SlideShare a Scribd company logo
M.C. Kang
Spring data iii
   Hello World Using Spring for Apache Hadoop

Declaring a Hadoop job using Spring’s Hadoop namespace
<configuration>
           fs.default.name=hdfs://localhost:9000
</configuration>
<job id="wordcountJob"
           input-path="/user/gutenberg/input"
           output-path="/user/gutenberg/output"
           mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
           reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>
           <job-runner id="runner" job="wordcountJob" run-at-startup="true"/>

This configuration will create a singleton instance of an org.apache.hadoop.mapreduce.Job managed by the
Spring container.
Spring can determine that outputKeyClass is of the type org.apache.hadoop.io.Text and that
outputValueClass is of type org.apache.hadoop.io.IntWritable, so we do not need to set these
properties explicitly.

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
      private final static IntWritable one = new IntWritable(1);
      private Text word = new Text();
      public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                  word.set(itr.nextToken());
                  context.write(word, one);
            }
      }
}
   Hello World Using Spring for Apache Hadoop
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
      private IntWritable result = new IntWritable();
      public void reduce(Text key, Iterable<IntWritable> values, Context context)
      throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                       sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
      }
}


public class Main {
      private static final String[] CONFIGS = new String[] {"META-INF/spring/hadoop-
      context.xml" };

      public static void main(String[] args) {
            String[] res = (args != null && args.length > 0 ? args : CONFIGS);
            AbstractApplicationContext ctx = new ClassPathXmlApplicationContext(res);
            // shut down the context cleanly along with the VM
            ctx.registerShutdownHook();
      }
}
   Externalize the configuration parameters of the application
<context:property-placeholder location="hadoop-default.properties"/>
<configuration>
      fs.default.name=${hd.fs}
</configuration>
<job id="wordcountJob"
      input-path="${wordcount.input.path}"
      output-path="${wordcount.output.path}"
      mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
      reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>
<job-runner id="runner" job="wordcountJob" run-at-startup="true"/>

hd.fs=hdfs://localhost:9000
wordcount.input.path=/user/gutenberg/input/
wordcount.output.path=/user/gutenberg/output/


<context:property-placeholder location="hadoop-${ENV:default}.properties"/>
   Scripting HDFS on the JVM – Type1
<context:property-placeholder location="hadoop.properties"/>
<configuration>
      fs.default.name=${hd.fs}
</configuration>
<script id="setupScript" location="copy-files.groovy">
      <property name="localSourceFile" value="${localSourceFile}"/>
      <property name=“hdfsInputDir" value="${hdfsInputDir}"/>
      <property name=“hdfsOutputDir" value="${hdfsOutputDir}"/>
</script>



       Groovy Script
if (!fsh.test(hdfsInputDir)) {
      fsh.mkdir(hdfsInputDir);
      fsh.copyFromLocal(localSourceFile, hdfsInputDir);
      fsh.chmod(700, hdfsInputDir)
}
if (fsh.test(hdfsOutputDir)) {
      fsh.rmr(hdfsOutputDir)
}
   Combining HDFS Scripting and Job Submission
<context:property-placeholder location="hadoop.properties"/>

<configuration>
      fs.default.name=${hd.fs}
</configuration>

<job id="wordcountJob"
      input-path="${wordcount.input.path}"
      output-path="${wordcount.output.path}"
      mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
      reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

<script id="setupScript" location="copy-files.groovy">
       <property name="localSourceFile" value="${localSourceFile}"/>
       <property name="inputDir" value="${wordcount.input.path}"/>
       <property name="outputDir" value="${wordcount.output.path}"/>
</script>

<job-runner id="runner" run-at-startup="true"
      pre-action="setupScript"
      job="wordcountJob"/>
   Configuring the JobRunner to execute multiple HDFS scripts and jobs
<job-runner id="runner"
      pre-action="setupScript1,setupScript"
      job="wordcountJob1,wordcountJob2"
      post-action="cleanupScript1,cleanupScript2"/>
   Scheduling MapReduce Jobs with a TaskScheduler
<!-- job definition as before -->
<job id="wordcountJob" ... />
<!-- script definition as before -->
<script id="setupScript" ... />

