8
Most read
10
Most read
12
Most read
1
Chapter 1
1.1. A finite element is a small body or unit interconnected to other units to model a larger
structure or system.
1.2. Discretization means dividing the body (system) into an equivalent system of finite elements
with associated nodes and elements.
1.3. The modern development of the finite element method began in 1941 with the work of
Hrennikoff in the field of structural engineering.
1.4. The direct stiffness method was introduced in 1941 by Hrennikoff. However, it was not
commonly known as the direct stiffness method until 1956.
1.5. A matrix is a rectangular array of quantities arranged in rows and columns that is often used
to aid in expressing and solving a system of algebraic equations.
1.6. As computer developed it made possible to solve thousands of equations in a matter of
minutes.
1.7. The following are the general steps of the finite element method.
Step 1
Divide the body into an equivalent system of finite elements with associated
nodes and choose the most appropriate element type.
Step 2
Choose a displacement function within each element.
Step 3
Relate the stresses to the strains through the stress/strain law—generally called
the constitutive law.
Step 4
Derive the element stiffness matrix and equations. Use the direct equilibrium
method, a work or energy method, or a method of weighted residuals to relate the
nodal forces to nodal displacements.
Step 5
Assemble the element equations to obtain the global or total equations and
introduce boundary conditions.
Step 6
Solve for the unknown degrees of freedom (or generalized displacements).
Step 7
Solve for the element strains and stresses.
Step 8
Interpret and analyze the results for use in the design/analysis process.
1.8. The displacement method assumes displacements of the nodes as the unknowns of the
problem. The problem is formulated such that a set of simultaneous equations is solved for
nodal displacements.
1.9. Four common types of elements are: simple line elements, simple two-dimensional elements,
simple three-dimensional elements, and simple axisymmetric elements.
1.10 Three common methods used to derive the element stiffness matrix and equations are
(1) direct equilibrium method
(2) work or energy methods
s
m
t
b
9
8
@
g
m
a
i
l
.
c
o
m
You can access complete document on following URL. Contact me if site not loaded
https://unihelp.xyz/
Contact me in order to access the whole complete document - Email: smtb98@gmail.com
WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
2
(3) methods of weighted residuals
1.11. The term ‘degrees of freedom’ refers to rotations and displacements that are associated with
each node.
1.12. Five typical areas where the finite element is applied are as follows.
(1) Structural/stress analysis
(2) Heat transfer analysis
(3) Fluid flow analysis
(4) Electric or magnetic potential distribution analysis
(5) Biomechanical engineering
1.13. Five advantages of the finite element method are the ability to
(1) Model irregularly shaped bodies quite easily
(2) Handle general load conditions without difficulty
(3) Model bodies composed of several different materials because element equations are
evaluated individually
(4) Handle unlimited numbers and kinds of boundary conditions
(5) Vary the size of the elements to make it possible to use small elements where necessary
3
Chapter 2
2.1
(a)
[k(1)
] =
1 1
1 1
0 – 0
0 0 0 0
– 0 0
0 0 0 0
k k
k k
[k(2)
] =
2 2
2 2
0 0 0 0
0 0 0 0
0 0 –
0 0 –
k k
k k
[k3
(3)
] = 3 3
3 3
0 0 0 0
0 0 –
0 0 0 0
0 – 0
k k
k k
[K] = [k(1)] + [k(2)] + [k(3)]
[K] =
1 1
3 3
1 1 2 2
3 2 2 3
0 – 0
0 0 –
– 0 –
0 – –
k k
k k
k k k k
k k k k
(b) Nodes 1 and 2 are fixed so u1 = 0 and u2 = 0 and [K] becomes
[K] =
1 2 2
2 2 3
–
–
k k k
k k k
{F} = [K] {d}
3
4
x
x
F
F
=
1 2 2
2 2 3
–
–
k k k
k k k
3
4
u
u

0
P
=
1 2 2
2 2 3
–
–
k k k
k k k
3
4
u
u
{F} = [K] {d} [K]–1 {F} = [K]–1 [K] {d}
4
 K]–1 {F} = {d}
Using the adjoint method to find [K–1]
C11 = k2 + k3 C21 = (– 1)3
(– k2)
C12 = (– 1)1 + 2
(– k2) = k2 C22 = k1 + k2
[C] = 2 3 2
2 1 2
k k k
k k k
and CT
= 2 3 2
2 1 2
k k k
k k k
det [K] = | [K] | = (k1 + k2) (k2 + k3) – ( – k2) (– k2)
 | [K] | = (k1 + k2) (k2 + k3) – k2
2
[K –1
] =
[ ]
det
T
C
K
[K –1] =
2 3 2
2 1 2
2
1 2 2 3 2
( )( ) –
k k k
k k k
k k k k k
=
2 3 2
2 1 2
1 2 1 3 2 3
k k k
k k k
k k k k k k
3
4
u
u
=
2 3 2
2 1 2
1 2 1 3 2 3
0
k k k
k k k P
k k k k k k
 u3 = 2
1 2 1 3 2 3
k P
k k k k k k
  u4 = 1 2
1 2 1 3 2 3
( )
k k P
k k k k k k
(c) In order to find the reaction forces we go back to the global matrix F = [K]{d}
1
2
3
4
x
x
x
x
F
F
F
F
=
1
1 1
2
3 3
1 1 2 2 3
3 2 2 3 4
0 0
0 0
0
0
u
k k
u
k k
k k k k u
k k k k u
F1x = – k1 u3 = – k1
2
1 2 1 3 2 3
k P
k k k k k k
 F1x = 1 2
1 2 1 3 2 3
k k P
k k k k k k
F2x = – k3 u4 = – k3 1 2
1 2 1 3 2 3
( )
k k P
k k k k k k
 F2x = 3 1 2
1 2 1 3 2 3
( )
k k k P
k k k k k k
2.2
5
k1 = k2 = k3 = 1000
lb
in.
(1) (2) (2) (3)
[k(1)] =
(1)
(2)
k k
k k
; [k(2)] =
(2)
(3)
k k
k k
By the method of superposition the global stiffness matrix is constructed.
(1) (2) (3)
[K] =
0 (1)
(2)
0 (3)
k k
k k k k
k k
 [K] =
0
2
0
k k
k k k
k k
Node 1 is fixed  u1 = 0 and u3 = 
{F} = [K] {d}
1
2
3
?
0
?
x
x
x
F
F
F
=
0
2
0
k k
k k k
k k
1
2
3
0
?
u
u
u

