SlideShare a Scribd company logo
Copyright 2015 ITRI工業技術研究院機密資料 禁止複製、轉載、外流
ITRI CONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE
智慧檢測技術與工業自動化
量測技術發展中心
儀器與感測技術發展組
周森益
2016.06.16
Copyright 2016 ITRI 工業技術研究院
前言
• 面對新經濟模式,自動化生產/檢測,所遭遇
的全新挑戰。
• 當所有資料全部保存到雲端,我們如何看待
這些資料?
Copyright 2016 ITRI 工業技術研究院
A Self-Learning Measurement System
with Intelligent Software
Meet industrial
needs:
• In-Situ inspection:
dynamic environment
• Quick response: valid
measurement data and
prediction mechanism
• Flexible manufacture
• User experience data
analysis
1. False alarm
2. Miss detection
3. Unsuitable and manual
coefficients setting from sensors
1. Fault detection decreased
2. Feasible or optimized coefficients settings from sensors
3. Self-diagnosis of maintenance and lifecycle time of sensors
Increase measures’ accuracy & precision
Fault
detection
Sensor 1
Sensor 2
Sensor …
Sensor K
Optical modules
Hardware
modules
Measurement
software
Measurement System
AS IS TO BE
Sensor 1
Sensor 2
Sensor …
Sensor K
Optical modules
Hardware
modules
Measurement System
output
Measurement
software
Intelligent
Software
Self-diagnosis
Self-learning
output
3
Copyright 2016 ITRI 工業技術研究院
roller
steel
CCD
Lens
CCD
Lens
AOI system (upper)
AOI system (lower)
Server
User A
User B
Quality control
router
Slitting
process
Top view
Wide steel
Three median
cut steels
Side view
Slitting
process
高速相機
自製光源
待測物
檢測系統規格:
量測範圍: 400mm x133mm
影像解析: 3K x 1K
缺陷檢測解析度: 150 μm
線上檢測速度: 96 m/min
前段執行鋼條切割
與壓延製程
後段執行AOI檢測
瑕疵種類:
刮痕 汙點 鑿痕 油汙
Smart FAB - Top Quality Steel Strip Production Line
應用在消費性產品的鋼帶分條生產線,導入線上全檢目的:
1. 快速診斷不良品問題,可即刻修正提高生產良率。
2. 所有鋼捲皆有檢測資料記錄報告,提供下游客戶更完整的品質保障與投料參考。
4
Copyright 2016 ITRI 工業技術研究院
檢測結果軟體頁面
生產線與檢測系統 鋼捲切割分條後產品
1.檢測資料上傳工廠ERP系統,紀錄包含料
號、鋼捲編號、刀序、鋼條寬度等。
2.檢測報表呈現單一鋼捲大範圍檢視,可檢
測出連續型瑕疵,用以改善製程。
面臨挑戰: (產品少量多樣檢測需求)
不同的原物料與製程,鋼捲具有不同的表
面粗糙度與色澤,例如酸洗製程、壓延製
程、鋼板材質與厚度等,將提高缺陷檢出
率的困難度。
5
已建置之生產線上量測系統
Copyright 2016 ITRI 工業技術研究院 6
 智能學習架構系統
 higher detection/recognition rate and higher ‎readability report
Training phase
Testing phase
Steel
images
Defect
region
(GO/NG)
Feature
selection
• Area
• Gray value
• ‎Roundness
• …
Training feature
extraction
Training SVM model
Testing feature
extraction
Classifying
Classified
results
Unknown
images
Traditional AOI Learning orientated classification
Feature
correlation &
normalized
AI, machine
learning SVM
Type I:
data points
Type II :
data points
Training model
self learning (linear, non-linear)
Type III :
data points
Unknown pattern
Predict  Type
II
 Quasi-Linear type
 Non Linear type
瑕疵分類SVM
Copyright 2016 ITRI 工業技術研究院
Intelligent System
Input layer Hidden layer Output layer
X1
X2
XN
Ɵk f
Ɵk f
Ɵk f
Hk
HNk
Ɵj f
Ɵj f
Y1
Yj
YN0
…
…
…
illumination
Defect features
Steel type/width
Inspection
coefficients
Auto ROI
adjusting
Steel process
Oil Non-oil
PO CR PO CR
Calendering Calendering
8
Copyright 2016 ITRI 工業技術研究院
• 提高影像缺陷檢出率之機器學習
- 瑕疵判斷導入機器學習(Machine Learning)機制
提高檢出率(80% ↑)、瑕疵分類製程回饋
• 檢測系統智能化控制與預測
- 檢測系統關鍵參數適應性調整,包括光源亮度、相機參數、處理資料、瑕疵
分類演算法等。
- 系統自我診斷與預測功能,包括光源光衰判斷、系統維護保養、系統組件壽
命偵測等。
因應彈性製造進行智能調整及提升機台稼動率
發展機器學習及決策系統
相機模組
料號不同、材質不同、
系統適應性調整
光學模組
待測物
工廠生產資訊
9
Copyright 2016 ITRI 工業技術研究院
Magic T-Box - Windows Phone/Tablet MMI Testing
“Magic T-Box” is a software and hardware integrated solution for Windows tablets and
Windows phones manufacturing functional tests. Industrial Technology Research
Institute and Microsoft collaborate to design the “Magic T-Box” solution to enable
Microsoft OEM and ODM partners to build high quality Windows device efficiently.
