SlideShare a Scribd company logo
Hands-on Introduction
& Hackathon Kickoff
Ashvin Agrawal William Markito
@william_markito@aasoj
Powered by

Pivotal Open Source Hub (POSH)
(incubating)
• Hackathon Details
• Apache Geode Introduction
• History
• Key features and components
• Roadmap
• Hands-on lab
• Build & run
• Starting a cluster
• Using docker for clustering
• Your first app
• Q&A
2
Agenda
Hackathon details
Powered by

Pivotal Open Source Hub (POSH)
http://ambitious-apps.challengepost.com/
4
Introduction
A distributed, memory-based data management platform for
data oriented apps that need:
• high performance, scalability, resiliency and continuous
availability
• fast access to critical data set
• location aware distributed data processing
• event driven data architecture
5
Introduction
6
One size fits all ?
Cost of sorting is nlog(n)
7
One size fits all ?
Cost of sorting is nlog(n)
• Data quality and quantity differences
• Eventual consistency
• Response time expectation
• Scalability challenges: disk, memory, network and
external systems
• 1000+ systems in production (real customers)
• Cutting edge use cases
8
Incubating… but rock solid
2004 2008 2014
•  Massive increase in data
volumes
•  Falling margins per
transaction
•  Increasing cost of IT
maintenance
•  Need for elasticity in
systems
•  Financial Services
Providers (every major
Wall Street bank)
•  Department of Defense
•  Real Time response needs
•  Time to market constraints
•  Need for flexible data
models across enterprise
•  Distributed development
•  Persistence + In-memory
•  Global data visibility needs
•  Fast Ingest needs for data
•  Need to allow devices to
hook into enterprise data
•  Always on
•  Largest travel Portal
•  Airlines
•  Trade clearing
•  Online gambling
•  Largest Telcos
•  Large mfrers
•  Largest Payroll processor
•  Auto insurance giants
•  Largest rail systems on
earth
• 17 billion records in memory
• GE Power & Water's Remote Monitoring & Diagnostics Center
• 3 TB operational data in-memory, 400 TB archived
• China Railways
• 4.6 Million transactions a day / 40K transactions a second
• China Railways
9
Incubating… but rock solid
• Performance optimized persistence
• Configurable consistency
• Elastic capacity
• Latency minimizing distribution
• Heterogenous deployment
Designed for High Performance
10
+/-
L2 ~10 ns, memory ~100 ns, network <1ms, disk ~10ms
• Cache
• Region
• Member
• Client Cache
• Functions
• Listeners
11
Concepts
• Cache
• In-memory storage and
management for your data
• Configurable through XML, Spring,
Java API or CLI
• Collection of Region
12
Concepts
Region
Region
Region
Cache
JVM
• Region
• Distributed java.util.Map on steroids
(Key/Value)
• Consistent API regardless of where or
how data is stored
• Observable (reactive)
• Highly available, redundant on cache
Member (s).
13
Concepts
Region
Cache
java.util.Map
JVM
Key Value
K01 May
K02 Tim
• Region
• Local, Replicated or Partitioned
• In-memory or persistent
• Redundant
• LRU
• Overflow
14
Concepts
Region
Cache
java.util.Map
JVM
Key Value
K01 May
K02 Tim
Region
Cache
java.util.Map
JVM
Key Value
K01 May
K02 Tim
LOCAL	
  