<job-runner id="runner" pre-action="setupScript" job="wordcountJob"/>

<task:scheduled-tasks>
      <task:scheduled ref="runner" method="call" cron="3/30 * * * * ?"/>
</task:scheduled-tasks>



   Scheduling MapReduce Jobs with Quartz
<bean id="jobDetail"
      class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
      <property name="targetObject" ref="runner"/>
      <property name="targetMethod" value="run"/>
</bean>
<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
      <property name="jobDetail" ref="jobDetail"/>
      <property name="cronExpression" value="3/30 * * * * ?"/>
</bean>
<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
      <property name="triggers" ref="cronTrigger"/>
</bean>
Spring data iii
   Creating and configuring a Hive server
<context:property-placeholder location="hadoop.properties,hive.properties" />
<configuration id="hadoopConfiguration">
       fs.default.name=${hd.fs}
       mapred.job.tracker=${mapred.job.tracker}
</configuration>
<hive-server port="${hive.port}" auto-startup="false"
       configuration-ref="hadoopConfiguration"
       properties-location="hive-server.properties">
       hive.exec.scratchdir=/tmp/hive/
</hive-server>



   Hive Thrift Client
since the HiveClient is not a thread-safe class, so a new instance needs to be created inside
methods that are shared across multiple threads.

<hive-client-factory host="${hive.host}" port="${hive.port}"/>
   Hive Thrift Client Sample
@Repository
public class HivePasswordRepository implements PasswordRepository {
      private static final Log logger = LogFactory.getLog(HivePasswordRepository.class);
      private HiveClientFactory hiveClientFactory;
      private String tableName;
      // constructor and setters omitted
      @Override
      public Long count() {
            HiveClient hiveClient = hiveClientFactory.getHiveClient();
            try {
                   hiveClient.execute("select count(*) from " + tableName);
                   return Long.parseLong(hiveClient.fetchOne());
            // checked exceptions
            } catch (HiveServerException ex) {
                   throw translateExcpetion(ex);
            } catch (org.apache.thrift.TException tex) {
                   throw translateExcpetion(tex);
            } finally {
                   try {
                          hiveClient.shutdown();
                   } catch (org.apache.thrift.TException tex) {
                          logger.debug("Unexpected exception on shutting down HiveClient", tex);
                   }
            }
      }
      …
   Hive JDBC Client
The JDBC support for Hive lets you use your existing Spring knowledge of JdbcTemplate to
interact with Hive. Hive provides a HiveDriver class.

<bean id="hiveDriver" class="org.apache.hadoop.hive.jdbc.HiveDriver" />
<bean id="dataSource" class="org.springframework.jdbc.datasource.SimpleDriverDataSource">
      <constructor-arg name="driver" ref="hiveDriver" />
      <constructor-arg name="url" value="${hive.url}"/>
</bean>
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.simple.JdbcTemplate">
      <constructor-arg ref="dataSource" />
</bean>


   Hive JDBC Client Sample
@Repository
public class JdbcPasswordRepository implements PasswordRepository {
      private JdbcOperations jdbcOperations;
      private String tableName;
      // constructor and setters omitted
      @Override
      public Long count() {
            return jdbcOperations.queryForLong("select count(*) from " + tableName);
      }
      …
   Hive Script Runner
<context:property-placeholder location="hadoop.properties,hive.properties"/>

<configuration>
      fs.default.name=${hd.fs}
      mapred.job.tracker=${mapred.job.tracker}
</configuration>

<hive-server port="${hive.port}"
      properties-location="hive-server.properties"/>

