SlideShare a Scribd company logo
Solving Quadratic
    Equations
       PART 1
Why do we need to solve
        Quadratic Equations?
• View this Discovery Education video to see a
  use for Quadratic Equations AND why math is
  cool!
Why do we need to solve
        Quadratic Equations?
• View this Discovery Education video to see a
  use for Quadratic Equations AND why math is
  cool!
• Now, wasn’t that cool? I bet you never look at
  a pumpkin the same way again!
Why do we need to solve
        Quadratic Equations?
• View this Discovery Education video to see a
  use for Quadratic Equations AND why math is
  cool!
• Now, wasn’t that cool? I bet you never look at
  a pumpkin the same way again!
• Let’s look at solving Quadratic Equations a
  little closer.
What is a Quadratic Equation?
• View this Cool Math lesson introducing
  Quadratic Equations.
• There are 2 pages of notes.
• Complete the Try It problems in your notebook
  and check your answers on the next slide.
Page 2 - Try It
        2
     −3x − x − 5 = 0
Page 2 - Try It
                         2
• Find a, b, and c.   −3x − x − 5 = 0
Page 2 - Try It
                         2
• Find a, b, and c.   −3x − x − 5 = 0
  a. -3
  b. -1
  c. -5
Page 2 - Try It
                           2
• Find a, b, and c.   −3x − x − 5 = 0
  a. -3
  b. -1
  c. -5
                       2
• Find a, b, and c.   x −6=0
Page 2 - Try It
                              2
• Find a, b, and c.     −3x − x − 5 = 0
  a. -3
  b. -1
  c. -5
                          2
• Find a, b, and c.     x −6=0
  a. 1
  b. 0 (The x term is missing so b is 0.)
  c. -6
Solving Quadratic Equations by
              Factoring
• View this Cool Math website to learn about
  solving Quadratic Equations.
• There are 9 pages to view.
• Complete the Try It problems in your notebook
  and check your answers on the next slides.
Page 4 - Try It
• Solve.            2
                   x + 8x + 12 = 0
Page 4 - Try It
 • Solve.                2
                        x + 8x + 12 = 0
Factor the trinomial.
Page 4 - Try It
 • Solve.                  2
                          x + 8x + 12 = 0
Factor the trinomial.
                        ( x + 6 )( x + 2 ) = 0
Page 4 - Try It
 • Solve.                  2
                          x + 8x + 12 = 0
Factor the trinomial.
                        ( x + 6 )( x + 2 ) = 0
 Split the factors
and set equal to 0.
Page 4 - Try It
 • Solve.                     2
                             x + 8x + 12 = 0
Factor the trinomial.
                           ( x + 6 )( x + 2 ) = 0
 Split the factors
and set equal to 0.     x+6=0       or      x+2=0
Page 4 - Try It
 • Solve.                     2
                             x + 8x + 12 = 0
Factor the trinomial.
                           ( x + 6 )( x + 2 ) = 0
 Split the factors
and set equal to 0.     x+6=0       or      x+2=0
     Solve each
     equation.
Page 4 - Try It
 • Solve.                     2
                             x + 8x + 12 = 0
Factor the trinomial.
                           ( x + 6 )( x + 2 ) = 0
 Split the factors
and set equal to 0.     x+6=0       or      x+2=0
     Solve each          −6 −6               −2 −2
     equation.
Page 4 - Try It
 • Solve.                     2
                             x + 8x + 12 = 0
Factor the trinomial.
                           ( x + 6 )( x + 2 ) = 0
 Split the factors
and set equal to 0.     x+6=0       or      x+2=0
     Solve each          −6 −6                 −2 −2
     equation.           x = −6     or      x = −2
Page 4 - Try It
 • Solve.                     2
                             x + 8x + 12 = 0
Factor the trinomial.
                           ( x + 6 )( x + 2 ) = 0
 Split the factors
and set equal to 0.     x+6=0         or    x+2=0
     Solve each          −6 −6                 −2 −2
     equation.           x = −6       or    x = −2

                            Answer:   {−6, −2}
Page 5 - Try It & Your Turn
• Solve:
    2
   x − 6x + 9 = 0
Page 5 - Try It & Your Turn
• Solve:
     2
    x − 6x + 9 = 0
 ( x − 3) ( x − 3) = 0
Page 5 - Try It & Your Turn
• Solve:
     2
    x − 6x + 9 = 0
 ( x − 3) ( x − 3) = 0
x−3= 0     or x − 3 = 0
Page 5 - Try It & Your Turn
• Solve:
     2
    x − 6x + 9 = 0
 ( x − 3) ( x − 3) = 0
x−3= 0     or x − 3 = 0
 +3 +3          +3 +3
Page 5 - Try It & Your Turn
• Solve:
     2
    x − 6x + 9 = 0
 ( x − 3) ( x − 3) = 0
x−3= 0     or x − 3 = 0
 +3 +3          +3 +3
  x=3      or       x=3
Page 5 - Try It & Your Turn
• Solve:
     2
    x − 6x + 9 = 0
 ( x − 3) ( x − 3) = 0
x−3= 0     or x − 3 = 0
 +3 +3          +3 +3
  x=3      or         x=3