LOCAL_HEAP_LRU	
  
LOCAL_OVERFLOW	
  
LOCAL_PERSISTENT	
  
LOCAL_PERSISTENT_OVERFLOW	
  
PARTITION	
  
PARTITION_HEAP_LRU	
  
PARTITION_OVERFLOW	
  
PARTITION_PERSISTENT	
  
PARTITION_PERSISTENT_OVERFLOW	
  
PARTITION_PROXY	
  
PARTITION_PROXY_REDUNDANT	
  
PARTITION_REDUNDANT	
  
PARTITION_REDUNDANT_HEAP_LRU	
  
PARTITION_REDUNDANT_OVERFLOW	
  
PARTITION_REDUNDANT_PERSISTENT	
  
PARTITION_REDUNDANT_PERSISTENT_OVERFLOW	
  
REPLICATE	
  
REPLICATE_HEAP_LRU	
  
REPLICATE_OVERFLOW	
  
REPLICATE_PERSISTENT	
  
REPLICATE_PERSISTENT_OVERFLOW	
  
REPLICATE_PROXY
• Persistent Regions
• Durability
• WAL for efficient writing
• Consistent recovery
• Compaction
15
Concepts
Modify
k1->v5
Create
k6->v6
Create
k2->v2
Create
k4->v4
Oplog2.crf
Member
1
Modify
k4->v7Oplog3.crf
Put k4->v7
Region
Cache
java.util.Map
JVM
Key Value
K01 May
K02 Tim
Region
Cache
java.util.Map
JVM
Key Value
K01 May
K02 Tim
Server 1 Server N
• Member
• A process that has a connection to the
system
• A process that has created a cache
• Embeddable within your application
16
Concepts
Client
Locator
Server
• Client cache
• A process connected to the Geode
server(s)
• Can have a local copy of the data
• Can be notified about events on the
servers
17
Concepts
Application
GemFire Server
Region
Region
RegionClient Cache
• Functions
• Used for distributed concurrent processing 

(Map/Reduce, stored procedure)
• Highly available
• Data oriented
• Member oriented
18
Concepts
Submit (f1)
f1 , f2 , … fn
Execute

Functions
19
Concepts
Server Server
FunctionService.onRegion.withFilter.execute
ResultCollector.getResult
Server Distributed System
execute
Server
Server
6
1
result
execute
execute
result
result
2
5
3
4
3 4
Server
Partitioned Region
Data Store - X
Partitioned Region
Data Store - Y
Partitioned Region
Data Store - Z
Partitioned Region
Data Accessor
Partitioned Region
Data Accessor
filter = Keys X, Y
Client Region
• Functions
• Listeners
• CacheWriter / CacheListener
• AsyncEventListener (queue / batch)
• Parallel or Serial
• Conflation
20
Concepts
Hands on
• Clone & Build
22
Hands-on: Build & run
git	
  clone	
  https://github.com/apache/incubator-­‐geode	
  
cd	
  incubator-­‐geode

./gradlew	
  build	
  -­‐Dskip.tests=true
• Start a server
cd	
  gemfire-­‐assembly/build/install/apache-­‐geode	
  	
  
./bin/gfsh	
  	
  
gfsh>	
  start	
  locator	
  -­‐-­‐name=locator	
  	
  
gfsh>	
  start	
  server	
  -­‐-­‐name=server	
  	
  
gfsh>	
  create	
  region	
  -­‐-­‐name=myRegion	
  -­‐-­‐type=REPLICATE
23
Hands-on: Docker
&
• Containers
• FreeBSD Jails (2000)
• Solaris Zones (2004)
• Docker (2013)
• Operating system level virtualization
• Isolated user space instances
24
* https://linuxcontainers.org/
Hands-on: Docker
25
Container vs VM
“..while the hypervisor abstracts the entire device, containers just
abstract the operating system kernel"
Hands-on: Docker & Compose
26
• Single instance
docker	
  run	
  -­‐it	
  apachegeode/geode:nightly	
  gfsh
• Cluster
docker-­‐compose	
  up
• Scale
docker-­‐compose	
  scale	
  server=3
Hands-on: Application
27
• Teeny URL
• Fast response time
• Statistics
• Hits
• User agent ?
• IPs ?
• URL will last for 5 minutes
• Distribute data & load
• Highly scalable
createURL
getURL
stats
• HDFS Persistence
• Off-heap memory storage
• Lucene Search
• Spark Integration
• Cloud Foundry service
28
Roadmap
• Code
• New features
• Bug fixes
• Writing tests
• Documentation
• Wiki
• Web site
• User guide
29
How to Contribute
• Community
• Join the mailing list
• Ask or answer
• Join our HipChat
• Become a speaker
• Finding bugs
• Testing an RC/Beta
• JIRA
https://issues.apache.org/jira/browse/GEODE
• Wiki
cwiki.apache.org/confluence/display/GEODE
• GitHub
https://github.com/apache/incubator-geode
• Mailing lists
mail-archives.apache.org/mod_mbox/incubator-geode-dev/
30
Links
31
Thank you
http://geode.incubator.apache.org
https://github.com/Pivotal-Open-Source-Hub

More Related Content

What's hot (20)

POTX
Building Effective Apache Geode Applications with Spring Data GemFire
John Blum
 
