
Drones in real use
Niko Vuokko
 
PPTX
Analytiikka bisneksessä
Niko Vuokko
 
PPTX
Sensoridatan ja liiketoiminnan tulevaisuus
Niko Vuokko
 
PDF
Introduction to Data Science
Niko Vuokko
 
PDF
Big Data Rampage
Niko Vuokko
 
Analytics in business
Niko Vuokko
 
Drones in real use
Niko Vuokko
 
Analytiikka bisneksessä
Niko Vuokko
 
Sensoridatan ja liiketoiminnan tulevaisuus
Niko Vuokko
 
Introduction to Data Science
Niko Vuokko
 
Big Data Rampage
Niko Vuokko
 

Recently uploaded (20)

PDF
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
PDF
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
PDF
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PDF
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
PDF
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
PDF
Doc9.....................................
SofiaCollazos
 
PDF
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PDF
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
PDF
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PDF
REPORT: Heating appliances market in Poland 2024
SPIUG
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PPTX
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
PDF
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Nabajyoti Banik
 
A Strategic Analysis of the MVNO Wave in Emerging Markets.pdf
IPLOOK Networks
 
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
The Future of Artificial Intelligence (AI)
Mukul
 
CIFDAQ's Market Wrap : Bears Back in Control?
CIFDAQ
 
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
Doc9.....................................
SofiaCollazos
 
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
REPORT: Heating appliances market in Poland 2024
SPIUG
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
cloud computing vai.pptx for the project
vaibhavdobariyal79
 
Get More from Fiori Automation - What’s New, What Works, and What’s Next.pdf
Precisely
 

Sensor Data in Business

  • 1. SENSOR DATA IN BUSINESS NIKO VUOKKO – SHARPER SHAPE
  • 2. BIG DATA – IS IT JUST LARGE DATA? • Data is gathered from multiple sources of varying quality • Operational use of data is often awkward • ”Data to knowledge” is a necessary intermediate step, but it’s nothing more than intermediate
  • 3. WHO GENERATES DATA? Human-generated data: • 5K tweets / s • 25K events / s from a mobile game (about 200 GB / day) • 40K Google searches / s Machine-generated data: • 5M bids / s at US options market • 120 MB / s of diagnostics from a single gas turbine • 1 PB / s at collision time from CERN LHC accelerator
  • 4. SENSOR DATA • Generated by machines • May monitor a controlled subject: the myriad of sensors in a nuclear plant • May observe the natural environment: ESA Copernicus satellites • The Big Data upheaval has raised expectations about possibilities
  • 5. OBSERVING THE ENVIRONMENT WITH SENSORS • In data solutions often ”the real world comes and botches everything” • Machine-generated data can usually avoid this problem • Observing the environment with sensors, however, is an exception
  • 6. WHAT ENVIRONMENT COULD WE OBSERVE? • Space • Natural phenomenons • Human activity in large scale • Infrastructure
  • 7. MONITORING INFRASTRUCTURE • We place high expectations for our public infrastructure • Disruptions and breakdowns are very expensive • The amount of infrastructure is colossal • Typical infrastructure permits only external monitoring
  • 8. WHY IS MONITORING INFRASTRUCTURE SO EXPENSIVE? • Monitoring needs to be extensive, continuous and diverse • Many important observations are vague and cryptic even for a human • Mistakes are very costly
  • 9. HOW COULD WE SAVE ON THIS? • Separate the data collection and evaluation phases • Automate both! • Machines can reliably run large and complex evaluations • The data will have many unexpected use cases once it exists
  • 10. DATA COLLECTION WITH UAVS • UAVs minimize the data collection costs • Access to hard-to-reach places • Technology advances rapidly --> prices will drop further • Europe has a single company with legal permits for BVLOS flights
  • 11. AUTOMATIC EVALUATION OF THE DATA • Machine is by far faster and more reliable evaluator than a human • Proper use and complexity of data has been the historical problem • Digitization of information allows for wholly new solutions
  • 12. THE FUTURE OF SENSOR DATA • Sensor size and cost will drop while quality and capabilities grow • The last obstacle: Efficient distributed data gathering is only now becoming feasible • Massive potential of totally uprooting old business models