     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                      2
                            8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
 ( x − 3) ( x − 3) = 0
x−3= 0     or x − 3 = 0
 +3 +3          +3 +3
  x=3      or         x=3

     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                         2
                              8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
                            ( 2x − 7 ) ( 4x + 1) = 0
 ( x − 3) ( x − 3) = 0
x−3= 0     or x − 3 = 0
 +3 +3          +3 +3
  x=3      or         x=3

     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                                 2
                                   8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
                                ( 2x − 7 ) ( 4x + 1) = 0
 ( x − 3) ( x − 3) = 0
                            2x − 7 = 0       or   4x + 1 = 0
x−3= 0     or x − 3 = 0
 +3 +3          +3 +3
  x=3      or         x=3

     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                             2
                                  8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
                                ( 2x − 7 ) ( 4x + 1) = 0
 ( x − 3) ( x − 3) = 0
                            2x − 7 = 0 or    4x + 1 = 0
x−3= 0     or x − 3 = 0         +7 +7           −1 −1
 +3 +3          +3 +3
  x=3      or         x=3

     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                             2
                                  8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
                                ( 2x − 7 ) ( 4x + 1) = 0
 ( x − 3) ( x − 3) = 0
                            2x − 7 = 0 or      4x + 1 = 0
x−3= 0     or x − 3 = 0         +7 +7             −1 −1
 +3 +3          +3 +3           2x = 7    or     4x = −1
  x=3      or         x=3

     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                             2
                                  8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
                                ( 2x − 7 ) ( 4x + 1) = 0
 ( x − 3) ( x − 3) = 0
                            2x − 7 = 0 or        4x + 1 = 0
x−3= 0     or x − 3 = 0         +7 +7               −1 −1
 +3 +3          +3 +3           2x = 7    or       4x = −1
  x=3      or         x=3           7                    1
                                x=          or     x=−
                                    2                    4
     Answer:    {3}
Page 5 - Try It & Your Turn
• Solve:                             2
                                  8x − 26x − 7 = 0
     2
    x − 6x + 9 = 0
                                ( 2x − 7 ) ( 4x + 1) = 0
 ( x − 3) ( x − 3) = 0
                            2x − 7 = 0 or        4x + 1 = 0
x−3= 0     or x − 3 = 0         +7 +7               −1 −1
 +3 +3          +3 +3           2x = 7    or       4x = −1
  x=3      or         x=3           7                    1
                                x=          or     x=−
                                    2                    4
     Answer:    {3}                       ⎧ 7 1 ⎫
                                  Answer: ⎨ , − ⎬
                                          ⎩ 2 4 ⎭
Page 6 - Your Turn
• Solve.     2
           4a + 3a = 0
Page 6 - Your Turn
• Solve.       2
            4a + 3a = 0
           a ( 4a + 3) = 0
Page 6 - Your Turn
• Solve.         2
             4a + 3a = 0
            a ( 4a + 3) = 0

           a=0       or       4a + 3 = 0
Page 6 - Your Turn
• Solve.         2
             4a + 3a = 0
            a ( 4a + 3) = 0

           a=0       or       4a + 3 = 0
                                 −3 −3
Page 6 - Your Turn
• Solve.         2
             4a + 3a = 0
            a ( 4a + 3) = 0

           a=0       or       4a + 3 = 0
                                 −3 −3
                                 4a = −3
Page 6 - Your Turn
• Solve.         2
             4a + 3a = 0
            a ( 4a + 3) = 0

           a=0       or       4a + 3 = 0
                                 −3 −3
                                 4a = −3
                                  4    4
Page 6 - Your Turn
• Solve.         2
             4a + 3a = 0
            a ( 4a + 3) = 0

           a=0       or       4a + 3 = 0
                                 −3 −3
                                 4a = −3
                                  4    4
                                       3
                                 a=−
                                       4
Page 6 - Your Turn
• Solve.            2
                 4a + 3a = 0
                a ( 4a + 3) = 0

              a=0       or        4a + 3 = 0
                                     −3 −3
                                     4a = −3
                                      4    4
           ⎧    3 ⎫                      3
   Answer: ⎨0, − ⎬                 a=−
           ⎩    4 ⎭                      4
Page 7 - Try It
• Solve.       2
              x − 25 = 0
Page 7 - Try It
• Solve.          2
                x − 25 = 0
            ( x + 5 )( x − 5 ) = 0
Page 7 - Try It
• Solve.           2
                 x − 25 = 0
             ( x + 5 )( x − 5 ) = 0
           x+5=0        or      x−5=0
Page 7 - Try It
• Solve.           2
                 x − 25 = 0
             ( x + 5 )( x − 5 ) = 0
           x+5=0        or      x−5=0
            −5 −5                +5 +5
Page 7 - Try It
• Solve.           2
                 x − 25 = 0
             ( x + 5 )( x − 5 ) = 0
           x+5=0        or      x−5=0
            −5 −5                +5 +5
            x = −5       or      x=5
Page 7 - Try It
• Solve.           2
                 x − 25 = 0
             ( x + 5 )( x − 5 ) = 0
           x+5=0        or       x−5=0
            −5 −5                 +5 +5
            x = −5       or      x=5