 
 

 
 
 
 

3
0
x
F
=
2
2
3 2
0 2
2
x
k u k
k k u
F k u k
k k
  u2 =
2k
k
=
2
=
1 in.
2
 u2 = 0.5
F3x = – k (0.5) + k (1)
F3x = (– 1000
lb
in.
) (0.5) + (1000
lb
in.
) (1)
F3x = 500 lbs
Internal forces
Element (1)
(1)
1
(2)
2
x
x
f
f
=
1
2
0
0.5
u
k k
k k u
 (1)
1x
f = (– 1000
lb
in.
) (0.5)  (1)
1x
f = – 500 lb
(1)
2x
f = (1000
lb
in.
) (0.5)  (1)
2x
f = 500 lb
Element (2)
6
(2)
2
(2)
3
x
x
f
f
=
2 2
3 3
0.5 0.5
1 1
u u
k k k k
u u
k k k k

(2)
2
(2)
3
– 500 lb
500 lb
x
x
f
f
2.3
(a) [k(1)
] = [k(2)
] = [k(3)
] = [k(4)
] =
k k
k k
By the method of superposition we construct the global [K] and knowing {F} = [K] {d}
we have
1
2
3
4
5
?
0
0
?
x
x
x
x
x
F
F
F P
F
F
=
0 0 0
2 0 0
0 2 0
0 0 2
0 0 0
k k
k k k
k k k
k k k
k k
1
2
3
4
5
0
0
u
u
u
u
u
(b)
0
0
P =
2 2 3
3 2 3 4
3 4
4
2 0 0 2
2 2
0 2 0 2
u
k k ku ku
k k k u P ku ku ku
k k ku ku
u
 u2 = 3
2
u
; u4 = 3
2
u
Substituting in the second equation above
P = – k u2 + 2k u3 – k u4
 P = – k 3
2
u
+ 2k u3 – k 3
2
u
 P = ku3
 u3 =
P
k
u2 =
2
P
k
; u4 =
2
P
k
(c) In order to find the reactions at the fixed nodes 1 and 5 we go back to the global
equation {F} = [K] {d}
F1x = – ku2 = –
2
P
k
k
 F1x =
2
P
F5x = – ku4 = –
2
P
k
k
 F5x =
2
P
Check
Fx = 0  F1x + F5x + P = 0
(1)
(2)
(3)

2
P
+
2
P
+ P = 0
 0 = 0
2.4
(a) [k(1)] = [k(2)] = [k(3)] = [k(4)] =
k k
k k
By the method of superposition the global [K] is constructed.
Also {F} = [K] {d} and u1 = 0 and u5 = 
1
2
3
4
5
?
0
0
0
?
x
x
x
x
x
F
F
F
F
F
=
0 0 0
2 0 0
0 2 0
0 0 2
0 0 0
k k
k k k
k k k
k k k
k k
1
2
3
4
5
0
?
?
?
u
u
u
u
u
(b) 0 = 2k u2 – k u3 (1)
0 = – ku2 + 2k u3 – k u4 (2)
0 = – k u3 + 2k u4 – k  (3)
From (2)
u3 = 2 u2
From (3)
u4 = 2
2
2
u
Substituting in Equation (2)
– k (u2) + 2k (2u2) – k 2
2
2
u
 
 
 
 
 – u2 + 4 u2 – u2 –
2
= 0  u2 =
4
u3 = 2
4
 u3 =
2
u4 = 4
2
2
 u4 =
3
4
(c) Going back to the global equation
8
{F} = [K]{d}
F1x = – k u2 =
4
k  F1x =
4
k
F5x = – k u4 + k  = – k
3
4
+ k 
 F5x =
4
k
2.5
u1 u2 u2 u4
[k (1)
] =
1 1
1 1
; [k (2)
] =
2 2
2 2
u2 u4 u2 u4
[k (3)
] =
3 3
3 3
; [k (4)
] =
4 4
4 4
u4 u3
[k (5)
] =
5 5
5 5
Assembling global [K] using direct stiffness method
[K] =
1 1 0 0
1 1 2 3 4 0 2 3 4
0 0 5 5
0 2 3 4 5 2 3 4 5
Simplifying
[K] =
1 1 0 0
1 10 0 9 kip
0 0 5 5 in.
0 9 5 14
2.6 Now apply + 3 kip at node 2 in spring assemblage of P 2.5.
 F2x = 3 kip
[K]{d} = {F}
9
[K] from P 2.5
1 1 0 0
1 10 0 9
0 0 5 5
0 9 5 14
1
2
3
4
0
0
u
u
u
u
=
1
3
3
0
F
F
 
 
 
 
 
 
 
(A)
where u1 = 0, u3 = 0 as nodes 1 and 3 are fixed.
Using Equations (1) and (3) of (A)
2
4
10 9
9 14
u
u
=
3
0
 
 
 
Solving
u2 = 0.712 in., u4 = 0.458 in.
2.7
f1x = C, f2x = – C
f = – k = – k(u2 – u1)
 f1x = – k(u2 – u1)
f2x = – (– k) (u2 – u1)
1
2
x
x
f
f
=
k –k
–k k
1
2
u
u
 [K] =
k –k
–k k
same as for
tensile element
2.8
k1 = 1000
1 1
1 1
; k2 = 1000
1 1
1 1
So
10
[K] = 1000
1 1 0
1 2 1
0 1 1
{F} = [K] {d} 