PPTX
Using Apache Geode: Lessons Learned at Southwest Airlines
VMware Tanzu
 
PPTX
ApexMeetup Geode - Talk1 2016-03-17
Apache Apex Organizer
 
PPTX
Apache Geode Clubhouse - WAN-based Replication
PivotalOpenSourceHub
 
PPTX
GemFire In Memory Data Grid
Dmitry Buzdin
 
PDF
IMCSummit 2015 - 1 IT Business - The Evolution of Pivotal Gemfire
In-Memory Computing Summit
 
PPTX
Hive LLAP: A High Performance, Cost-effective Alternative to Traditional MPP ...
DataWorks Summit
 
PPTX
Introducing Apache Geode and Spring Data GemFire
John Blum
 
PPTX
Hive 3 - a new horizon
Thejas Nair
 
PDF
Building Scalable Applications using Pivotal Gemfire/Apache Geode
imcpune
 
PPTX
What's the Hadoop-la about Kubernetes?
DataWorks Summit
 
PPTX
HBase coprocessors, Uses, Abuses, Solutions
DataWorks Summit
 
PPTX
Database as a Service - Tutorial @ICDE 2010
DBIS @ Ilmenau University of Technology
 
PPTX
Breathing New Life into Apache Oozie with Apache Ambari Workflow Manager
DataWorks Summit
 
PPTX
How to Design for Database High Availability
EDB
 
PPTX
Running secured Spark job in Kubernetes compute cluster and integrating with ...
DataWorks Summit
 
PPTX
LLAP: long-lived execution in Hive
DataWorks Summit
 
PPTX
Apache geode
Yogesh BG
 
PPTX
Running Enterprise Workloads in the Cloud
DataWorks Summit
 
PDF
Scale Out Your Big Data Apps: The Latest on Pivotal GemFire and GemFire XD
VMware Tanzu
 
Building Effective Apache Geode Applications with Spring Data GemFire
John Blum
 
Using Apache Geode: Lessons Learned at Southwest Airlines
VMware Tanzu
 
ApexMeetup Geode - Talk1 2016-03-17
Apache Apex Organizer
 
Apache Geode Clubhouse - WAN-based Replication
PivotalOpenSourceHub
 
GemFire In Memory Data Grid
Dmitry Buzdin
 
IMCSummit 2015 - 1 IT Business - The Evolution of Pivotal Gemfire
In-Memory Computing Summit
 
Hive LLAP: A High Performance, Cost-effective Alternative to Traditional MPP ...
DataWorks Summit
 
Introducing Apache Geode and Spring Data GemFire
John Blum
 
Hive 3 - a new horizon
Thejas Nair
 
Building Scalable Applications using Pivotal Gemfire/Apache Geode
imcpune
 
What's the Hadoop-la about Kubernetes?
DataWorks Summit
 
HBase coprocessors, Uses, Abuses, Solutions
DataWorks Summit
 
Database as a Service - Tutorial @ICDE 2010
DBIS @ Ilmenau University of Technology
 
Breathing New Life into Apache Oozie with Apache Ambari Workflow Manager
DataWorks Summit
 
How to Design for Database High Availability
EDB
 
Running secured Spark job in Kubernetes compute cluster and integrating with ...
DataWorks Summit
 
LLAP: long-lived execution in Hive
DataWorks Summit
 
Apache geode
Yogesh BG
 
Running Enterprise Workloads in the Cloud
DataWorks Summit
 
Scale Out Your Big Data Apps: The Latest on Pivotal GemFire and GemFire XD
VMware Tanzu
 

Similar to Slides for the Apache Geode Hands-on Meetup and Hackathon Announcement (20)

PPTX
Apache Geode (incubating) Introduction with Docker
William Markito Oliveira
 
PPTX
Geode introduction
Swapnil Bawaskar
 
PDF
Scalable IoT platform
Swapnil Bawaskar
 
PDF
Pivotal's effort on Apache Geode
Apache Apex
 
PDF
Geode - Day 1
Swapnil Bawaskar
 
PDF
Getting Started with Hadoop
Josh Devins
 
PDF
Geode - Day 2
Swapnil Bawaskar
 
PPTX
Real time hadoop + mapreduce intro
Geoff Hendrey
 
PPTX
Introduction to Apache Hadoop
Christopher Pezza
 
PDF
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Cloudera, Inc.
 