<hive-client-factory host="${hive.host}" port="${hive.port}"/>

<hive-runner id="hiveRunner" run-at-startup="false" >
       <script location="apache-log-simple.hql">
              <arguments>
                     hiveContribJar=${hiveContribJar}
                     localInPath="./data/apache.log"
              </arguments>
       </script>
</hive-runner>
Spring data iii
   Creating and configuring a Pig server
<context:property-placeholder location="hadoop.properties" />
<configuration>
      fs.default.name=${hd.fs}
      mapred.job.tracker=${mapred.job.tracker}
</configuration>
<pig-factory properties-location="pig-server.properties"
      <script location="initialization.pig">
            <arguments>
                  inputFile=${initInputFile}
            </arguments>
      </script>
<pig-factory/>


   Pig Runner
PigRunner helper class to provide a convenient way to repeatedly execute Pig jobs and also
execute HDFS scripts before and after their execution.

<pig-runner id="pigRunner"
      pre-action="hdfsScript"
      run-at-startup="true" >
      <script location="password-analysis.pig">
            <arguments>
                  inputDir=${inputDir}
                  outputDir=${outputDir}
            </arguments>
      </script>
</pig-runner>
   Pig Template
<context:property-placeholder location="hadoop.properties" />
<configuration>
      fs.default.name=${hd.fs}
      mapred.job.tracker=${mapred.job.tracker}
</configuration>
<pig-factory properties-location="pig-server.properties"
      <script location="initialization.pig">
            <arguments>
                  inputFile=${initInputFile}
            </arguments>
      </script>
<pig-factory/>


   Pig Runner
PigRunner helper class to provide a convenient way to repeatedly execute Pig jobs and also
execute HDFS scripts before and after their execution.

<pig-runner id="pigRunner"
      pre-action="hdfsScript"
      run-at-startup="true" >
      <script location="password-analysis.pig">
            <arguments>
                  inputDir=${inputDir}
                  outputDir=${outputDir}
            </arguments>
      </script>
</pig-runner>
   Pig Runner Example
@Component
public class AnalysisService {
      private PigRunner pigRunner;
      @Autowired
      public AnalysisService(PigRunner pigRunner)
             this.pigRunner = pigRunner;
      }
      @Async
      public void performAnalysis() {
             pigRunner.call();
      }
}
   Controlling Runtime Script Execution
To have more runtime control over what Pig scripts are executed and the arguments passed into
them, we can use the PigTemplate class.

<pig-factory properties-location="pig-server.properties"/>
<pig-template/>
<beans:bean id="passwordRepository“
class="com.oreilly.springdata.hadoop.pig.PigPasswordRepository">
           <beans:constructor-arg ref="pigTemplate"/>
</beans:bean>

public class PigPasswordRepository implements PasswordRepository {
      private PigOperations pigOperations;
      private String pigScript = "classpath:password-analysis.pig";
      public void processPasswordFile(String inputFile) {
             Assert.notNull(inputFile);
             String outputDir =
             PathUtils.format("/data/password-repo/output/%1$tY/%1$tm/%1$td/%1$tH/%1$tM/
             %1$tS");
             Properties scriptParameters = new Properties();
             scriptParameters.put("inputDir", inputFile);
             scriptParameters.put("outputDir", outputDir);
             pigOperations.executeScript(pigScript, scriptParameters);
      }
      @Override
      public void processPasswordFiles(Collection<String> inputFiles) {
             for (String inputFile : inputFiles) {
                   processPasswordFile(inputFile);
             }
      }
}
Spring data iii
   HBASE Java Client w/o Spring Data
The HTable class is the main way in Java to interact with HBase. It allows you to put data into a
table using a Put class, get data by key using a Get class, and delete data using a Delete
class.
You query that data using a Scan class, which lets you specify key ranges as well as filter
criteria.