1
2
3
?
0
500
F
F
F

 
 

 

 
 
=
1 1 0
10 1 2 1
00
0 1 1
 
 
 
 

 
 
1
2
3
0
?
?
u
u
u
 0 = 2000 u2 – 1000 u3 (1)
500 = – 1000 u2 + 1000 u3 (2)
From (1)
u2 =
1000
2000
u3  u2 = 0.5 u3 (3)
Substituting (3) into (2)
 500 = – 1000 (0.5 u3) + 1000 u3
 500 = 500 u3
 u3 = 1 in.
 u2 = (0.5) (1 in.)  u2 = 0.5 in.
Element 1–2
(1)
1
(1)
2
x
x
f
f
= 1000
(1)
1
(1)
2
500lb
1 1 0 in.
1 1 0.5 in. 500lb
x
x
f
f
 

  

 
 

   
Element 2–3
(2)
2
(2)
3
x
x
f
f
= 1000
(2)
2
(2)
3
500 lb
1 1 0.5 in.
1 1 1 in. 500 lb
x
x
f
f
 
  
 

 
 

   
F1x = 500 [1 –1 0] 1
0
0.5 in. 500 lb
1 in.
x
F
 
    
 
 
 
2.9
(1) (2)
[k(1)
] =
5000 5000
5000 5000

 
 

 
(2) (3)
11
[k(2)] =
5000 5000
5000 5000

 
 

 
(3) (4)
[k(3)] =
5000 5000
5000 5000

 
 

 
(1) (2) (3) (4)
[K] =
5000 5000 0 0
5000 10000 5000 0
0 5000 10000 5000
0 0 5000 5000

 
 
 
 
 
 
 

 
1
2
3
4
?
1000
0
4000
x
x
x
x
F
F
F
F
=
5000 5000 0 0
5000 10000 5000 0
0 5000 10000 5000
0 0 5000 5000

 
 
 
 
 
 
 

 
1
2
3
4
0
u
u
u
u
 u1 = 0 in.
u2 = 0.6 in.
u3 = 1.4 in.
u4 = 2.2 in.
Reactions
F1x = [5000 – 5000 0 0]
1
2
3
4
0
0.6
1.4
2.2
u
u
u
u

 
 

 
 

 
 

 
F1x = – 3000 lb
Element forces
Element (1)
(1)
1
(1)
2
x
x
f
f
=
5000 5000 0
5000 5000 0.6
  
 
 
 

  

(1)
1
(1)
2
3000lb
3000lb
x
x
f
f
Element (2)
(2)
2
(2)
3
x
x
f
f
=
5000 5000 0.6
5000 5000 1.4
  
 
 
 

  

(2)
2
(2)
3
4000lb
4000lb
x
x
f
f
Element (3)
(3) (3)
3 3
(3) (3)
4 4
x x
x x
f f
f f
=
5000 5000 1.4
5000 5000 2.2
  
 
 
 

  

(3)
3
(3)
4
4000lb
4000lb
x
x
f
f
2.10
12
[k(1)] =
1000 1000
1000 1000
[k(2)] =
500 500
500 500
[k(3)] =
500 500
500 500
{F} = [K] {d}
1
2
3
4
?
– 8000
?
?
x
x
x
x
F
F
F
F

 
 

 
 

 
 

 
=
1
2
3
4
0
1000 1000 0 0
?
1000 2000 500 500
0
0 500 500 0
0 500 0 500 0
u
u
u
u
 u2 =
8000
2000

= – 4 in.
Reactions
1
2
3
4
x
x
x
x
F
F
F
F
=
0
1000 1000 0 0
1000 2000 500 500 4
0 500 500 0 0
0 500 0 500 0
  
 
 
 
   
 
   

   
   

   

1
2
3
4
x
x
x
x
F
F
F
F
=
4000
8000
2000
2000
 
 

 
 
 
 
 
lb
Element (1)
(1)
1
(1)
2
x
x
f
f
=
1000 1000 0
1000 1000 – 4
  
 
 
 

  

(1)
1
(1)
2
x
x
f
f
=
4000
4000
 
 

 
lb
Element (2)
(2)
2
(2)
3
x
x
f
f
=
500 500 4
500 500 0
 
 
 
 
 

  

(2)
2
(2)
3
x
x
f
f
=
– 2000
2000
 
 
 
lb
Element (3)
13
(3)
2
(3)
4
x
x
f
f
=
500 500 4
500 500 0
 
 
 
 
 

  

(3)
2
(3)
4
x
x
f
f
2000
2000

 
 
 
lb
2.11
[k(1)
] =
1000 1000
1000 1000

 
 

 
; [k(2)
] =
3000 3000
3000 3000

 
 

 
{F} = [K] {d}
1
2
3
?
0
?
x
x
x
F
F
F
=
1000 1000 0
1000 4000 3000
0 3000 3000

 
 
 
 

 
 
1
2
3
0
?
0.02 m
u
u
u
 u2 = 0.015 m
Reactions
F1x = (– 1000) (0.015)  F1x = – 15 N
Element (1)
1
2
x
x
f
f
 
 
 
=
1000 1000
1000 1000

 
 

 
0
0.015
 
 
 
 1
2
x
x
f
f
 
 
 

15
15

 
 
 
N
Element (2)
2
3
x
x
f
f
 
 
 
=
3000 –3000
–3000 3000
 
 
 
0.015
0.02
 
 
 
 2
3
x
x
f
f
 
 
 
=
15
15

 
 
 
N
2.12
[k(1)
] = [k(3)
] = 10000
1 1
1 1
[k(2)] = 10000
3 3
3 3

 
 