                Answer:      {−5, 5}
Page 8 - Try It
• Solve.       3
             5x − 45x = 0
Page 8 - Try It
• Solve.       3
             5x − 45x = 0
                (   2
                        )
              5x x − 9 = 0
Page 8 - Try It
• Solve.             3
                5x − 45x = 0
                     (   2
                  5x x − 9 = 0 )
           5x ( x + 9 ) ( x − 9 ) = 0
Page 8 - Try It
• Solve.             3
                 5x − 45x = 0
                     (   2
                  5x x − 9 = 0 )
           5x ( x + 9 ) ( x − 9 ) = 0

  5x = 0    or       x+9=0              or   x−9=0
Page 8 - Try It
• Solve.             3
                 5x − 45x = 0
                     (   2
                  5x x − 9 = 0 )
           5x ( x + 9 ) ( x − 9 ) = 0

  5x = 0    or       x+9=0              or   x−9=0
   5 5                −9 −9                   +9 +9
Page 8 - Try It
• Solve.             3
                 5x − 45x = 0
                     (   2
                  5x x − 9 = 0 )
           5x ( x + 9 ) ( x − 9 ) = 0

  5x = 0    or       x+9=0              or   x−9=0
   5 5                −9 −9                   +9 +9
   x=0      or        x = −9            or     x=9
Page 8 - Try It
• Solve.             3
                 5x − 45x = 0
                     (   2
                  5x x − 9 = 0 )
           5x ( x + 9 ) ( x − 9 ) = 0

  5x = 0    or       x+9=0              or   x−9=0
   5 5                −9 −9                   +9 +9
   x=0      or        x = −9            or     x=9

             Answer:     {0, −9, 9}
Page 9 - Your Turn
              3    2
• Solve.    2y + 5y − 3y = 0
Page 9 - Your Turn
                3       2
• Solve.    2y + 5y − 3y = 0
            (       2
           y 2y + 5y − 3 = 0)
Page 9 - Your Turn
                 3       2
• Solve.    2y + 5y − 3y = 0
             (       2
           y 2y + 5y − 3 = 0 )
           y ( 2y − 1) ( y + 3) = 0
Page 9 - Your Turn
                      3       2
• Solve.         2y + 5y − 3y = 0
                  (       2
                y 2y + 5y − 3 = 0 )
                y ( 2y − 1) ( y + 3) = 0
  y=0      or     2y − 1 = 0          or   y+3= 0
Page 9 - Your Turn
                      3       2
• Solve.         2y + 5y − 3y = 0
                  (       2
                y 2y + 5y − 3 = 0 )
                y ( 2y − 1) ( y + 3) = 0
  y=0      or     2y − 1 = 0          or   y+3= 0
                     +1 +1                  −3 −3
Page 9 - Your Turn
                      3       2
• Solve.         2y + 5y − 3y = 0
                  (       2
                y 2y + 5y − 3 = 0 )
                y ( 2y − 1) ( y + 3) = 0
  y=0      or     2y − 1 = 0          or   y+3= 0
                     +1 +1                  −3 −3
                      2y = 1          or     y = −3
Page 9 - Your Turn
                      3           2
• Solve.         2y + 5y − 3y = 0
                  (       2
                y 2y + 5y − 3 = 0         )
                y ( 2y − 1) ( y + 3) = 0
  y=0      or     2y − 1 = 0                  or   y+3= 0
                     +1 +1                          −3 −3
                      2y = 1                  or     y = −3
                              2       2
Page 9 - Your Turn
                      3           2
• Solve.         2y + 5y − 3y = 0
                  (       2
                y 2y + 5y − 3 = 0             )
                y ( 2y − 1) ( y + 3) = 0
  y=0      or     2y − 1 = 0                      or   y+3= 0
                     +1 +1                              −3 −3
                      2y = 1                      or     y = −3
                              2       2
                              y=      1
                                          2
Page 9 - Your Turn
                          3           2
• Solve.              2y + 5y − 3y = 0
                      (       2
                  y 2y + 5y − 3 = 0               )
                  y ( 2y − 1) ( y + 3) = 0
   y=0       or       2y − 1 = 0                      or   y+3= 0
                         +1 +1                              −3 −3
                          2y = 1                      or     y = −3
                                  2       2
        ⎧ 1     ⎫               y=      1
                                              2
Answer: ⎨0, , −3⎬
        ⎩ 2     ⎭
Algebra Cruncher
• Practice solving more Quadratic Equations at this Cool
  Math website.
• Select the “Give me a Problem” button to try new
  problems.
• Do your work in a notebook before entering your answer.
• When you select “What’s the Answer?” your answer is
  erased and correct answer is displayed. Having your
  work in a notebook will allow you to compare your
  answer to the correct answer.
• Keep working problems until you get 3 in a row correct.
Fantastic Job!
• You’ve finished reviewing Solving Quadratic
  Equations Part 1.
• Exit and proceed to Part 2.