1.More than nineteen testing items : System Info, Battery, Brightness, Display, Front
Camera, Rear Camera, Accelerometer, Gyrometer, ALS, Compass, GPS, Touch,
Removable Device, Wifi, Bluetooth, SIM Card, Speaker and mic, Headset and
mic,…,etc.
2.Integrated production record data will be analyzed in the cloud.( 1. Measured
results were upload to database in cloud (Azure). 2. Intelligent algorithm start to
analysis all measured data (Big Data) and show fit results automatically.)
Human Inspection Automatic Magic T-Box
Testing results upload to cloud
10
Copyright 2016 ITRI 工業技術研究院
Incoming Quality Control
(IQC)
Raw material input
In Process Quality Control
(IPQC)
Produce (manuf./ assembly)
Out-Going Quality Control
(OQC)
Final Test
TP / Exterior
後相機組裝 前相機組裝
排線整理
絕緣膠片黏貼
機殼外觀檢查 酒精擦拭接觸點
LCD
Others
HDMI
Mic & SpeakerDisplay
Removable
Device
Play Video
Camera
Microsoft’s ODM / OEM (目前現況)
11
Copyright 2016 ITRI 工業技術研究院
CCD
Motor MTF Target
Auto Focus
Camera
Resolution
AOI
Color
Temperature
QR Code / Position
AOI : Point / Line / Corner
Chromaticity /
Brightness
SNR
Audio Jack
Holding Fixture
A. Measure Size :
4 ~ 12 inch
B. Adaptive fixture
for all customized
device
ITRI CMS
Magic T-Box
Jitter / Backward /
Input Separation
12
Copyright 2016 ITRI 工業技術研究院
Headset
Good qualityPoor quality but acceptable
signal
Sample A Sample B
Sample A:穩定度較差,測試5次內會有1~2次fail的機會
Sample B:穩定度很好,測試都會過
Sample A的音訊以頻譜分析可以發現在極低頻段有明顯的噪
訊,此噪訊不一定會被人耳聽到。Sample B的音訊在頻譜分
析可以觀察到除了訊號外幾乎沒有噪訊。
Copyright 2016 ITRI 工業技術研究院
Touchscreen
部分Touchscreen的Report Data有Offset及Jitter的現象
人工測試時會不知不覺地修正Device的錯誤
jitter
Offset
斷線
透過精確地數值分析可確實地過濾不良品
Copyright 2016 ITRI 工業技術研究院
19 Testing Items
Cycle Time : < 2 min.
More than 100 output data once
How do you think about it ?
Upload data to the cloud, then do analysis.
+
15
ITRI CMS
Magic T-Box
ITRI CMS Magic Testing Box (T-Box)
Copyright 2016 ITRI 工業技術研究院
Fault Detection and Classification
Machine Unstably or Another Product Line ?
Real-time Monitoring
Run to Run Control
Predict
Model
Measured Value Predict Value
Variance
Out of limits
of the recipe?
Update Model
or Data
Clean and
maintain
Adaptive Model for 少量多樣
Predictive Maintenance(PdM)
Maintenance records
Sensor Data
+
Machine Learning
Prediction
Model
input
output
Benefit :
1. decrease downtime event
2. clear what happened
3. predict element’s life time
Not Regular maintenance
User experience independent
16
建立機器本身狀態的自我偵測分析能力
𝑛𝑒𝑡𝑗 = (𝑤1𝑗∗ 𝑥1 + 𝑤2𝑗 ∗ 𝑥2 + 𝑤3𝑗 ∗ 𝑥3) − 𝜃𝑗
17
Prediction Model
𝜔𝑖𝑗
Supervised Learning
Training
Dataset
Input X predicted Y
camera
frame rate
motor
speed
PLC/FPGA
response rate
optical
illumination
air inflow of
pneumatic
cylinder
Maintenance
records
utilization
rate
Predictive Maintenance(PdM)Run by Run Control
… …
𝜃𝑗
𝑛𝑒𝑡𝑗
f
𝑤1𝑗 𝑤𝑖𝑗
𝑥1 𝑥2 𝑥3
𝑤2𝑗 𝑤3𝑗
𝑦1 𝑦2
𝑦𝑗 = 𝑓(𝑛𝑒𝑡 𝑗)
𝑦1
𝜃𝑗
𝑛𝑒𝑡𝑗
f
𝜃𝑗
𝑛𝑒𝑡𝑗
f
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7
Y : dead percentage
Neural
Network
Test Data
1. summation function
2. activity function
3. transfer function
Display Color
Distance
Camera IMF
Sound
Frequency
Indicators
SNR : 48.8 dB
Standard Wav.