Configuration configuration = new Configuration(); // Hadoop configuration object
HTable table = new HTable(configuration, "users");
Put p = new Put(Bytes.toBytes("user1"));
p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qUser"), Bytes.toBytes("user1"));
p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qEmail"), Bytes.toBytes("user1@yahoo.com"));
p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qPassword"), Bytes.toBytes("user1pwd"));
table.put(p);
   HBASE Client w/ Spring Data HBaseTemplate
The HBase API requires that you work with the data as byte arrays and not other primitive types.
The HTable class is also not thread safe, and requires you to carefully manage the underlying
resources it uses and catch HBase-specific exceptions.
Spring’s HBaseTemplate class provides a higher-level abstraction for interacting with HBase.
As with other Spring template classes, it is thread-safe once created and provides exception
translation into Spring’s portable data access exception hierarchy.

<configuration>
fs.default.name=hdfs://localhost:9000
</configuration>
<hbase-configuration configuration-ref="hadoopConfiguration" />
<beans:bean id="hbaseTemplate" class="org.springframework.data.hadoop.hbase.HbaseTemplate">
<beans:property name="configuration" ref="hbaseConfiguration" />
</beans:bean>
   HBASE Client w/ Spring Data HBaseTemplate

More Related Content

What's hot (20)

PDF
Burn down the silos! Helping dev and ops gel on high availability websites
Lindsay Holmwood
 
PDF
[Srijan Wednesday Webinars] Ruling Drupal 8 with #d8rules
Srijan Technologies
 
PPTX
Creating Reusable Puppet Profiles
Bram Vogelaar
 
KEY
Zend framework service
Michelangelo van Dam
 
KEY
Fatc
Wade Arnold
 
PDF
Temporary Cache Assistance (Transients API): WordCamp Phoenix 2014
Cliff Seal
 
PDF
Integrating icinga2 and the HashiCorp suite
Bram Vogelaar
 
PDF
The effective use of Django ORM
Yaroslav Muravskyi
 
PDF
Drupal 8: Fields reborn
Pablo López Escobés
 
PDF
Apache Hive Hook
Minwoo Kim
 
PDF
Augeas @RMLL 2012
Raphaël PINSON
 
PDF
What's new in jQuery 1.5
Martin Kleppe
 
PPTX
Read, store and create xml and json
Kim Berg Hansen
 
PDF
The IoC Hydra - Dutch PHP Conference 2016
Kacper Gunia
 
PDF
Observability with Consul Connect
Bram Vogelaar
 
PDF
Php tips-and-tricks4128
PrinceGuru MS
 
PDF
Scaling Symfony2 apps with RabbitMQ - Symfony UK Meetup
Kacper Gunia
 
PDF
A Little Backbone For Your App
Luca Mearelli
 
PDF
Having Fun with Play
Clinton Dreisbach
 
PPTX
Electrify your code with PHP Generators
Mark Baker
 
Burn down the silos! Helping dev and ops gel on high availability websites
Lindsay Holmwood
 
[Srijan Wednesday Webinars] Ruling Drupal 8 with #d8rules
Srijan Technologies
 
Creating Reusable Puppet Profiles
Bram Vogelaar
 
Zend framework service
Michelangelo van Dam
 
Temporary Cache Assistance (Transients API): WordCamp Phoenix 2014
Cliff Seal
 
Integrating icinga2 and the HashiCorp suite
Bram Vogelaar
 
The effective use of Django ORM
Yaroslav Muravskyi
 
Drupal 8: Fields reborn
Pablo López Escobés
 
Apache Hive Hook
Minwoo Kim
 
Augeas @RMLL 2012
Raphaël PINSON
 
What's new in jQuery 1.5
Martin Kleppe
 
Read, store and create xml and json
Kim Berg Hansen
 
The IoC Hydra - Dutch PHP Conference 2016
Kacper Gunia
 
Observability with Consul Connect
Bram Vogelaar
 
Php tips-and-tricks4128
PrinceGuru MS
 
Scaling Symfony2 apps with RabbitMQ - Symfony UK Meetup
Kacper Gunia
 
A Little Backbone For Your App
Luca Mearelli
 
Having Fun with Play
Clinton Dreisbach
 
Electrify your code with PHP Generators
Mark Baker
 

Viewers also liked (6)