More Related Content

PDF
Topic 4 solving quadratic equations part 1
Annie cox
 
PDF
C6 6.5
BGEsp1
 
PDF
Algebra 2 Section 3-4
Jimbo Lamb
 
PPT
Section 1.2 Quadratic Equations
bgb02burns
 
PDF
Solving Trinomial Equations with Negatives X Coefficient
james.northrup
 
PPTX
Real for student
Yodhathai Reesrikom
 
PPT
Solving quadratic inequations
Shaun Wilson
 
PPTX
11.3
nglaze10
 
Topic 4 solving quadratic equations part 1
Annie cox
 
C6 6.5
BGEsp1
 
Algebra 2 Section 3-4
Jimbo Lamb
 
Section 1.2 Quadratic Equations
bgb02burns
 
Solving Trinomial Equations with Negatives X Coefficient
james.northrup
 
Real for student
Yodhathai Reesrikom
 
Solving quadratic inequations
Shaun Wilson
 
11.3
nglaze10
 

What's hot (17)

PPTX
Wordproblem
Yodhathai Reesrikom
 
PDF
Ecuaciones de primer grado
25164381
 
PDF
AA Section 5-3
Jimbo Lamb
 
PDF
Solving Trinomial Equations
james.northrup
 
PPT
Chapter 2.5
nglaze10
 
PDF
Texto de matemática y lógica
Odín Zapata
 
PDF
Intermediate algebra 8th edition tobey solutions manual
disney0087
 
KEY
0304 ch 3 day 4
festivalelmo
 
PDF
Integrated exercise a_(book_2_B)_Ans
ken1470
 
PDF
C6 6.3
BGEsp1
 
PPTX
Addition and subtraction in polynomials
saidyein
 
DOCX
สมการเชิงเส้นตัวแปรเดียว
Destiny Nooppynuchy
 
PDF
Inequalities
sheetslibrary
 
ZIP
AA Section 5-3
Jimbo Lamb
 
PDF
E3 f1 bộ binh
Thế Giới Tinh Hoa
 
DOC
Two step equations distributive
mlabuski
 
ZIP
Ecuaciones
aranbilbao
 
Wordproblem
Yodhathai Reesrikom
 
Ecuaciones de primer grado
25164381
 
AA Section 5-3
Jimbo Lamb
 
Solving Trinomial Equations
james.northrup
 
Chapter 2.5
nglaze10
 
Texto de matemática y lógica
Odín Zapata
 
Intermediate algebra 8th edition tobey solutions manual
disney0087
 
0304 ch 3 day 4
festivalelmo
 
Integrated exercise a_(book_2_B)_Ans
ken1470
 
C6 6.3
BGEsp1
 
Addition and subtraction in polynomials
saidyein
 
สมการเชิงเส้นตัวแปรเดียว
Destiny Nooppynuchy
 
Inequalities
sheetslibrary
 
AA Section 5-3
Jimbo Lamb
 
E3 f1 bộ binh
Thế Giới Tinh Hoa
 
Two step equations distributive
mlabuski
 
Ecuaciones
aranbilbao
 
Ad

Viewers also liked (17)

PPTX
Лекція #03. Списки, зображення, таблиці.
Alex Slobodyanyuk
 
DOCX
Evidencia de la tabla de datos
BDBT
 
DOC
Creditopublicotributario
Karen Escárate Ortiz
 
PPTX
imitators of god
Jackson Street Church of Christ
 
PDF
Alegações finais da defesa da presidenta Dilma
Marcelo Bancalero
 
PDF
Biofield Treatment Evaluation on Bronze Powder Properties
deeptimishra10
 
RTF
rights agreement
xilvar
 
DOCX
Week of November 14th
Melanie Reader
 
PPTX
Лекція 04. МП Intel
Alex Slobodyanyuk
 
PPTX
gambling is a bad bet
Jackson Street Church of Christ
 
PDF
Real numbers
Lori Rapp
 
DOCX
El fruto proporciona vitaminas
Nelly Teresa Rodriguez
 
PDF
Solucionario 4 b completo
google
 
PDF
Representação contra o juiz Sérgio Fernando Moro
Marcelo Bancalero
 
PPTX
first and second comings of christ
Jackson Street Church of Christ
 
PPTX
Experimento de la pila casera
leidykate
 
Лекція #03. Списки, зображення, таблиці.
Alex Slobodyanyuk
 
Evidencia de la tabla de datos
BDBT
 
Creditopublicotributario
Karen Escárate Ortiz
 
Alegações finais da defesa da presidenta Dilma
Marcelo Bancalero
 
Biofield Treatment Evaluation on Bronze Powder Properties
deeptimishra10
 
rights agreement
xilvar
 
Week of November 14th
Melanie Reader
 
Лекція 04. МП Intel
Alex Slobodyanyuk
 
gambling is a bad bet
Jackson Street Church of Christ
 
Real numbers
Lori Rapp
 
El fruto proporciona vitaminas
Nelly Teresa Rodriguez
 
Solucionario 4 b completo
google
 
Representação contra o juiz Sérgio Fernando Moro
Marcelo Bancalero
 
first and second comings of christ
Jackson Street Church of Christ
 
Experimento de la pila casera
leidykate
 
Ad

Similar to Solving quadratic equations part 1 (20)