Editor's Notes

  • #3: Nopeus, määrä, monimuotoisuus, mutta ne vain seurausta ideologian erosta: kerääminen ennen tarkoitusta, monimutkaisuuden tavoittelu Dataa ei vain itsestään ilmesty ja toimi, vaan vaatii jatkuvaa huolenpitoa, strategista käsittelyä ja merkittävästi suurempaa teknistä kyvykkyyttä. Oikein ymmärtäminen ja päätökset hankalia: yksityiskohdat, ihmiset + tilastot. Ymmärrys tarvitaan ennen käyttöä. Ymmärtäminen ei riitä, ymmärtäminen ei ole päätös eikä se skaalaudu.
  • #4: Ihmisten tuottama data lähes aina ”pientä”. Voi olla ideologisesti big dataa, mutta absoluuttisesti aina vain pienempää. Lähes kaikki datat mahtuvat jo yhden koneen muistiin. Esim. 1.5 sähköasiakkaan tuntitason mittaridata 25 vuodelta.
  • #5: Sensoreita voidaan asentaa koneisiin, ripotella ympäriinsä ja keskittää kalliisiin laitteisiin Ei tarvitse rajoittua vain tiettyyn datapisteeseen, ”mitä tietoa voisimme kerätä tästä kohteesta?”
  • #6: Päätapaukset: Ihmisten luoma data on täynnä sotkua, esimerkiksi tweettien kirjoitusvirheet, mobiilidatan sekavat timestampit, hyppivät ID:t Tosimaailman bisnes-vaatimukset Sisäinen data on hallittua, helppoa. Ulkomaailma on se mikä sotkee kaiken.
  • #7: Ympäristön havainnoinnin kehitys: armeija -> avaruus -> turvallisuus -> tulevaisuus -> bisnes Mitä tekisit, jos tietäisit tarkalleen peltojesi hyvät ja huonot kohdat ja syyt siihen?
  • #8: Infran pitää olla ehdottoman luotettavaa. Se on myös jatkuvasti ja *pitkään* ympäristön armoilla. Betoniin ei voi asentaa sensoreita eikä putkivuotoja havaita reaaliajassa.
  • #9: Infraa paljon, se kärsii jatkuvasti, riskejä ei sovi ottaa ja mahdollisia ongelmia valtavasti. Eri arviointeja voi joutua tekemään tuhansia samasta kohteesta, ihmiselle hankalaa olla systemaattinen. Datan ja päätösten teon epämääräisyys palaa kuvaan.
  • #10: Aiemmin havainnoija keräsi silmin tietoja, joita sitten arvioi. Voimme sen sijaan erottaa tiedon keruun, jolloin siihen ei kulu havainnoijan aikaa. Seuraavaksi automoimme tiedon keruun. Sitten automoimme havainnoinnin.
  • #11: Säästöt: bensa, iso laite ja sen capex, kuljetus Sensorit nyt merkittävä kustannuserä, ts. sivukustannukset romahtaneet lennokeilla BVLOS-lennot Itä-Suomessa
  • #12: ”Kuvittele arvioija istumaan helikopteriin kun metsä virtaa ohi” Vaikka tietoa kerättäisiinkin, sen tehokas käsittely ollut mahdotonta. Me olemme ratkaisseet datan käytön monimutkaisuuden teknologiallamme.
  • #13: Sensoridata on konedataa, se kasvaa kovalevyjen tahtia. Sensoridata tulee totaalisesti muuttamaan ymmärryksemme ympäristöstä ja itsestämme. Juuri nyt enemmän vanhan mullistamista kuin aivan uuden luontia.
  • #14: Sharper Shape on pidemmällä kuin kukaan kahdella teknologian rintamalla. Lennokkien BVLOS-käytössä infran tarkistamiseen JA 2) automaattisessa sensorifuusion mallinnuksessa Kiitos!