SlideShare a Scribd company logo
SPIMBENCH:
A Scalable, Schema-Aware
Instance Matching Benchmark
for the Semantic Publishing Domain
T. Saveta1, E. Daskalaki1, G. Flouris1, I. Fundulaki1,
M. Herschel2, A.-C. Ngonga Ngomo3
#1 FORTH-ICS, #2 University of Stuttgart, #3 University of Leipzig
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 2
Instance Matching in Linked Data
Data acquisition
Data
evolution
Data integration
Open/social data
How can we automatically recognize
multiple mentions of the same entity
across or within sources?
=
Instance Matching
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 3
Benchmarking
Instance matching research has led to the development of
various systems and algorithms.
How to compare these?
How can we assess their performance?
How can we push the systems to get better?
These systems need to be benchmarked
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 4
SPIMBENCH
• Based on Semantic Publishing Benchmark (SPB) of Linked
Data Benchmark Council (LDBC)
• Synthetic benchmark for the Semantic Publishing Domain
• Value-based, structure-based and semantics-aware
transformations [FMN+11, FLM08]
• Deterministic, scalable data generation in the order of
billion triples
• Weighted gold standard
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 5
Instance Matching Benchmark Ingredients [FLM08]
Benchmark
Datasets
Gold
Standard
Test
Cases
Metrics
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 6
SPIMBENCH Model
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 7
Value & Structure Based Transformations
Value: Mainly typographical errors and the use of
different data formats.[FMN+11]
Structure: Changes that occur to the properties.
– Property Addition/Deletion
– Property Aggregation/Extraction
Blank Character Addition/Deletion Change Number
Random Character Addition/Deletion/Modification Synonym/Antonym
Token Addition/Deletion/Shuffle Abbreviation
Multi-linguality (65 supported languages) Stem of a Word
Date Format
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 8
Semantics-Aware Transformations
Test if matching systems consider schema information to discover
instance matches.
• Instance (in)equality constructs
• owl:sameAs, owl:differentFrom
• Equivalence classes, properties
• owl:equivalentClass, owl:equivalentProperty
• Disjointness classes, properties
• owl:disjointWith, owl:propertyDisjointWith
• RDFS hierarchies
• rdfs:subClassOf, rdfs:subPropertyOf
• Property constraints
• owl:FunctionalProperty, owl:InverseFunctionalProperty
• Complex class definitions
• owl:unionOf, owl:intersectionOf
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 9
SPIMBENCH Model
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 10
Weighted Gold Standard
• Detailed GS for debugging reasons
• Final GS : Contains only URIs that we consider a match
and their similarity
spimbench:Match owl:Thing
spimbench:ValueTransf spimbench:StructureTransf spimbench:SemanticsAwareTransf
spimbench:Transformation
spimbench:VT1 spimbench:VTi
spimbench:ST1 spimbench:STi
spimbench:SAT1
…
spimbench:SATi
…
…
rdfs:subPropertyOf
rdfs:subClassOf
rdf:type
c
spimbench:source
spimbench:target
spimbench:weight xsd:string
spimbench:onProperty rdf:Property
spimbench:transformation
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 11
Scalability Experiments (1/2)
• Scalability experiments for datasets up to 500M triples
• 1000 triples ~ 36 entities
• Data generation along with data transformation is linear to the size
of triples
• Transformation overhead is negligible for value-based, structure-
based, semantics-aware and simple combinations
• Overhead for complex combinations is higher by one magnitude
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 12
Scalability Experiments (2/2)
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 13
Performance of LogMap [JG11]
Performance of LogMap for 10K triples Performance of LogMap for 25K triples
Performance of LogMap for 50K triples
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 14
Conclusions
• Schema aware variations
– Complex class definitions
– Property constraints
– Equivalence, Disjointness, etc.
• Combination of transformations
• Scalable data generation in order of billion triples
– Uses sampling
• Weighted gold standard
– Final gold standard
– Detailed gold standard for debugging reasons
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 15
Future Work
• SPIMBENCH will be used as one of the Ontology
Alignment Evaluation Initiative [OAEI]
benchmarks for 2015.
• Domain independent instance matching test
case generator.
• Definition of more sophisticated metrics that
takes into account the
difficulty (weight).
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 16
Acknowledgments
This work was partially supported by the ongoing FP7
European Project LDBC (Linked Data Benchmark Council)
(317548) and is done in collaboration with I. Fundulaki,
M. Herschel (University of Stuttgart), G. Flouris,
E. Daskalaki and A. C. Ngonga Ngomo (University of
Leipzig)
Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 17
References
# Reference Abbreviation
1
A. Ferrara and D. Lorusso and S. Montanelli and G. Varese.
Towards a Benchmark for Instance Matching. In OM, 2008.
[FLM08]
2
A. Ferrara and S. Montanelli and J. Noessner and H. Stuckenschmidt.
Benchmarking Matching Applications on the Semantic Web. In ESWC, 2011.
[FMN+11]
3
M. Nickel and V. Tresp. Tensor Factorization for Multi-relational Learning.
Machine Learning and Knowledge Discovery in Databases. Springer Berlin
Heidelberg, 2013. 617-621.
[NV13]
4
J. M. Joyce . Kullback-Leibler Divergence. International Encyclopedia of
Statistical Science. Springer Berlin Heidelberg, 2011. 720-722.
[J11]
5
E. Jimenez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology
matching. In ISWC, 2011.
[JG11]
6
B. Fuglede and F. Topsoe. Jensen-Shannon divergence and Hilbert space
embedding, in IEEE International Symposium on Information Theory, 2004.
[FT04]
7
Ontology Alignment Evaluation Initiative, find at
http://oaei.ontologymatching.org/
[OAEI]
Thank you!
Questions?