PPT
Spring data ii
명철 강
 
PPT
Spring data
명철 강
 
PDF
Managementcontrol Brandweer Steller André Maranus.2
awmaranus
 
PDF
Cloudfront private distribution 개요
명철 강
 
PPT
Class loader basic
명철 강
 
PDF
The Outcome Economy
Helge Tennø
 
Spring data ii
명철 강
 
Spring data
명철 강
 
Managementcontrol Brandweer Steller André Maranus.2
awmaranus
 
Cloudfront private distribution 개요
명철 강
 
Class loader basic
명철 강
 
The Outcome Economy
Helge Tennø
 
Ad

Similar to Spring data iii (20)

PPTX
How to develop Big Data Pipelines for Hadoop, by Costin Leau
Codemotion
 
PPTX
Rapid Development of Big Data applications using Spring for Apache Hadoop
zenyk
 
PDF
Hd insight programming
Casear Chu
 
PPTX
Spring for Apache Hadoop
zenyk
 
PPTX
Hadoop
Mukesh kumar
 
PPT
Recommender.system.presentation.pjug.05.20.2014
rpbrehm
 
PDF
Store and Process Big Data with Hadoop and Cassandra
Deependra Ariyadewa
 
PDF
Data Engineering with Spring, Hadoop and Hive
Alex Silva
 
KEY
Hadoop本 輪読会 1章〜2章
moai kids
 
PDF
Hadoop ecosystem J.AYEESHA PARVEEN II-M.SC.,COMPUTER SCIENCE, BON SECOURS CO...
AyeeshaParveen
 
PDF
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science Bon Secours...
AyeeshaParveen
 
PPTX
BIG DATA ANALYSIS
Nitesh Singh
 
PDF
LAB PROGRAM-9zxcvbnmzxcvbnzxcvbnxcvbn.pdf
Roja40
 
PPTX
Hands on Hadoop and pig
Sudar Muthu
 
PDF
SpringPeople Introduction to Apache Hadoop
SpringPeople
 
PDF
EclipseCon Keynote: Apache Hadoop - An Introduction
Cloudera, Inc.
 
PPTX
Big data week presentation
Joseph Adler
 
PDF
Apache Hadoop 1.1
Sperasoft
 
PDF
OC Big Data Monthly Meetup #5 - Session 1 - Altiscale
Big Data Joe™ Rossi
 
PDF
Data Analysis with Hadoop and Hive, ChicagoDB 2/21/2011
Jonathan Seidman
 
How to develop Big Data Pipelines for Hadoop, by Costin Leau
Codemotion
 
Rapid Development of Big Data applications using Spring for Apache Hadoop
zenyk
 
Hd insight programming
Casear Chu
 
Spring for Apache Hadoop
zenyk
 
Hadoop
Mukesh kumar
 
Recommender.system.presentation.pjug.05.20.2014
rpbrehm
 
Store and Process Big Data with Hadoop and Cassandra
Deependra Ariyadewa
 
Data Engineering with Spring, Hadoop and Hive
Alex Silva
 
Hadoop本 輪読会 1章〜2章
moai kids
 
Hadoop ecosystem J.AYEESHA PARVEEN II-M.SC.,COMPUTER SCIENCE, BON SECOURS CO...
AyeeshaParveen
 
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science Bon Secours...
AyeeshaParveen
 
BIG DATA ANALYSIS
Nitesh Singh
 
LAB PROGRAM-9zxcvbnmzxcvbnzxcvbnxcvbn.pdf
Roja40
 
Hands on Hadoop and pig
Sudar Muthu
 
SpringPeople Introduction to Apache Hadoop
SpringPeople
 
EclipseCon Keynote: Apache Hadoop - An Introduction
Cloudera, Inc.
 