 
{F} = [K] {d}
14
1
2
3
4
?
450 N
0
?
x
x
x
x
F
F
F
F

 
 

 
 

 
 

 
= 10000
1 1 0 0
1 4 3 0
0 3 4 1
0 0 1 1

 
 
 
 
 
 
 

 
1
2
3
4
0
?
?
0
u
u
u
u
0 = – 3 u2 + 4 u3  u2 =
4
3
u3  u2 = 1.33 u3
450 N = 40000 (1.33 u3) – 30000 u3
 450 N = (23200
N
m
) u3  u3 = 1.93  10–2
m
 u2 = 1.5 (1.94  10–2)  u2 = 2.57  10–2 m
Element (1)
1
2
x
x
f
f
 
 
 
= 10000
1 1
1 1 2
0
2.57 10
 
 

 

(1)
1
(1)
2
257 N
257 N
x
x
f
f
 

Element (2)
2
3
x
x
f
f
 
 
 
= 30000
1 1
1 1
2
2
2.57 10
1.93 10


 

 
 

 
 

(2)
2
(2)
3
193 N
193 N
x
x
f
f

 
Element (3)
3 3
4 4
x x
x x
f f
f f
   
   
   
= 10000
1 1
1 1
2
1.93 10
0

 

 
 

(3)
3
(3)
4
193 N
193 N
x
x
f
f

 
Reactions
{F1x} = (10000
N
m
) [1 – 1] 2
0
2.57 10
 
 

 
F1x = – 257 N
{F4x} = (10000
N
m
) [–1 1]
2
1.93 10
0

 

 
 
 F4x = – 193 N
2.13
[k(1)] = [k(2)] = [k(3)] = [k(4)] = 60
1 1
1 1
{F} = [K]{d}
15
1
2
3
4
5
?
0
5 kN
0
?
x
x
x
x
x
F
F
F
F
F

 
 

 
 

 
 

 

 
 
= 60
1 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 1
1
2
3
4
5
0
?
?
?
0
u
u
u
u
u
2 3 2 3
3 4 4 3
0 2 – 0.5
0 – 2 0.5
u u u u
u u u u
 u2 = u4
 5 kN = – 60 u2 + 120 (2 u2) – 60 u2
  5 = 120 u2  u2 = 0.042 m
 u4 = 0.042 m
 u3 = 2(0.042)  u3 = 0.084 m
Element (1)
1
2
x
x
f
f
 
 
 
= 60
1 1
1 1
0
0.042
 
 
 

(1)
1
(1)
2
2.5 kN
2.5 kN
x
x
f
f
 

Element (2)
2
3
x
x
f
f
 
 
 
= 60
1 1 1 1
1 1 1 1
0.042
0.084
 
 
 

(2)
2
(2)
3
2.5 kN
2.5 kN
x
x
f
f
 

Element (3)
3 3
4 4
x x
x x
f f
f f
= 60
1 1 1 1
1 1 1 1
0.084
0.042
 
 
 

(3) (3)
3 3
(3) (3)
4 4
2.5 kN 2.5 kN
2.5 kN 2.5 kN
x x
x x
f f
f f
Element (4)
4 4
5 5
x x
x x
f f
f f
   
   
   
= 60
1 1 1 1
1 1 1 1
0.042
0
 
 
 

(4) (4)
4 4
(4) (4)
5 5
2.5 kN 2.5 kN
2.5 kN 2.5 kN
x x
x x
f f
f f
 
   
F1x = 60 [1 –1]
0
0.042
 
 
 
F1x = – 2.5 kN
F5x = 60 [–1 1]
0.042
0
 
 
 
F5x = – 2.5 kN
2.14
[k(1)
] = [k(2)
] = 4000
1 1
1 1
{F} = [K]d}

More Related Content

PDF
Mechanics Of Fluids 4th Edition Potter Solutions Manual
PPT
9789810679941_ppt_01.ppt
PDF
Statics and Mechanics of Materials 5th Edition Hibbeler Solutions Manual
PDF
statics-bedford-chap-06.pdf12121121212121
PDF
Ch01 03 stress & strain & properties
PDF
Beer mom-ism-c07
PDF
Solutions manual for mechanics of materials 9th edition by goodno ibsn 978133...
PDF
9789810682460 sm 06
Mechanics Of Fluids 4th Edition Potter Solutions Manual
9789810679941_ppt_01.ppt
Statics and Mechanics of Materials 5th Edition Hibbeler Solutions Manual
statics-bedford-chap-06.pdf12121121212121
Ch01 03 stress & strain & properties
Beer mom-ism-c07
Solutions manual for mechanics of materials 9th edition by goodno ibsn 978133...
9789810682460 sm 06

What's hot (14)

PDF
2 docencia corrosion
PPT
Estatica de particulas
PPTX
Familias cristalograficas
DOCX
Por qué es importante el conocimiento de la ciencia e ingeniería de materiale...
PPTX
Cristalografia
PPTX
Unidad ii (ii 2016)
PDF
Classification of elements and periodicity in properties
PDF
Clase 07 - Metalurgia Fisica I - Modulo I.pdf
PPTX
Unidad 2 ESTRUCTURA DE LOS MATERIALES
PDF
Fuerzas en el Espacio
PDF
Procesos de manufactura
PDF
Ensayo charpy
PPTX
Materiales "Ceramica Y Vidrio"
PDF
Capitulo 3 beer and johnston ed. 9
2 docencia corrosion
Estatica de particulas
Familias cristalograficas
Por qué es importante el conocimiento de la ciencia e ingeniería de materiale...
Cristalografia
Unidad ii (ii 2016)
Classification of elements and periodicity in properties
Clase 07 - Metalurgia Fisica I - Modulo I.pdf
Unidad 2 ESTRUCTURA DE LOS MATERIALES
Fuerzas en el Espacio
Procesos de manufactura
Ensayo charpy
Materiales "Ceramica Y Vidrio"
Capitulo 3 beer and johnston ed. 9
Ad