PPTX
Building Highly Scalable Spring Applications using In-Memory Data Grids
John Blum
 
PPT
Hive @ Hadoop day seattle_2010
nzhang
 
PPTX
Introduction to Apache HBase
Gokuldas Pillai
 
PDF
Managing Big Data: An Introduction to Data Intensive Computing
Collin Bennett
 
PPTX
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Esther Kundin
 
KEY
HBase and Hadoop at Urban Airship
dave_revell
 
PPTX
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Esther Kundin
 
PPTX
Coding serbia
Dusan Zamurovic
 
PDF
Cassandra Talk: Austin JUG
Stu Hood
 
PDF
Scaling Storage and Computation with Hadoop
yaevents
 
Apache Geode (incubating) Introduction with Docker
William Markito Oliveira
 
Geode introduction
Swapnil Bawaskar
 
Scalable IoT platform
Swapnil Bawaskar
 
Pivotal's effort on Apache Geode
Apache Apex
 
Geode - Day 1
Swapnil Bawaskar
 
Getting Started with Hadoop
Josh Devins
 
Geode - Day 2
Swapnil Bawaskar
 
Real time hadoop + mapreduce intro
Geoff Hendrey
 
Introduction to Apache Hadoop
Christopher Pezza
 
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Cloudera, Inc.
 
Building Highly Scalable Spring Applications using In-Memory Data Grids
John Blum
 
Hive @ Hadoop day seattle_2010
nzhang
 
Introduction to Apache HBase
Gokuldas Pillai
 
Managing Big Data: An Introduction to Data Intensive Computing
Collin Bennett
 
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Esther Kundin
 
HBase and Hadoop at Urban Airship
dave_revell
 
Big Data and Hadoop - History, Technical Deep Dive, and Industry Trends
Esther Kundin
 
Coding serbia
Dusan Zamurovic
 
Cassandra Talk: Austin JUG
Stu Hood
 
Scaling Storage and Computation with Hadoop
yaevents
 

More from VMware Tanzu (20)

PDF
Spring into AI presented by Dan Vega 5/14
VMware Tanzu
 
PDF
What AI Means For Your Product Strategy And What To Do About It
VMware Tanzu
 
PDF
Make the Right Thing the Obvious Thing at Cardinal Health 2023
VMware Tanzu
 
PPTX
Enhancing DevEx and Simplifying Operations at Scale
VMware Tanzu
 
PDF
Spring Update | July 2023
VMware Tanzu
 
PPTX
Platforms, Platform Engineering, & Platform as a Product
VMware Tanzu
 
PPTX
Building Cloud Ready Apps
VMware Tanzu
 
PDF
Spring Boot 3 And Beyond
VMware Tanzu
 
PDF
Spring Cloud Gateway - SpringOne Tour 2023 Charles Schwab.pdf
VMware Tanzu
 
PDF
Simplify and Scale Enterprise Apps in the Cloud | Boston 2023
VMware Tanzu
 
PDF
Simplify and Scale Enterprise Apps in the Cloud | Seattle 2023
VMware Tanzu
 
PPTX
tanzu_developer_connect.pptx
VMware Tanzu
 
PDF
Tanzu Virtual Developer Connect Workshop - French
VMware Tanzu
 
PDF
Tanzu Developer Connect Workshop - English
VMware Tanzu
 
PDF
Virtual Developer Connect Workshop - English
VMware Tanzu
 
PDF
Tanzu Developer Connect - French
VMware Tanzu
 
PDF
Simplify and Scale Enterprise Apps in the Cloud | Dallas 2023
VMware Tanzu
 
PDF
SpringOne Tour: Deliver 15-Factor Applications on Kubernetes with Spring Boot
VMware Tanzu
 
