Spatial data mining involves discovering patterns from large spatial datasets. It differs from traditional data mining due to properties of spatial data like spatial autocorrelation and heterogeneity. Key spatial data mining tasks include clustering, classification, trend analysis and association rule mining. Clustering algorithms like PAM and CLARA are useful for grouping spatial data objects. Trend analysis can identify global or local trends by analyzing attributes of spatially related objects. Future areas of research include spatial data mining in object oriented databases and using parallel processing to improve computational efficiency for large spatial datasets.