Similar to Solutions for Problems in "A First Course in the Finite Element Method" (6th Edition) by Daryl Logan (20)

PDF
Solution homework2
PDF
FEMSlide 1.pdf
PDF
Stiffness Method for structure analysis - Truss
PDF
UNIT I_1.pdf
PPTX
Method for beam 20 1-2020
PPT
Finite Element Analays_Presentations.ppt
PPT
FEA Presentation New1 Full chapters.Pptx
PPTX
Finite element method (matlab) milan kumar rai
PDF
UNIT I_2.pdf
PPT
An Introduction to the Finite Element Method
PPT
359923580HDHHHHHHHHHHHHHHHHHHHHHHHHHHH-fea-1-ppt.ppt
PPT
Finite element method.ppt
PPT
finite element analysis introduction _pres.ppt
PPT
An Introduction to the Finite Element Analysis.ppt
PPT
Fem l1(a)
PDF
2d beam element with combined loading bending axial and torsion
PPTX
FEA RESIDUAL METHOD FOR 1D PROBLEMS Chap2.pptx
PDF
solution for 2D truss1
PDF
05_Matrix_Truss fjjgkbkbogigjvkiggjgjgjg.pdf
PPT
generalformulation.ppt
Solution homework2
FEMSlide 1.pdf
Stiffness Method for structure analysis - Truss
UNIT I_1.pdf
Method for beam 20 1-2020
Finite Element Analays_Presentations.ppt
FEA Presentation New1 Full chapters.Pptx
Finite element method (matlab) milan kumar rai
UNIT I_2.pdf
An Introduction to the Finite Element Method
359923580HDHHHHHHHHHHHHHHHHHHHHHHHHHHH-fea-1-ppt.ppt
Finite element method.ppt
finite element analysis introduction _pres.ppt
An Introduction to the Finite Element Analysis.ppt
Fem l1(a)
2d beam element with combined loading bending axial and torsion
FEA RESIDUAL METHOD FOR 1D PROBLEMS Chap2.pptx
solution for 2D truss1
05_Matrix_Truss fjjgkbkbogigjvkiggjgjgjg.pdf
generalformulation.ppt
Ad

More from electricaleng2024 (8)

PDF
Answers to Problems in "Elementary Linear Algebra" (12th Edition) by Anton
PDF
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
PDF
Solutions for Problems in Modern Digital and Analog Communication Systems, 5t...
PDF
Solutions for Problems in Fundamentals of Applied Electromagnetics, 8th Globa...
PDF
Solutions for Exercises in Digital Signal Processing Using MATLAB, 4th Editio...
PDF
Solutions for Problems in Digital Communication Systems by Haykin
PDF
Answers to Problems in An Introduction to Applied Electromagnetics and Optics...
PDF
Answers to Problems for Digital Control System Analysis & Design 4th Edition ...
Answers to Problems in "Elementary Linear Algebra" (12th Edition) by Anton
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
Solutions for Problems in Modern Digital and Analog Communication Systems, 5t...
Solutions for Problems in Fundamentals of Applied Electromagnetics, 8th Globa...
Solutions for Exercises in Digital Signal Processing Using MATLAB, 4th Editio...
Solutions for Problems in Digital Communication Systems by Haykin
Answers to Problems in An Introduction to Applied Electromagnetics and Optics...
Answers to Problems for Digital Control System Analysis & Design 4th Edition ...

Recently uploaded (20)

PPTX
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
Empowerment Technology for Senior High School Guide
PPTX
Climate Change and Its Global Impact.pptx
PDF
Everyday Spelling and Grammar by Kathi Wyldeck
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
International_Financial_Reporting_Standa.pdf
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI Syllabus.pdf
PDF
M.Tech in Aerospace Engineering | BIT Mesra
PPTX
What’s under the hood: Parsing standardized learning content for AI
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
HVAC Specification 2024 according to central public works department
PDF
Journal of Dental Science - UDMY (2020).pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Empowerment Technology for Senior High School Guide
Climate Change and Its Global Impact.pptx
Everyday Spelling and Grammar by Kathi Wyldeck
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
International_Financial_Reporting_Standa.pdf
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
Journal of Dental Science - UDMY (2021).pdf
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI Syllabus.pdf
M.Tech in Aerospace Engineering | BIT Mesra
What’s under the hood: Parsing standardized learning content for AI
Race Reva University – Shaping Future Leaders in Artificial Intelligence
HVAC Specification 2024 according to central public works department
Journal of Dental Science - UDMY (2020).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Climate and Adaptation MCQs class 7 from chatgpt
AI-driven educational solutions for real-life interventions in the Philippine...

Solutions for Problems in "A First Course in the Finite Element Method" (6th Edition) by Daryl Logan