PDF
SpringOne Tour: The Influential Software Engineer
VMware Tanzu
 
PDF
SpringOne Tour: Domain-Driven Design: Theory vs Practice
VMware Tanzu
 
Spring into AI presented by Dan Vega 5/14
VMware Tanzu
 
What AI Means For Your Product Strategy And What To Do About It
VMware Tanzu
 
Make the Right Thing the Obvious Thing at Cardinal Health 2023
VMware Tanzu
 
Enhancing DevEx and Simplifying Operations at Scale
VMware Tanzu
 
Spring Update | July 2023
VMware Tanzu
 
Platforms, Platform Engineering, & Platform as a Product
VMware Tanzu
 
Building Cloud Ready Apps
VMware Tanzu
 
Spring Boot 3 And Beyond
VMware Tanzu
 
Spring Cloud Gateway - SpringOne Tour 2023 Charles Schwab.pdf
VMware Tanzu
 
Simplify and Scale Enterprise Apps in the Cloud | Boston 2023
VMware Tanzu
 
Simplify and Scale Enterprise Apps in the Cloud | Seattle 2023
VMware Tanzu
 
tanzu_developer_connect.pptx
VMware Tanzu
 
Tanzu Virtual Developer Connect Workshop - French
VMware Tanzu
 
Tanzu Developer Connect Workshop - English
VMware Tanzu
 
Virtual Developer Connect Workshop - English
VMware Tanzu
 
Tanzu Developer Connect - French
VMware Tanzu
 
Simplify and Scale Enterprise Apps in the Cloud | Dallas 2023
VMware Tanzu
 
SpringOne Tour: Deliver 15-Factor Applications on Kubernetes with Spring Boot
VMware Tanzu
 