PPTX
GCSEYr9-SolvingQuadratics.pptx
Angelle Pantig
 
PPT
Factoring quadratic expressions
Alicia Jane
 
PPTX
Algebra 1 lessonplan powerpoint
Michelle Zinser
 
PPT
Quadratic eq and discriminant
swartzje
 
PPT
Quadratic Equation and discriminant
swartzje
 
PPT
Algebra Revision.ppt
AaronChi5
 
PPTX
Rational Expressions
king_danickus
 
PPTX
Solving Quadratic-Equation.pptx
Susan Palacio
 
PPT
Factorising for 3um
mathssng3
 
PPT
QUADRATIC EQUATIONS
hiratufail
 
PPT
Radical_Functions_and_Equations...................ppt
RoseAnnStaAna5
 
PPTX
Solving quadratic equations
kbrach
 
PPT
Polynomial math
Neil MacIntosh
 
PPTX
Quadratic Inequalities.pptx
aimeedurano
 
DOC
Final exam review #2
Sarah Stillwell
 
KEY
Notes 12.1 identifying, adding & subtracting polynomials
Lori Rapp
 
PPTX
Alg1 lesson 9-2
Carol Defreese
 
PPT
1.7 solving absolute value equations part 2
fthrower
 
PDF
Ch03 12
schibu20
 
PPTX
Simultaneous equations
fisayo omoniyi
 
GCSEYr9-SolvingQuadratics.pptx
Angelle Pantig
 
Factoring quadratic expressions
Alicia Jane
 
Algebra 1 lessonplan powerpoint
Michelle Zinser
 
Quadratic eq and discriminant
swartzje
 
Quadratic Equation and discriminant
swartzje
 
Algebra Revision.ppt
AaronChi5
 
Rational Expressions
king_danickus
 
Solving Quadratic-Equation.pptx
Susan Palacio
 
Factorising for 3um
mathssng3
 
QUADRATIC EQUATIONS
hiratufail
 
Radical_Functions_and_Equations...................ppt
RoseAnnStaAna5
 
Solving quadratic equations
kbrach
 
Polynomial math
Neil MacIntosh
 
Quadratic Inequalities.pptx
aimeedurano
 
Final exam review #2
Sarah Stillwell
 
Notes 12.1 identifying, adding & subtracting polynomials
Lori Rapp
 
Alg1 lesson 9-2
Carol Defreese
 
1.7 solving absolute value equations part 2
fthrower
 
Ch03 12
schibu20
 
Simultaneous equations
fisayo omoniyi
 

More from Lori Rapp (20)