Big data week presentation
Joseph Adler
 
Apache Hadoop 1.1
Sperasoft
 
OC Big Data Monthly Meetup #5 - Session 1 - Altiscale
Big Data Joe™ Rossi
 
Data Analysis with Hadoop and Hive, ChicagoDB 2/21/2011
Jonathan Seidman
 
Ad

Recently uploaded (20)

PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Timothy Rottach - Ramp up on AI Use Cases, from Vector Search to AI Agents wi...
AWS Chicago
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 

Spring data iii

  • 3. Hello World Using Spring for Apache Hadoop Declaring a Hadoop job using Spring’s Hadoop namespace <configuration> fs.default.name=hdfs://localhost:9000 </configuration> <job id="wordcountJob" input-path="/user/gutenberg/input" output-path="/user/gutenberg/output" mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper" reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/> <job-runner id="runner" job="wordcountJob" run-at-startup="true"/> This configuration will create a singleton instance of an org.apache.hadoop.mapreduce.Job managed by the Spring container. Spring can determine that outputKeyClass is of the type org.apache.hadoop.io.Text and that outputValueClass is of type org.apache.hadoop.io.IntWritable, so we do not need to set these properties explicitly. public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } }
  • 4. Hello World Using Spring for Apache Hadoop public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public class Main { private static final String[] CONFIGS = new String[] {"META-INF/spring/hadoop- context.xml" }; public static void main(String[] args) { String[] res = (args != null && args.length > 0 ? args : CONFIGS); AbstractApplicationContext ctx = new ClassPathXmlApplicationContext(res); // shut down the context cleanly along with the VM ctx.registerShutdownHook(); } }
  • 5. Externalize the configuration parameters of the application <context:property-placeholder location="hadoop-default.properties"/> <configuration> fs.default.name=${hd.fs} </configuration> <job id="wordcountJob" input-path="${wordcount.input.path}" output-path="${wordcount.output.path}" mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper" reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/> <job-runner id="runner" job="wordcountJob" run-at-startup="true"/> hd.fs=hdfs://localhost:9000 wordcount.input.path=/user/gutenberg/input/ wordcount.output.path=/user/gutenberg/output/ <context:property-placeholder location="hadoop-${ENV:default}.properties"/>
  • 6. Scripting HDFS on the JVM – Type1 <context:property-placeholder location="hadoop.properties"/> <configuration> fs.default.name=${hd.fs} </configuration> <script id="setupScript" location="copy-files.groovy"> <property name="localSourceFile" value="${localSourceFile}"/> <property name=“hdfsInputDir" value="${hdfsInputDir}"/> <property name=“hdfsOutputDir" value="${hdfsOutputDir}"/> </script>  Groovy Script if (!fsh.test(hdfsInputDir)) { fsh.mkdir(hdfsInputDir); fsh.copyFromLocal(localSourceFile, hdfsInputDir); fsh.chmod(700, hdfsInputDir) } if (fsh.test(hdfsOutputDir)) { fsh.rmr(hdfsOutputDir) }
  • 7. Combining HDFS Scripting and Job Submission <context:property-placeholder location="hadoop.properties"/> <configuration> fs.default.name=${hd.fs} </configuration> <job id="wordcountJob" input-path="${wordcount.input.path}" output-path="${wordcount.output.path}" mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper" reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/> <script id="setupScript" location="copy-files.groovy"> <property name="localSourceFile" value="${localSourceFile}"/> <property name="inputDir" value="${wordcount.input.path}"/> <property name="outputDir" value="${wordcount.output.path}"/> </script> <job-runner id="runner" run-at-startup="true" pre-action="setupScript" job="wordcountJob"/>
  • 8. Configuring the JobRunner to execute multiple HDFS scripts and jobs <job-runner id="runner" pre-action="setupScript1,setupScript" job="wordcountJob1,wordcountJob2" post-action="cleanupScript1,cleanupScript2"/>