SpringOne Tour: The Influential Software Engineer
VMware Tanzu
 
SpringOne Tour: Domain-Driven Design: Theory vs Practice
VMware Tanzu
 

Slides for the Apache Geode Hands-on Meetup and Hackathon Announcement

  • 1. Hands-on Introduction & Hackathon Kickoff Ashvin Agrawal William Markito @william_markito@aasoj Powered by
 Pivotal Open Source Hub (POSH) (incubating)
  • 2. • Hackathon Details • Apache Geode Introduction • History • Key features and components • Roadmap • Hands-on lab • Build & run • Starting a cluster • Using docker for clustering • Your first app • Q&A 2 Agenda
  • 3. Hackathon details Powered by
 Pivotal Open Source Hub (POSH) http://ambitious-apps.challengepost.com/
  • 5. A distributed, memory-based data management platform for data oriented apps that need: • high performance, scalability, resiliency and continuous availability • fast access to critical data set • location aware distributed data processing • event driven data architecture 5 Introduction
  • 6. 6 One size fits all ? Cost of sorting is nlog(n)
  • 7. 7 One size fits all ? Cost of sorting is nlog(n) • Data quality and quantity differences • Eventual consistency • Response time expectation • Scalability challenges: disk, memory, network and external systems
  • 8. • 1000+ systems in production (real customers) • Cutting edge use cases 8 Incubating… but rock solid 2004 2008 2014 •  Massive increase in data volumes •  Falling margins per transaction •  Increasing cost of IT maintenance •  Need for elasticity in systems •  Financial Services Providers (every major Wall Street bank) •  Department of Defense •  Real Time response needs •  Time to market constraints •  Need for flexible data models across enterprise •  Distributed development •  Persistence + In-memory •  Global data visibility needs •  Fast Ingest needs for data •  Need to allow devices to hook into enterprise data •  Always on •  Largest travel Portal •  Airlines •  Trade clearing •  Online gambling •  Largest Telcos •  Large mfrers •  Largest Payroll processor •  Auto insurance giants •  Largest rail systems on earth
  • 9. • 17 billion records in memory • GE Power & Water's Remote Monitoring & Diagnostics Center • 3 TB operational data in-memory, 400 TB archived • China Railways • 4.6 Million transactions a day / 40K transactions a second • China Railways 9 Incubating… but rock solid
  • 10. • Performance optimized persistence • Configurable consistency • Elastic capacity • Latency minimizing distribution • Heterogenous deployment Designed for High Performance 10 +/- L2 ~10 ns, memory ~100 ns, network <1ms, disk ~10ms
  • 11. • Cache • Region • Member • Client Cache • Functions • Listeners 11 Concepts
  • 12. • Cache • In-memory storage and management for your data • Configurable through XML, Spring, Java API or CLI • Collection of Region 12 Concepts Region Region Region Cache JVM
  • 13. • Region • Distributed java.util.Map on steroids (Key/Value) • Consistent API regardless of where or how data is stored • Observable (reactive) • Highly available, redundant on cache Member (s). 13 Concepts Region Cache java.util.Map JVM Key Value K01 May K02 Tim
  • 14. • Region • Local, Replicated or Partitioned • In-memory or persistent • Redundant • LRU • Overflow 14 Concepts Region Cache java.util.Map JVM Key Value K01 May K02 Tim Region Cache java.util.Map JVM Key Value K01 May K02 Tim LOCAL   LOCAL_HEAP_LRU   LOCAL_OVERFLOW   LOCAL_PERSISTENT   LOCAL_PERSISTENT_OVERFLOW   PARTITION   PARTITION_HEAP_LRU   PARTITION_OVERFLOW   PARTITION_PERSISTENT   PARTITION_PERSISTENT_OVERFLOW   PARTITION_PROXY   PARTITION_PROXY_REDUNDANT   PARTITION_REDUNDANT   PARTITION_REDUNDANT_HEAP_LRU   PARTITION_REDUNDANT_OVERFLOW   PARTITION_REDUNDANT_PERSISTENT   PARTITION_REDUNDANT_PERSISTENT_OVERFLOW   REPLICATE   REPLICATE_HEAP_LRU   REPLICATE_OVERFLOW   REPLICATE_PERSISTENT   REPLICATE_PERSISTENT_OVERFLOW   REPLICATE_PROXY
  • 15. • Persistent Regions • Durability • WAL for efficient writing • Consistent recovery • Compaction 15 Concepts Modify k1->v5 Create k6->v6 Create k2->v2 Create k4->v4 Oplog2.crf Member 1 Modify k4->v7Oplog3.crf Put k4->v7 Region Cache java.util.Map JVM Key Value K01 May K02 Tim Region Cache java.util.Map JVM Key Value K01 May K02 Tim Server 1 Server N
  • 16. • Member • A process that has a connection to the system • A process that has created a cache • Embeddable within your application 16 Concepts Client Locator Server
  • 17. • Client cache • A process connected to the Geode server(s) • Can have a local copy of the data • Can be notified about events on the servers 17 Concepts Application GemFire Server Region Region RegionClient Cache
  • 18. • Functions • Used for distributed concurrent processing 
 (Map/Reduce, stored procedure) • Highly available • Data oriented • Member oriented 18 Concepts Submit (f1) f1 , f2 , … fn Execute
 Functions
  • 19. 19 Concepts Server Server FunctionService.onRegion.withFilter.execute ResultCollector.getResult Server Distributed System execute Server Server 6 1 result execute execute result result 2 5 3 4 3 4 Server Partitioned Region Data Store - X Partitioned Region Data Store - Y Partitioned Region Data Store - Z Partitioned Region Data Accessor Partitioned Region Data Accessor filter = Keys X, Y Client Region • Functions
  • 20. • Listeners • CacheWriter / CacheListener • AsyncEventListener (queue / batch) • Parallel or Serial • Conflation 20 Concepts
  • 22. • Clone & Build 22 Hands-on: Build & run git  clone  https://github.com/apache/incubator-­‐geode   cd  incubator-­‐geode
 ./gradlew  build  -­‐Dskip.tests=true • Start a server cd  gemfire-­‐assembly/build/install/apache-­‐geode     ./bin/gfsh     gfsh>  start  locator  -­‐-­‐name=locator     gfsh>  start  server  -­‐-­‐name=server     gfsh>  create  region  -­‐-­‐name=myRegion  -­‐-­‐type=REPLICATE
  • 24. • Containers • FreeBSD Jails (2000) • Solaris Zones (2004) • Docker (2013) • Operating system level virtualization • Isolated user space instances 24 * https://linuxcontainers.org/ Hands-on: Docker
  • 25. 25 Container vs VM “..while the hypervisor abstracts the entire device, containers just abstract the operating system kernel"
  • 26. Hands-on: Docker & Compose 26 • Single instance docker  run  -­‐it  apachegeode/geode:nightly  gfsh • Cluster docker-­‐compose  up • Scale docker-­‐compose  scale  server=3
  • 27. Hands-on: Application 27 • Teeny URL • Fast response time • Statistics • Hits • User agent ? • IPs ? • URL will last for 5 minutes • Distribute data & load • Highly scalable createURL getURL stats
  • 28. • HDFS Persistence • Off-heap memory storage • Lucene Search • Spark Integration • Cloud Foundry service 28 Roadmap
  • 29. • Code • New features • Bug fixes • Writing tests • Documentation • Wiki • Web site • User guide 29 How to Contribute • Community • Join the mailing list • Ask or answer • Join our HipChat • Become a speaker • Finding bugs • Testing an RC/Beta
  • 30. • JIRA https://issues.apache.org/jira/browse/GEODE • Wiki cwiki.apache.org/confluence/display/GEODE • GitHub https://github.com/apache/incubator-geode • Mailing lists mail-archives.apache.org/mod_mbox/incubator-geode-dev/ 30 Links