More Related Content

Viewers also liked (7)

PPTX
Abaques Lecko - Enseignements du benchmark 2013
Lecko
 
PDF
Benchmark Sites Agences Com. Sensible
Bioforce
 
PPTX
Rapport supref benchmarking 2016
Amaury Baot
 
PPTX
Stratégie Marketing Adidas
Marie-Clara Kasongo 玛 拉拉
 
PDF
Denotation connotation
Elodie Mielczareck
 
PPT
Benchmark football
Vincent Carcagno
 
KEY
Marketing mix
Aurelien Gaucherand
 
Abaques Lecko - Enseignements du benchmark 2013
Lecko
 
Benchmark Sites Agences Com. Sensible
Bioforce
 
Rapport supref benchmarking 2016
Amaury Baot
 
Stratégie Marketing Adidas
Marie-Clara Kasongo 玛 拉拉
 
Denotation connotation
Elodie Mielczareck
 
Benchmark football
Vincent Carcagno
 
Marketing mix
Aurelien Gaucherand
 

Similar to SPIMBENCH: A Scalable, Schema-Aware Instance Matching Benchmark for the Semantic Publishing Domain (20)

PDF
Instance Matching Benchmarks in the ERA of Linked Data - ISWC2017
Holistic Benchmarking of Big Linked Data
 
PDF
ISWC 2014 Tutorial - Instance Matching Benchmarks for Linked Data
Evangelia Daskalaki
 
PDF
Link Discovery Tutorial Part III: Benchmarking for Instance Matching Systems
Holistic Benchmarking of Big Linked Data
 
PDF
Instance Matching Benchmarks for Linked Data - ESWC 2016 Tutorial
Holistic Benchmarking of Big Linked Data
 
PPT
Towards Semantic APIs for Research Data Services (Invited Talk)
Anna Fensel
 
PPT
{Ontology: Resource} x {Matching : Mapping} x {Schema : Instance} :: Compone...
Amit Sheth
 
PDF
[Evaldas Taroza - Master thesis] Schema Matching and Automatic Web Data Extra...
Evaldas Taroza
 
PPT
Pragmatic Approaches to the Semantic Web
Mike Bergman
 
PPTX
Towards a Distributional Semantic Web Stack
Andre Freitas
 
PDF
Overview of-semantic-technologies-and-ontologies
Andrea Westerinen
 
PDF
Web-scale semantic search
Edgar Meij
 
PDF
Dn31766773
IJERA Editor
 
PPTX
Large-Scale Semantic Search
Roi Blanco
 
PPTX
Self adaptive based natural language interface for disambiguation of
Nurfadhlina Mohd Sharef
 
PDF
G Antoniou Frank Van Harmelen A Semantic Web Primer
uintvenka15
 
PDF
Bytewise approximate matching, searching and clustering
Liwei Ren任力偉
 
PPTX
Semantics 101
Kurt Cagle
 
PPTX
Semantics 101
Kurt Cagle
 
PPTX
Semantic Similarity and Selection of Resources Published According to Linked ...
Riccardo Albertoni
 