  • 9. Scheduling MapReduce Jobs with a TaskScheduler <!-- job definition as before --> <job id="wordcountJob" ... /> <!-- script definition as before --> <script id="setupScript" ... /> <job-runner id="runner" pre-action="setupScript" job="wordcountJob"/> <task:scheduled-tasks> <task:scheduled ref="runner" method="call" cron="3/30 * * * * ?"/> </task:scheduled-tasks>  Scheduling MapReduce Jobs with Quartz <bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject" ref="runner"/> <property name="targetMethod" value="run"/> </bean> <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="jobDetail"/> <property name="cronExpression" value="3/30 * * * * ?"/> </bean> <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers" ref="cronTrigger"/> </bean>
  • 11. Creating and configuring a Hive server <context:property-placeholder location="hadoop.properties,hive.properties" /> <configuration id="hadoopConfiguration"> fs.default.name=${hd.fs} mapred.job.tracker=${mapred.job.tracker} </configuration> <hive-server port="${hive.port}" auto-startup="false" configuration-ref="hadoopConfiguration" properties-location="hive-server.properties"> hive.exec.scratchdir=/tmp/hive/ </hive-server>  Hive Thrift Client since the HiveClient is not a thread-safe class, so a new instance needs to be created inside methods that are shared across multiple threads. <hive-client-factory host="${hive.host}" port="${hive.port}"/>
  • 12. Hive Thrift Client Sample @Repository public class HivePasswordRepository implements PasswordRepository { private static final Log logger = LogFactory.getLog(HivePasswordRepository.class); private HiveClientFactory hiveClientFactory; private String tableName; // constructor and setters omitted @Override public Long count() { HiveClient hiveClient = hiveClientFactory.getHiveClient(); try { hiveClient.execute("select count(*) from " + tableName); return Long.parseLong(hiveClient.fetchOne()); // checked exceptions } catch (HiveServerException ex) { throw translateExcpetion(ex); } catch (org.apache.thrift.TException tex) { throw translateExcpetion(tex); } finally { try { hiveClient.shutdown(); } catch (org.apache.thrift.TException tex) { logger.debug("Unexpected exception on shutting down HiveClient", tex); } } } …
  • 13. Hive JDBC Client The JDBC support for Hive lets you use your existing Spring knowledge of JdbcTemplate to interact with Hive. Hive provides a HiveDriver class. <bean id="hiveDriver" class="org.apache.hadoop.hive.jdbc.HiveDriver" /> <bean id="dataSource" class="org.springframework.jdbc.datasource.SimpleDriverDataSource"> <constructor-arg name="driver" ref="hiveDriver" /> <constructor-arg name="url" value="${hive.url}"/> </bean> <bean id="jdbcTemplate" class="org.springframework.jdbc.core.simple.JdbcTemplate"> <constructor-arg ref="dataSource" /> </bean>  Hive JDBC Client Sample @Repository public class JdbcPasswordRepository implements PasswordRepository { private JdbcOperations jdbcOperations; private String tableName; // constructor and setters omitted @Override public Long count() { return jdbcOperations.queryForLong("select count(*) from " + tableName); } …
  • 14. Hive Script Runner <context:property-placeholder location="hadoop.properties,hive.properties"/> <configuration> fs.default.name=${hd.fs} mapred.job.tracker=${mapred.job.tracker} </configuration> <hive-server port="${hive.port}" properties-location="hive-server.properties"/> <hive-client-factory host="${hive.host}" port="${hive.port}"/> <hive-runner id="hiveRunner" run-at-startup="false" > <script location="apache-log-simple.hql"> <arguments> hiveContribJar=${hiveContribJar} localInPath="./data/apache.log" </arguments> </script> </hive-runner>
  • 16. Creating and configuring a Pig server <context:property-placeholder location="hadoop.properties" /> <configuration> fs.default.name=${hd.fs} mapred.job.tracker=${mapred.job.tracker} </configuration> <pig-factory properties-location="pig-server.properties" <script location="initialization.pig"> <arguments> inputFile=${initInputFile} </arguments> </script> <pig-factory/>  Pig Runner PigRunner helper class to provide a convenient way to repeatedly execute Pig jobs and also execute HDFS scripts before and after their execution. <pig-runner id="pigRunner" pre-action="hdfsScript" run-at-startup="true" > <script location="password-analysis.pig"> <arguments> inputDir=${inputDir} outputDir=${outputDir} </arguments> </script> </pig-runner>