  • 1. 1 Chapter 1 1.1. A finite element is a small body or unit interconnected to other units to model a larger structure or system. 1.2. Discretization means dividing the body (system) into an equivalent system of finite elements with associated nodes and elements. 1.3. The modern development of the finite element method began in 1941 with the work of Hrennikoff in the field of structural engineering. 1.4. The direct stiffness method was introduced in 1941 by Hrennikoff. However, it was not commonly known as the direct stiffness method until 1956. 1.5. A matrix is a rectangular array of quantities arranged in rows and columns that is often used to aid in expressing and solving a system of algebraic equations. 1.6. As computer developed it made possible to solve thousands of equations in a matter of minutes. 1.7. The following are the general steps of the finite element method. Step 1 Divide the body into an equivalent system of finite elements with associated nodes and choose the most appropriate element type. Step 2 Choose a displacement function within each element. Step 3 Relate the stresses to the strains through the stress/strain law—generally called the constitutive law. Step 4 Derive the element stiffness matrix and equations. Use the direct equilibrium method, a work or energy method, or a method of weighted residuals to relate the nodal forces to nodal displacements. Step 5 Assemble the element equations to obtain the global or total equations and introduce boundary conditions. Step 6 Solve for the unknown degrees of freedom (or generalized displacements). Step 7 Solve for the element strains and stresses. Step 8 Interpret and analyze the results for use in the design/analysis process. 1.8. The displacement method assumes displacements of the nodes as the unknowns of the problem. The problem is formulated such that a set of simultaneous equations is solved for nodal displacements. 1.9. Four common types of elements are: simple line elements, simple two-dimensional elements, simple three-dimensional elements, and simple axisymmetric elements. 1.10 Three common methods used to derive the element stiffness matrix and equations are (1) direct equilibrium method (2) work or energy methods s m t b 9 8 @ g m a i l . c o m You can access complete document on following URL. Contact me if site not loaded https://unihelp.xyz/ Contact me in order to access the whole complete document - Email: [email protected] WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
  • 2. 2 (3) methods of weighted residuals 1.11. The term ‘degrees of freedom’ refers to rotations and displacements that are associated with each node. 1.12. Five typical areas where the finite element is applied are as follows. (1) Structural/stress analysis (2) Heat transfer analysis (3) Fluid flow analysis (4) Electric or magnetic potential distribution analysis (5) Biomechanical engineering 1.13. Five advantages of the finite element method are the ability to (1) Model irregularly shaped bodies quite easily (2) Handle general load conditions without difficulty (3) Model bodies composed of several different materials because element equations are evaluated individually (4) Handle unlimited numbers and kinds of boundary conditions (5) Vary the size of the elements to make it possible to use small elements where necessary
  • 3. 3 Chapter 2 2.1 (a) [k(1) ] = 1 1 1 1 0 – 0 0 0 0 0 – 0 0 0 0 0 0 k k k k [k(2) ] = 2 2 2 2 0 0 0 0 0 0 0 0 0 0 – 0 0 – k k k k [k3 (3) ] = 3 3 3 3 0 0 0 0 0 0 – 0 0 0 0 0 – 0 k k k k [K] = [k(1)] + [k(2)] + [k(3)] [K] = 1 1 3 3 1 1 2 2 3 2 2 3 0 – 0 0 0 – – 0 – 0 – – k k k k k k k k k k k k (b) Nodes 1 and 2 are fixed so u1 = 0 and u2 = 0 and [K] becomes [K] = 1 2 2 2 2 3 – – k k k k k k {F} = [K] {d} 3 4 x x F F = 1 2 2 2 2 3 – – k k k k k k 3 4 u u  0 P = 1 2 2 2 2 3 – – k k k k k k 3 4 u u {F} = [K] {d} [K]–1 {F} = [K]–1 [K] {d}