PDF
A Formal Framework For Describing Information Providing Web Services
Samantha Martinez
 
Instance Matching Benchmarks in the ERA of Linked Data - ISWC2017
Holistic Benchmarking of Big Linked Data
 
ISWC 2014 Tutorial - Instance Matching Benchmarks for Linked Data
Evangelia Daskalaki
 
Link Discovery Tutorial Part III: Benchmarking for Instance Matching Systems
Holistic Benchmarking of Big Linked Data
 
Instance Matching Benchmarks for Linked Data - ESWC 2016 Tutorial
Holistic Benchmarking of Big Linked Data
 
Towards Semantic APIs for Research Data Services (Invited Talk)
Anna Fensel
 
{Ontology: Resource} x {Matching : Mapping} x {Schema : Instance} :: Compone...
Amit Sheth
 
[Evaldas Taroza - Master thesis] Schema Matching and Automatic Web Data Extra...
Evaldas Taroza
 
Pragmatic Approaches to the Semantic Web
Mike Bergman
 
Towards a Distributional Semantic Web Stack
Andre Freitas
 
Overview of-semantic-technologies-and-ontologies
Andrea Westerinen
 
Web-scale semantic search
Edgar Meij
 
Dn31766773
IJERA Editor
 
Large-Scale Semantic Search
Roi Blanco
 
Self adaptive based natural language interface for disambiguation of
Nurfadhlina Mohd Sharef
 
G Antoniou Frank Van Harmelen A Semantic Web Primer
uintvenka15
 
Bytewise approximate matching, searching and clustering
Liwei Ren任力偉
 
Semantics 101
Kurt Cagle
 
Semantics 101
Kurt Cagle
 
Semantic Similarity and Selection of Resources Published According to Linked ...
Riccardo Albertoni
 
A Formal Framework For Describing Information Providing Web Services
Samantha Martinez
 
Ad

More from Graph-TA (20)

PDF
Computing on Event-sourced Graphs
Graph-TA
 
PDF
Using Evolutionary Computing for Feature-driven Graph generation
Graph-TA
 
PDF
Reactive Databases for Big Data applications
Graph-TA
 
PDF
The scarcity of crossing dependencies: a direct outcome of a specific constra...
Graph-TA
 
PDF
Holistic Benchmarking of Big Linked Data: HOBBIT
Graph-TA
 
PDF
Identifiability in Dynamic Casual Networks
Graph-TA
 
PDF
Polyglot Graph Databases using OCL as pivot
Graph-TA
 
PDF
Benchmarking Versioning for Big Linked Data
Graph-TA
 
PDF
Synthetic Data Generation using exponential random Graph modeling
Graph-TA
 
PDF
Use of Graphs for Cloud Service Selection in Multi-Cloud Environments
Graph-TA
 
PDF
Graphalytics: A big data benchmark for graph-processing platforms
Graph-TA
 
PDF
Modelling the Clustering Coefficient of a Random graph
Graph-TA
 
PPTX
RDF Graph Data Management in Oracle Database and NoSQL Platforms
Graph-TA
 
PPTX
GRAPHITE — An Extensible Graph Traversal Framework for RDBMS
Graph-TA
 
PPTX
On the Discovery of Novel Drug-Target Interactions from Dense SubGraphs
Graph-TA
 
PDF
Graphalytics: A big data benchmark for graph processing platforms
Graph-TA
 
PDF
Autograph: an evolving lightweight graph tool
Graph-TA
 
PPTX
Understanding Graph Structure in Knowledge Bases
Graph-TA
 
PDF
Finding patterns of chronic disease and medication prescriptions from a large...
Graph-TA
 
PDF
Recent Updates on IBM System G — GraphBIG and Temporal Data
Graph-TA
 
Computing on Event-sourced Graphs
Graph-TA
 
Using Evolutionary Computing for Feature-driven Graph generation
Graph-TA
 
Reactive Databases for Big Data applications
Graph-TA
 
The scarcity of crossing dependencies: a direct outcome of a specific constra...
Graph-TA
 