  • 17. Pig Template <context:property-placeholder location="hadoop.properties" /> <configuration> fs.default.name=${hd.fs} mapred.job.tracker=${mapred.job.tracker} </configuration> <pig-factory properties-location="pig-server.properties" <script location="initialization.pig"> <arguments> inputFile=${initInputFile} </arguments> </script> <pig-factory/>  Pig Runner PigRunner helper class to provide a convenient way to repeatedly execute Pig jobs and also execute HDFS scripts before and after their execution. <pig-runner id="pigRunner" pre-action="hdfsScript" run-at-startup="true" > <script location="password-analysis.pig"> <arguments> inputDir=${inputDir} outputDir=${outputDir} </arguments> </script> </pig-runner>
  • 18. Pig Runner Example @Component public class AnalysisService { private PigRunner pigRunner; @Autowired public AnalysisService(PigRunner pigRunner) this.pigRunner = pigRunner; } @Async public void performAnalysis() { pigRunner.call(); } }
  • 19. Controlling Runtime Script Execution To have more runtime control over what Pig scripts are executed and the arguments passed into them, we can use the PigTemplate class. <pig-factory properties-location="pig-server.properties"/> <pig-template/> <beans:bean id="passwordRepository“ class="com.oreilly.springdata.hadoop.pig.PigPasswordRepository"> <beans:constructor-arg ref="pigTemplate"/> </beans:bean> public class PigPasswordRepository implements PasswordRepository { private PigOperations pigOperations; private String pigScript = "classpath:password-analysis.pig"; public void processPasswordFile(String inputFile) { Assert.notNull(inputFile); String outputDir = PathUtils.format("/data/password-repo/output/%1$tY/%1$tm/%1$td/%1$tH/%1$tM/ %1$tS"); Properties scriptParameters = new Properties(); scriptParameters.put("inputDir", inputFile); scriptParameters.put("outputDir", outputDir); pigOperations.executeScript(pigScript, scriptParameters); } @Override public void processPasswordFiles(Collection<String> inputFiles) { for (String inputFile : inputFiles) { processPasswordFile(inputFile); } } }
  • 21. HBASE Java Client w/o Spring Data The HTable class is the main way in Java to interact with HBase. It allows you to put data into a table using a Put class, get data by key using a Get class, and delete data using a Delete class. You query that data using a Scan class, which lets you specify key ranges as well as filter criteria. Configuration configuration = new Configuration(); // Hadoop configuration object HTable table = new HTable(configuration, "users"); Put p = new Put(Bytes.toBytes("user1")); p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qUser"), Bytes.toBytes("user1")); p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qEmail"), Bytes.toBytes("[email protected]")); p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qPassword"), Bytes.toBytes("user1pwd")); table.put(p);
  • 22. HBASE Client w/ Spring Data HBaseTemplate The HBase API requires that you work with the data as byte arrays and not other primitive types. The HTable class is also not thread safe, and requires you to carefully manage the underlying resources it uses and catch HBase-specific exceptions. Spring’s HBaseTemplate class provides a higher-level abstraction for interacting with HBase. As with other Spring template classes, it is thread-safe once created and provides exception translation into Spring’s portable data access exception hierarchy. <configuration> fs.default.name=hdfs://localhost:9000 </configuration> <hbase-configuration configuration-ref="hadoopConfiguration" /> <beans:bean id="hbaseTemplate" class="org.springframework.data.hadoop.hbase.HbaseTemplate"> <beans:property name="configuration" ref="hbaseConfiguration" /> </beans:bean>
  • 23. HBASE Client w/ Spring Data HBaseTemplate