PDF
Piecewise functions
Lori Rapp
 
PDF
Normal curve
Lori Rapp
 
PDF
Venn diagrams
Lori Rapp
 
PPT
Circles notes
Lori Rapp
 
PPT
Quadrilateral notes
Lori Rapp
 
KEY
Remainder & Factor Theorems
Lori Rapp
 
KEY
Multiplying polynomials - part 1
Lori Rapp
 
KEY
Develop the Area of a Circle Formula
Lori Rapp
 
KEY
Unit 4 hw 8 - pointslope, parallel & perp
Lori Rapp
 
KEY
Sets Notes
Lori Rapp
 
KEY
Absolute Value Inequalities Notes
Lori Rapp
 
KEY
Compound Inequalities Notes
Lori Rapp
 
KEY
Solving Inequalities Notes
Lori Rapp
 
KEY
Introduction to Equations Notes
Lori Rapp
 
KEY
Associative property
Lori Rapp
 
KEY
Unit 4 hw 7 - direct variation & linear equation give 2 points
Lori Rapp
 
KEY
Absolute Value Equations
Lori Rapp
 
KEY
Unit 3 hw 7 - literal equations
Lori Rapp
 
KEY
Unit 3 hw 4 - solving equations variable both sides
Lori Rapp
 
KEY
Unit 3 hw 2 - solving 1 step equations
Lori Rapp
 
Piecewise functions
Lori Rapp
 
Normal curve
Lori Rapp
 
Venn diagrams
Lori Rapp
 
Circles notes
Lori Rapp
 
Quadrilateral notes
Lori Rapp
 
Remainder & Factor Theorems
Lori Rapp
 
Multiplying polynomials - part 1
Lori Rapp
 
Develop the Area of a Circle Formula
Lori Rapp
 
Unit 4 hw 8 - pointslope, parallel & perp
Lori Rapp
 
Sets Notes
Lori Rapp
 
Absolute Value Inequalities Notes
Lori Rapp
 
Compound Inequalities Notes
Lori Rapp
 
Solving Inequalities Notes
Lori Rapp
 
Introduction to Equations Notes
Lori Rapp
 
Associative property
Lori Rapp
 
Unit 4 hw 7 - direct variation & linear equation give 2 points
Lori Rapp
 
Absolute Value Equations
Lori Rapp
 
Unit 3 hw 7 - literal equations
Lori Rapp
 
Unit 3 hw 4 - solving equations variable both sides
Lori Rapp
 
Unit 3 hw 2 - solving 1 step equations
Lori Rapp
 

Recently uploaded (20)

PPTX
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
PDF
Module 2: Public Health History [Tutorial Slides]
JonathanHallett4
 
PPTX
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
PPTX
How to Apply for a Job From Odoo 18 Website
Celine George
 
PPTX
Tips Management in Odoo 18 POS - Odoo Slides
Celine George
 
PPTX
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
DOCX
pgdei-UNIT -V Neurological Disorders & developmental disabilities
JELLA VISHNU DURGA PRASAD
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PPTX
A Smarter Way to Think About Choosing a College
Cyndy McDonald
 
PPTX
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
PPTX
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
PPTX
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
PDF
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
PPTX
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PDF
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
PPTX
Artificial-Intelligence-in-Drug-Discovery by R D Jawarkar.pptx
Rahul Jawarkar
 
PPTX
Software Engineering BSC DS UNIT 1 .pptx
Dr. Pallawi Bulakh
 
PPTX
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
PDF
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 
HISTORY COLLECTION FOR PSYCHIATRIC PATIENTS.pptx
PoojaSen20
 
Module 2: Public Health History [Tutorial Slides]
JonathanHallett4
 
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
How to Apply for a Job From Odoo 18 Website
Celine George
 
Tips Management in Odoo 18 POS - Odoo Slides
Celine George
 
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
pgdei-UNIT -V Neurological Disorders & developmental disabilities
JELLA VISHNU DURGA PRASAD
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
A Smarter Way to Think About Choosing a College
Cyndy McDonald
 
family health care settings home visit - unit 6 - chn 1 - gnm 1st year.pptx
Priyanshu Anand
 
20250924 Navigating the Future: How to tell the difference between an emergen...
McGuinness Institute
 
Sonnet 130_ My Mistress’ Eyes Are Nothing Like the Sun By William Shakespear...
DhatriParmar
 
2.Reshaping-Indias-Political-Map.ppt/pdf/8th class social science Exploring S...
Sandeep Swamy
 
BASICS IN COMPUTER APPLICATIONS - UNIT I
suganthim28
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
RA 12028_ARAL_Orientation_Day-2-Sessions_v2.pdf
Seven De Los Reyes
 