Holistic Benchmarking of Big Linked Data: HOBBIT
Graph-TA
 
Identifiability in Dynamic Casual Networks
Graph-TA
 
Polyglot Graph Databases using OCL as pivot
Graph-TA
 
Benchmarking Versioning for Big Linked Data
Graph-TA
 
Synthetic Data Generation using exponential random Graph modeling
Graph-TA
 
Use of Graphs for Cloud Service Selection in Multi-Cloud Environments
Graph-TA
 
Graphalytics: A big data benchmark for graph-processing platforms
Graph-TA
 
Modelling the Clustering Coefficient of a Random graph
Graph-TA
 
RDF Graph Data Management in Oracle Database and NoSQL Platforms
Graph-TA
 
GRAPHITE — An Extensible Graph Traversal Framework for RDBMS
Graph-TA
 
On the Discovery of Novel Drug-Target Interactions from Dense SubGraphs
Graph-TA
 
Graphalytics: A big data benchmark for graph processing platforms
Graph-TA
 
Autograph: an evolving lightweight graph tool
Graph-TA
 
Understanding Graph Structure in Knowledge Bases
Graph-TA
 
Finding patterns of chronic disease and medication prescriptions from a large...
Graph-TA
 
Recent Updates on IBM System G — GraphBIG and Temporal Data
Graph-TA
 
Ad

Recently uploaded (20)

PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
The Rise of AI and IoT in Mobile App Tech.pdf
IMG Global Infotech
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PDF
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PPTX
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
PDF
July Patch Tuesday
Ivanti
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
Biography of Daniel Podor.pdf
Daniel Podor
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
The Rise of AI and IoT in Mobile App Tech.pdf
IMG Global Infotech
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
July Patch Tuesday
Ivanti
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
Biography of Daniel Podor.pdf
Daniel Podor
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 

SPIMBENCH: A Scalable, Schema-Aware Instance Matching Benchmark for the Semantic Publishing Domain

