Spark Streaming can be used to process streaming data from Kafka in real-time. There are two main approaches - the receiver-based approach where Spark receives data from Kafka receivers, and the direct approach where Spark directly reads data from Kafka. The document discusses using Spark Streaming to process tens of millions of transactions per minute from Kafka for an ad exchange system. It describes architectures where Spark Streaming is used to perform real-time aggregations and update databases, as well as save raw data to object storage for analytics and recovery. Stateful processing with mapWithState transformations is also demonstrated to update Cassandra in real-time.