Artificial-Intelligence-in-Drug-Discovery by R D Jawarkar.pptx
Rahul Jawarkar
 
Software Engineering BSC DS UNIT 1 .pptx
Dr. Pallawi Bulakh
 
Measures_of_location_-_Averages_and__percentiles_by_DR SURYA K.pptx
Surya Ganesh
 
Antianginal agents, Definition, Classification, MOA.pdf
Prerana Jadhav
 

Solving quadratic equations part 1

  • 1. Solving Quadratic Equations PART 1
  • 2. Why do we need to solve Quadratic Equations? • View this Discovery Education video to see a use for Quadratic Equations AND why math is cool!
  • 3. Why do we need to solve Quadratic Equations? • View this Discovery Education video to see a use for Quadratic Equations AND why math is cool! • Now, wasn’t that cool? I bet you never look at a pumpkin the same way again!
  • 4. Why do we need to solve Quadratic Equations? • View this Discovery Education video to see a use for Quadratic Equations AND why math is cool! • Now, wasn’t that cool? I bet you never look at a pumpkin the same way again! • Let’s look at solving Quadratic Equations a little closer.
  • 5. What is a Quadratic Equation? • View this Cool Math lesson introducing Quadratic Equations. • There are 2 pages of notes. • Complete the Try It problems in your notebook and check your answers on the next slide.
  • 6. Page 2 - Try It 2 −3x − x − 5 = 0
  • 7. Page 2 - Try It 2 • Find a, b, and c. −3x − x − 5 = 0
  • 8. Page 2 - Try It 2 • Find a, b, and c. −3x − x − 5 = 0 a. -3 b. -1 c. -5
  • 9. Page 2 - Try It 2 • Find a, b, and c. −3x − x − 5 = 0 a. -3 b. -1 c. -5 2 • Find a, b, and c. x −6=0
  • 10. Page 2 - Try It 2 • Find a, b, and c. −3x − x − 5 = 0 a. -3 b. -1 c. -5 2 • Find a, b, and c. x −6=0 a. 1 b. 0 (The x term is missing so b is 0.) c. -6
  • 11. Solving Quadratic Equations by Factoring • View this Cool Math website to learn about solving Quadratic Equations. • There are 9 pages to view. • Complete the Try It problems in your notebook and check your answers on the next slides.
  • 12. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0
  • 13. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial.
  • 14. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0
  • 15. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0 Split the factors and set equal to 0.
  • 16. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0 Split the factors and set equal to 0. x+6=0 or x+2=0
  • 17. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0 Split the factors and set equal to 0. x+6=0 or x+2=0 Solve each equation.
  • 18. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0 Split the factors and set equal to 0. x+6=0 or x+2=0 Solve each −6 −6 −2 −2 equation.
  • 19. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0 Split the factors and set equal to 0. x+6=0 or x+2=0 Solve each −6 −6 −2 −2 equation. x = −6 or x = −2
  • 20. Page 4 - Try It • Solve. 2 x + 8x + 12 = 0 Factor the trinomial. ( x + 6 )( x + 2 ) = 0 Split the factors and set equal to 0. x+6=0 or x+2=0 Solve each −6 −6 −2 −2 equation. x = −6 or x = −2 Answer: {−6, −2}
  • 21. Page 5 - Try It & Your Turn • Solve: 2 x − 6x + 9 = 0
  • 22. Page 5 - Try It & Your Turn • Solve: 2 x − 6x + 9 = 0 ( x − 3) ( x − 3) = 0
  • 23. Page 5 - Try It & Your Turn • Solve: 2 x − 6x + 9 = 0 ( x − 3) ( x − 3) = 0 x−3= 0 or x − 3 = 0
  • 24. Page 5 - Try It & Your Turn • Solve: 2 x − 6x + 9 = 0 ( x − 3) ( x − 3) = 0 x−3= 0 or x − 3 = 0 +3 +3 +3 +3
  • 25. Page 5 - Try It & Your Turn • Solve: 2 x − 6x + 9 = 0 ( x − 3) ( x − 3) = 0 x−3= 0 or x − 3 = 0 +3 +3 +3 +3 x=3 or x=3
  • 26. Page 5 - Try It & Your Turn • Solve: 2 x − 6x + 9 = 0 ( x − 3) ( x − 3) = 0 x−3= 0 or x − 3 = 0 +3 +3 +3 +3 x=3 or x=3 Answer: {3}
  • 27. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( x − 3) ( x − 3) = 0 x−3= 0 or x − 3 = 0 +3 +3 +3 +3 x=3 or x=3 Answer: {3}
  • 28. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( 2x − 7 ) ( 4x + 1) = 0 ( x − 3) ( x − 3) = 0 x−3= 0 or x − 3 = 0 +3 +3 +3 +3 x=3 or x=3 Answer: {3}
  • 29. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( 2x − 7 ) ( 4x + 1) = 0 ( x − 3) ( x − 3) = 0 2x − 7 = 0 or 4x + 1 = 0 x−3= 0 or x − 3 = 0 +3 +3 +3 +3 x=3 or x=3 Answer: {3}
  • 30. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( 2x − 7 ) ( 4x + 1) = 0 ( x − 3) ( x − 3) = 0 2x − 7 = 0 or 4x + 1 = 0 x−3= 0 or x − 3 = 0 +7 +7 −1 −1 +3 +3 +3 +3 x=3 or x=3 Answer: {3}