  • 4. 4  K]–1 {F} = {d} Using the adjoint method to find [K–1] C11 = k2 + k3 C21 = (– 1)3 (– k2) C12 = (– 1)1 + 2 (– k2) = k2 C22 = k1 + k2 [C] = 2 3 2 2 1 2 k k k k k k and CT = 2 3 2 2 1 2 k k k k k k det [K] = | [K] | = (k1 + k2) (k2 + k3) – ( – k2) (– k2)  | [K] | = (k1 + k2) (k2 + k3) – k2 2 [K –1 ] = [ ] det T C K [K –1] = 2 3 2 2 1 2 2 1 2 2 3 2 ( )( ) – k k k k k k k k k k k = 2 3 2 2 1 2 1 2 1 3 2 3 k k k k k k k k k k k k 3 4 u u = 2 3 2 2 1 2 1 2 1 3 2 3 0 k k k k k k P k k k k k k  u3 = 2 1 2 1 3 2 3 k P k k k k k k   u4 = 1 2 1 2 1 3 2 3 ( ) k k P k k k k k k (c) In order to find the reaction forces we go back to the global matrix F = [K]{d} 1 2 3 4 x x x x F F F F = 1 1 1 2 3 3 1 1 2 2 3 3 2 2 3 4 0 0 0 0 0 0 u k k u k k k k k k u k k k k u F1x = – k1 u3 = – k1 2 1 2 1 3 2 3 k P k k k k k k  F1x = 1 2 1 2 1 3 2 3 k k P k k k k k k F2x = – k3 u4 = – k3 1 2 1 2 1 3 2 3 ( ) k k P k k k k k k  F2x = 3 1 2 1 2 1 3 2 3 ( ) k k k P k k k k k k 2.2
  • 5. 5 k1 = k2 = k3 = 1000 lb in. (1) (2) (2) (3) [k(1)] = (1) (2) k k k k ; [k(2)] = (2) (3) k k k k By the method of superposition the global stiffness matrix is constructed. (1) (2) (3) [K] = 0 (1) (2) 0 (3) k k k k k k k k  [K] = 0 2 0 k k k k k k k Node 1 is fixed  u1 = 0 and u3 =  {F} = [K] {d} 1 2 3 ? 0 ? x x x F F F = 0 2 0 k k k k k k k 1 2 3 0 ? u u u                3 0 x F = 2 2 3 2 0 2 2 x k u k k k u F k u k k k   u2 = 2k k = 2 = 1 in. 2  u2 = 0.5 F3x = – k (0.5) + k (1) F3x = (– 1000 lb in. ) (0.5) + (1000 lb in. ) (1) F3x = 500 lbs Internal forces Element (1) (1) 1 (2) 2 x x f f = 1 2 0 0.5 u k k k k u  (1) 1x f = (– 1000 lb in. ) (0.5)  (1) 1x f = – 500 lb (1) 2x f = (1000 lb in. ) (0.5)  (1) 2x f = 500 lb Element (2)
  • 6. 6 (2) 2 (2) 3 x x f f = 2 2 3 3 0.5 0.5 1 1 u u k k k k u u k k k k  (2) 2 (2) 3 – 500 lb 500 lb x x f f 2.3 (a) [k(1) ] = [k(2) ] = [k(3) ] = [k(4) ] = k k k k By the method of superposition we construct the global [K] and knowing {F} = [K] {d} we have 1 2 3 4 5 ? 0 0 ? x x x x x F F F P F F = 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 k k k k k k k k k k k k k 1 2 3 4 5 0 0 u u u u u (b) 0 0 P = 2 2 3 3 2 3 4 3 4 4 2 0 0 2 2 2 0 2 0 2 u k k ku ku k k k u P ku ku ku k k ku ku u  u2 = 3 2 u ; u4 = 3 2 u Substituting in the second equation above P = – k u2 + 2k u3 – k u4  P = – k 3 2 u + 2k u3 – k 3 2 u  P = ku3  u3 = P k u2 = 2 P k ; u4 = 2 P k (c) In order to find the reactions at the fixed nodes 1 and 5 we go back to the global equation {F} = [K] {d} F1x = – ku2 = – 2 P k k  F1x = 2 P F5x = – ku4 = – 2 P k k  F5x = 2 P Check Fx = 0  F1x + F5x + P = 0 (1) (2) (3)
  • 7.  2 P + 2 P + P = 0  0 = 0 2.4 (a) [k(1)] = [k(2)] = [k(3)] = [k(4)] = k k k k By the method of superposition the global [K] is constructed. Also {F} = [K] {d} and u1 = 0 and u5 =  1 2 3 4 5 ? 0 0 0 ? x x x x x F F F F F = 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 k k k k k k k k k k k k k 1 2 3 4 5 0 ? ? ? u u u u u (b) 0 = 2k u2 – k u3 (1) 0 = – ku2 + 2k u3 – k u4 (2) 0 = – k u3 + 2k u4 – k  (3) From (2) u3 = 2 u2 From (3) u4 = 2 2 2 u Substituting in Equation (2) – k (u2) + 2k (2u2) – k 2 2 2 u          – u2 + 4 u2 – u2 – 2 = 0  u2 = 4 u3 = 2 4  u3 = 2 u4 = 4 2 2  u4 = 3 4 (c) Going back to the global equation
  • 8. 8 {F} = [K]{d} F1x = – k u2 = 4 k  F1x = 4 k F5x = – k u4 + k  = – k 3 4 + k   F5x = 4 k 2.5 u1 u2 u2 u4 [k (1) ] = 1 1 1 1 ; [k (2) ] = 2 2 2 2 u2 u4 u2 u4 [k (3) ] = 3 3 3 3 ; [k (4) ] = 4 4 4 4 u4 u3 [k (5) ] = 5 5 5 5 Assembling global [K] using direct stiffness method [K] = 1 1 0 0 1 1 2 3 4 0 2 3 4 0 0 5 5 0 2 3 4 5 2 3 4 5 Simplifying [K] = 1 1 0 0 1 10 0 9 kip 0 0 5 5 in. 0 9 5 14 2.6 Now apply + 3 kip at node 2 in spring assemblage of P 2.5.  F2x = 3 kip [K]{d} = {F}
  • 9. 9 [K] from P 2.5 1 1 0 0 1 10 0 9 0 0 5 5 0 9 5 14 1 2 3 4 0 0 u u u u = 1 3 3 0 F F               (A) where u1 = 0, u3 = 0 as nodes 1 and 3 are fixed. Using Equations (1) and (3) of (A) 2 4 10 9 9 14 u u = 3 0       Solving u2 = 0.712 in., u4 = 0.458 in. 2.7 f1x = C, f2x = – C f = – k = – k(u2 – u1)  f1x = – k(u2 – u1) f2x = – (– k) (u2 – u1) 1 2 x x f f = k –k –k k 1 2 u u  [K] = k –k –k k same as for tensile element 2.8 k1 = 1000 1 1 1 1 ; k2 = 1000 1 1 1 1 So
  • 10. 10 [K] = 1000 1 1 0 1 2 1 0 1 1 {F} = [K] {d}   1 2 3 ? 0 500 F F F              = 1 1 0 10 1 2 1 00 0 1 1              1 2 3 0 ? ? u u u  0 = 2000 u2 – 1000 u3 (1) 500 = – 1000 u2 + 1000 u3 (2) From (1) u2 = 1000 2000 u3  u2 = 0.5 u3 (3) Substituting (3) into (2)  500 = – 1000 (0.5 u3) + 1000 u3  500 = 500 u3  u3 = 1 in.  u2 = (0.5) (1 in.)  u2 = 0.5 in. Element 1–2 (1) 1 (1) 2 x x f f = 1000 (1) 1 (1) 2 500lb 1 1 0 in. 1 1 0.5 in. 500lb x x f f                 Element 2–3 (2) 2 (2) 3 x x f f = 1000 (2) 2 (2) 3 500 lb 1 1 0.5 in. 1 1 1 in. 500 lb x x f f                  F1x = 500 [1 –1 0] 1 0 0.5 in. 500 lb 1 in. x F              2.9 (1) (2) [k(1) ] = 5000 5000 5000 5000         (2) (3)