  • 1. SPIMBENCH: A Scalable, Schema-Aware Instance Matching Benchmark for the Semantic Publishing Domain T. Saveta1, E. Daskalaki1, G. Flouris1, I. Fundulaki1, M. Herschel2, A.-C. Ngonga Ngomo3 #1 FORTH-ICS, #2 University of Stuttgart, #3 University of Leipzig
  • 2. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 2 Instance Matching in Linked Data Data acquisition Data evolution Data integration Open/social data How can we automatically recognize multiple mentions of the same entity across or within sources? = Instance Matching
  • 3. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 3 Benchmarking Instance matching research has led to the development of various systems and algorithms. How to compare these? How can we assess their performance? How can we push the systems to get better? These systems need to be benchmarked
  • 4. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 4 SPIMBENCH • Based on Semantic Publishing Benchmark (SPB) of Linked Data Benchmark Council (LDBC) • Synthetic benchmark for the Semantic Publishing Domain • Value-based, structure-based and semantics-aware transformations [FMN+11, FLM08] • Deterministic, scalable data generation in the order of billion triples • Weighted gold standard
  • 5. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 5 Instance Matching Benchmark Ingredients [FLM08] Benchmark Datasets Gold Standard Test Cases Metrics
  • 6. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 6 SPIMBENCH Model
  • 7. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 7 Value & Structure Based Transformations Value: Mainly typographical errors and the use of different data formats.[FMN+11] Structure: Changes that occur to the properties. – Property Addition/Deletion – Property Aggregation/Extraction Blank Character Addition/Deletion Change Number Random Character Addition/Deletion/Modification Synonym/Antonym Token Addition/Deletion/Shuffle Abbreviation Multi-linguality (65 supported languages) Stem of a Word Date Format
  • 8. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 8 Semantics-Aware Transformations Test if matching systems consider schema information to discover instance matches. • Instance (in)equality constructs • owl:sameAs, owl:differentFrom • Equivalence classes, properties • owl:equivalentClass, owl:equivalentProperty • Disjointness classes, properties • owl:disjointWith, owl:propertyDisjointWith • RDFS hierarchies • rdfs:subClassOf, rdfs:subPropertyOf • Property constraints • owl:FunctionalProperty, owl:InverseFunctionalProperty • Complex class definitions • owl:unionOf, owl:intersectionOf
  • 9. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 9 SPIMBENCH Model
  • 10. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 10 Weighted Gold Standard • Detailed GS for debugging reasons • Final GS : Contains only URIs that we consider a match and their similarity spimbench:Match owl:Thing spimbench:ValueTransf spimbench:StructureTransf spimbench:SemanticsAwareTransf spimbench:Transformation spimbench:VT1 spimbench:VTi spimbench:ST1 spimbench:STi spimbench:SAT1 … spimbench:SATi … … rdfs:subPropertyOf rdfs:subClassOf rdf:type c spimbench:source spimbench:target spimbench:weight xsd:string spimbench:onProperty rdf:Property spimbench:transformation
  • 11. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 11 Scalability Experiments (1/2) • Scalability experiments for datasets up to 500M triples • 1000 triples ~ 36 entities • Data generation along with data transformation is linear to the size of triples • Transformation overhead is negligible for value-based, structure- based, semantics-aware and simple combinations • Overhead for complex combinations is higher by one magnitude
  • 12. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 12 Scalability Experiments (2/2)
  • 13. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 13 Performance of LogMap [JG11] Performance of LogMap for 10K triples Performance of LogMap for 25K triples Performance of LogMap for 50K triples
  • 14. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 14 Conclusions • Schema aware variations – Complex class definitions – Property constraints – Equivalence, Disjointness, etc. • Combination of transformations • Scalable data generation in order of billion triples – Uses sampling • Weighted gold standard – Final gold standard – Detailed gold standard for debugging reasons
  • 15. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 15 Future Work • SPIMBENCH will be used as one of the Ontology Alignment Evaluation Initiative [OAEI] benchmarks for 2015. • Domain independent instance matching test case generator. • Definition of more sophisticated metrics that takes into account the difficulty (weight).
  • 16. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 16 Acknowledgments This work was partially supported by the ongoing FP7 European Project LDBC (Linked Data Benchmark Council) (317548) and is done in collaboration with I. Fundulaki, M. Herschel (University of Stuttgart), G. Flouris, E. Daskalaki and A. C. Ngonga Ngomo (University of Leipzig)
  • 17. Semantic Publishing Instance Matching Benchmark (SPIMBENCH) 17 References # Reference Abbreviation 1 A. Ferrara and D. Lorusso and S. Montanelli and G. Varese. Towards a Benchmark for Instance Matching. In OM, 2008. [FLM08] 2 A. Ferrara and S. Montanelli and J. Noessner and H. Stuckenschmidt. Benchmarking Matching Applications on the Semantic Web. In ESWC, 2011. [FMN+11] 3 M. Nickel and V. Tresp. Tensor Factorization for Multi-relational Learning. Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2013. 617-621. [NV13] 4 J. M. Joyce . Kullback-Leibler Divergence. International Encyclopedia of Statistical Science. Springer Berlin Heidelberg, 2011. 720-722. [J11] 5 E. Jimenez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology matching. In ISWC, 2011. [JG11] 6 B. Fuglede and F. Topsoe. Jensen-Shannon divergence and Hilbert space embedding, in IEEE International Symposium on Information Theory, 2004. [FT04] 7 Ontology Alignment Evaluation Initiative, find at http://oaei.ontologymatching.org/ [OAEI]

Editor's Notes

  • #16: We are currently working on a domain-independent instance matching test case generator for Linked Data, whose aim is to take any ontology and RDF dataset as source and produce a target dataset that will implement the test cases discussed earlier. We are also studying how we can dene more sophisticated metrics that take into account the difficulty (weight) of the correctly identified matches, to be used in tandem with the standard precision and recall metrics. Also SPIMBENCH will be used as one of the OAEI benchmarks for 2015. --------------------------------------------------------------------------------------------------------------- Όσο αφορά την μελλοντική ανάπτυξη του συστήματος θα προσπαθήσουμε να κάνουμε τον SPIMBench τελείως ανεξάρτητο από οποιοδήποτε τομέα (domain). Ακόμα θα μπορεί να υποστηρίζει περισσοτέρους συνδυασμούς μετατροπών με πιο αυτόματο τρόπο. Ακόμα θα πρέπει να επανεξετάσουμε τις μετρικές (precision- recall) ώστε να μπορουν να λάβουν υπόψη και τα βάρη. Wald method[ref] for sampling ?? -> provlepei kai poso tha einai to sfalma analoga to k ++++ koitaksame ola ta vasika tis owl lite kai owl rl kai auta pou kaname eixan mono noima alliws tha itan polu duskolo gia ta sustimata mpla mpla