  • 31. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( 2x − 7 ) ( 4x + 1) = 0 ( x − 3) ( x − 3) = 0 2x − 7 = 0 or 4x + 1 = 0 x−3= 0 or x − 3 = 0 +7 +7 −1 −1 +3 +3 +3 +3 2x = 7 or 4x = −1 x=3 or x=3 Answer: {3}
  • 32. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( 2x − 7 ) ( 4x + 1) = 0 ( x − 3) ( x − 3) = 0 2x − 7 = 0 or 4x + 1 = 0 x−3= 0 or x − 3 = 0 +7 +7 −1 −1 +3 +3 +3 +3 2x = 7 or 4x = −1 x=3 or x=3 7 1 x= or x=− 2 4 Answer: {3}
  • 33. Page 5 - Try It & Your Turn • Solve: 2 8x − 26x − 7 = 0 2 x − 6x + 9 = 0 ( 2x − 7 ) ( 4x + 1) = 0 ( x − 3) ( x − 3) = 0 2x − 7 = 0 or 4x + 1 = 0 x−3= 0 or x − 3 = 0 +7 +7 −1 −1 +3 +3 +3 +3 2x = 7 or 4x = −1 x=3 or x=3 7 1 x= or x=− 2 4 Answer: {3} ⎧ 7 1 ⎫ Answer: ⎨ , − ⎬ ⎩ 2 4 ⎭
  • 34. Page 6 - Your Turn • Solve. 2 4a + 3a = 0
  • 35. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0
  • 36. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0 a=0 or 4a + 3 = 0
  • 37. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0 a=0 or 4a + 3 = 0 −3 −3
  • 38. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0 a=0 or 4a + 3 = 0 −3 −3 4a = −3
  • 39. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0 a=0 or 4a + 3 = 0 −3 −3 4a = −3 4 4
  • 40. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0 a=0 or 4a + 3 = 0 −3 −3 4a = −3 4 4 3 a=− 4
  • 41. Page 6 - Your Turn • Solve. 2 4a + 3a = 0 a ( 4a + 3) = 0 a=0 or 4a + 3 = 0 −3 −3 4a = −3 4 4 ⎧ 3 ⎫ 3 Answer: ⎨0, − ⎬ a=− ⎩ 4 ⎭ 4
  • 42. Page 7 - Try It • Solve. 2 x − 25 = 0
  • 43. Page 7 - Try It • Solve. 2 x − 25 = 0 ( x + 5 )( x − 5 ) = 0
  • 44. Page 7 - Try It • Solve. 2 x − 25 = 0 ( x + 5 )( x − 5 ) = 0 x+5=0 or x−5=0
  • 45. Page 7 - Try It • Solve. 2 x − 25 = 0 ( x + 5 )( x − 5 ) = 0 x+5=0 or x−5=0 −5 −5 +5 +5
  • 46. Page 7 - Try It • Solve. 2 x − 25 = 0 ( x + 5 )( x − 5 ) = 0 x+5=0 or x−5=0 −5 −5 +5 +5 x = −5 or x=5
  • 47. Page 7 - Try It • Solve. 2 x − 25 = 0 ( x + 5 )( x − 5 ) = 0 x+5=0 or x−5=0 −5 −5 +5 +5 x = −5 or x=5 Answer: {−5, 5}
  • 48. Page 8 - Try It • Solve. 3 5x − 45x = 0
  • 49. Page 8 - Try It • Solve. 3 5x − 45x = 0 ( 2 ) 5x x − 9 = 0
  • 50. Page 8 - Try It • Solve. 3 5x − 45x = 0 ( 2 5x x − 9 = 0 ) 5x ( x + 9 ) ( x − 9 ) = 0
  • 51. Page 8 - Try It • Solve. 3 5x − 45x = 0 ( 2 5x x − 9 = 0 ) 5x ( x + 9 ) ( x − 9 ) = 0 5x = 0 or x+9=0 or x−9=0
  • 52. Page 8 - Try It • Solve. 3 5x − 45x = 0 ( 2 5x x − 9 = 0 ) 5x ( x + 9 ) ( x − 9 ) = 0 5x = 0 or x+9=0 or x−9=0 5 5 −9 −9 +9 +9
  • 53. Page 8 - Try It • Solve. 3 5x − 45x = 0 ( 2 5x x − 9 = 0 ) 5x ( x + 9 ) ( x − 9 ) = 0 5x = 0 or x+9=0 or x−9=0 5 5 −9 −9 +9 +9 x=0 or x = −9 or x=9
  • 54. Page 8 - Try It • Solve. 3 5x − 45x = 0 ( 2 5x x − 9 = 0 ) 5x ( x + 9 ) ( x − 9 ) = 0 5x = 0 or x+9=0 or x−9=0 5 5 −9 −9 +9 +9 x=0 or x = −9 or x=9 Answer: {0, −9, 9}
  • 55. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0
  • 56. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0)
  • 57. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0
  • 58. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0 y=0 or 2y − 1 = 0 or y+3= 0
  • 59. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0 y=0 or 2y − 1 = 0 or y+3= 0 +1 +1 −3 −3
  • 60. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0 y=0 or 2y − 1 = 0 or y+3= 0 +1 +1 −3 −3 2y = 1 or y = −3
  • 61. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0 y=0 or 2y − 1 = 0 or y+3= 0 +1 +1 −3 −3 2y = 1 or y = −3 2 2
  • 62. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0 y=0 or 2y − 1 = 0 or y+3= 0 +1 +1 −3 −3 2y = 1 or y = −3 2 2 y= 1 2
  • 63. Page 9 - Your Turn 3 2 • Solve. 2y + 5y − 3y = 0 ( 2 y 2y + 5y − 3 = 0 ) y ( 2y − 1) ( y + 3) = 0 y=0 or 2y − 1 = 0 or y+3= 0 +1 +1 −3 −3 2y = 1 or y = −3 2 2 ⎧ 1 ⎫ y= 1 2 Answer: ⎨0, , −3⎬ ⎩ 2 ⎭
  • 64. Algebra Cruncher • Practice solving more Quadratic Equations at this Cool Math website. • Select the “Give me a Problem” button to try new problems. • Do your work in a notebook before entering your answer. • When you select “What’s the Answer?” your answer is erased and correct answer is displayed. Having your work in a notebook will allow you to compare your answer to the correct answer. • Keep working problems until you get 3 in a row correct.
  • 65. Fantastic Job! • You’ve finished reviewing Solving Quadratic Equations Part 1. • Exit and proceed to Part 2.

Editor's Notes