  • 11. 11 [k(2)] = 5000 5000 5000 5000         (3) (4) [k(3)] = 5000 5000 5000 5000         (1) (2) (3) (4) [K] = 5000 5000 0 0 5000 10000 5000 0 0 5000 10000 5000 0 0 5000 5000                   1 2 3 4 ? 1000 0 4000 x x x x F F F F = 5000 5000 0 0 5000 10000 5000 0 0 5000 10000 5000 0 0 5000 5000                   1 2 3 4 0 u u u u  u1 = 0 in. u2 = 0.6 in. u3 = 1.4 in. u4 = 2.2 in. Reactions F1x = [5000 – 5000 0 0] 1 2 3 4 0 0.6 1.4 2.2 u u u u                   F1x = – 3000 lb Element forces Element (1) (1) 1 (1) 2 x x f f = 5000 5000 0 5000 5000 0.6               (1) 1 (1) 2 3000lb 3000lb x x f f Element (2) (2) 2 (2) 3 x x f f = 5000 5000 0.6 5000 5000 1.4               (2) 2 (2) 3 4000lb 4000lb x x f f Element (3) (3) (3) 3 3 (3) (3) 4 4 x x x x f f f f = 5000 5000 1.4 5000 5000 2.2               (3) 3 (3) 4 4000lb 4000lb x x f f 2.10
  • 12. 12 [k(1)] = 1000 1000 1000 1000 [k(2)] = 500 500 500 500 [k(3)] = 500 500 500 500 {F} = [K] {d} 1 2 3 4 ? – 8000 ? ? x x x x F F F F                   = 1 2 3 4 0 1000 1000 0 0 ? 1000 2000 500 500 0 0 500 500 0 0 500 0 500 0 u u u u  u2 = 8000 2000  = – 4 in. Reactions 1 2 3 4 x x x x F F F F = 0 1000 1000 0 0 1000 2000 500 500 4 0 500 500 0 0 0 500 0 500 0                                   1 2 3 4 x x x x F F F F = 4000 8000 2000 2000                lb Element (1) (1) 1 (1) 2 x x f f = 1000 1000 0 1000 1000 – 4               (1) 1 (1) 2 x x f f = 4000 4000        lb Element (2) (2) 2 (2) 3 x x f f = 500 500 4 500 500 0                (2) 2 (2) 3 x x f f = – 2000 2000       lb Element (3)
  • 13. 13 (3) 2 (3) 4 x x f f = 500 500 4 500 500 0                (3) 2 (3) 4 x x f f 2000 2000        lb 2.11 [k(1) ] = 1000 1000 1000 1000         ; [k(2) ] = 3000 3000 3000 3000         {F} = [K] {d} 1 2 3 ? 0 ? x x x F F F = 1000 1000 0 1000 4000 3000 0 3000 3000               1 2 3 0 ? 0.02 m u u u  u2 = 0.015 m Reactions F1x = (– 1000) (0.015)  F1x = – 15 N Element (1) 1 2 x x f f       = 1000 1000 1000 1000         0 0.015        1 2 x x f f        15 15        N Element (2) 2 3 x x f f       = 3000 –3000 –3000 3000       0.015 0.02        2 3 x x f f       = 15 15        N 2.12 [k(1) ] = [k(3) ] = 10000 1 1 1 1 [k(2)] = 10000 3 3 3 3         {F} = [K] {d}
  • 14. 14 1 2 3 4 ? 450 N 0 ? x x x x F F F F                   = 10000 1 1 0 0 1 4 3 0 0 3 4 1 0 0 1 1                   1 2 3 4 0 ? ? 0 u u u u 0 = – 3 u2 + 4 u3  u2 = 4 3 u3  u2 = 1.33 u3 450 N = 40000 (1.33 u3) – 30000 u3  450 N = (23200 N m ) u3  u3 = 1.93  10–2 m  u2 = 1.5 (1.94  10–2)  u2 = 2.57  10–2 m Element (1) 1 2 x x f f       = 10000 1 1 1 1 2 0 2.57 10         (1) 1 (1) 2 257 N 257 N x x f f    Element (2) 2 3 x x f f       = 30000 1 1 1 1 2 2 2.57 10 1.93 10                (2) 2 (2) 3 193 N 193 N x x f f    Element (3) 3 3 4 4 x x x x f f f f             = 10000 1 1 1 1 2 1.93 10 0          (3) 3 (3) 4 193 N 193 N x x f f    Reactions {F1x} = (10000 N m ) [1 – 1] 2 0 2.57 10        F1x = – 257 N {F4x} = (10000 N m ) [–1 1] 2 1.93 10 0          F4x = – 193 N 2.13 [k(1)] = [k(2)] = [k(3)] = [k(4)] = 60 1 1 1 1 {F} = [K]{d}
  • 15. 15 1 2 3 4 5 ? 0 5 kN 0 ? x x x x x F F F F F                        = 60 1 1 0 0 0 1 2 1 0 0 0 1 2 1 0 0 0 1 2 1 0 0 0 1 1 1 2 3 4 5 0 ? ? ? 0 u u u u u 2 3 2 3 3 4 4 3 0 2 – 0.5 0 – 2 0.5 u u u u u u u u  u2 = u4  5 kN = – 60 u2 + 120 (2 u2) – 60 u2   5 = 120 u2  u2 = 0.042 m  u4 = 0.042 m  u3 = 2(0.042)  u3 = 0.084 m Element (1) 1 2 x x f f       = 60 1 1 1 1 0 0.042        (1) 1 (1) 2 2.5 kN 2.5 kN x x f f    Element (2) 2 3 x x f f       = 60 1 1 1 1 1 1 1 1 0.042 0.084        (2) 2 (2) 3 2.5 kN 2.5 kN x x f f    Element (3) 3 3 4 4 x x x x f f f f = 60 1 1 1 1 1 1 1 1 0.084 0.042        (3) (3) 3 3 (3) (3) 4 4 2.5 kN 2.5 kN 2.5 kN 2.5 kN x x x x f f f f Element (4) 4 4 5 5 x x x x f f f f             = 60 1 1 1 1 1 1 1 1 0.042 0        (4) (4) 4 4 (4) (4) 5 5 2.5 kN 2.5 kN 2.5 kN 2.5 kN x x x x f f f f       F1x = 60 [1 –1] 0 0.042       F1x = – 2.5 kN F5x = 60 [–1 1] 0.042 0       F5x = – 2.5 kN 2.14 [k(1) ] = [k(2) ] = 4000 1 1 1 1 {F} = [K]d}