Time (ms)
Frequency
The Same Input, but output A or B or C.
It’s the sign that 1) DUT Normal 2) DUT Abnormal 3) Diff. DUT.
But how to know in inspect-process ?
A
B
Input Run 2 Run and FDC
C
SNR : 47.7 dB
Diff. DUT
Run 2 Run and FDC
43.6 dB
42.4 dB
45.3 dB
41.9 dB
47.2 dB
48.0 dB
46.8 dB 1.5 dB
2.6 dB0.5 dB
1.1 dB
Predict Model
Input
47.6 dB
In Run 2 Run process,
Predict Model will not
be changed and just
modify weight of
Cluster B.
43.6 dB
42.4 dB
45.3 dB
41.9 dB
47.2 dB
48.0 dB
46.8 dB 1.5 dB
2.6 dB0.5 dB
1.1 dB
Predict Model
47.6 dB
Cluster A
Cluster B
Cluster C
Cluster B
Cluster C
Cluster ADUT Normal
Run 2 Run and FDC
43.6 dB
42.4 dB
45.3 dB
41.9 dB
47.2 dB
48.0 dB
46.8 dB 1.5 dB
2.6 dB0.5 dB
1.1 dB
Predict Model
Input
37.0 dB
In Run 2 Run process,
Predict Model will be
changed and add New
Cluster D.
43.6 dB
42.4 dB
45.3 dB
41.9 dB
47.2 dB
48.0 dB
46.8 dB 1.5 dB
2.6 dB0.5 dB
1.1 dB
Predict Model
Cluster B37.0 dB
Cluster D
Cluster A
Cluster B
Cluster C
Cluster C
Cluster A
Diff. DUT
Run 2 Run and FDC
43.6 dB
42.4 dB
45.3 dB
41.9 dB
47.2 dB
48.0 dB
46.8 dB 1.5 dB
2.6 dB0.5 dB
1.1 dB
Predict Model
Input
2.0 dB
In Run 2 Run process,
Predict Model will not
be changed and know
something wrong.
43.6 dB
42.4 dB
45.3 dB
41.9 dB
47.2 dB
48.0 dB
46.8 dB 1.5 dB
2.6 dB0.5 dB
1.1 dB
Predict Model
Cluster B
Cluster A
Cluster B
Cluster C
Cluster C
Cluster A
2.0 dB
DUT Abnormal
SNR : 48.8 dB
Standard Wav.
Time (ms)
Frequency
The Same Input, but sometimes output A, other times output B.
It’s the sign that MIC in mainboard will be broken.
But how to know in inspect-process ?
A
B
Input Example for Predictive Maintenance
Example for Predictive Maintenance
Maintenance records
Broken 1 : Normal 5 times, Abnormal 15 times, Diff. DUT 2 times.
Broken 2 : Normal 2 times, Abnormal 7 times, Diff. DUT 1 time.
.
.
.
Broken N : Normal 10 times, Abnormal 27 times, Diff. DUT 4 times.
Input
2.0 dB
Abnormal Abnormal : 6 times
Normal : 2 times
Diff. DUT : 1 time
Broken percentage = 99 %
Predict Model : 𝜔𝑖𝑗
𝑛𝑒𝑡𝑗 = (𝑤1𝑗∗ 𝑥1 + 𝑤2𝑗 ∗ 𝑥2 + 𝑤3𝑗 ∗ 𝑥3) − 𝜃𝑗
𝑦𝑗 = 𝑓(𝑛𝑒𝑡 𝑗)
1. summation function
2. activity function
3. transfer function
𝜃𝑗
𝑛𝑒𝑡𝑗
f
𝑤𝑖𝑗
𝑦1
𝜃𝑗
𝑛𝑒𝑡𝑗
f
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7
Y : dead percentage
Copyright 2016 ITRI 工業技術研究院
Combining Machine Learning and Optimization in Supply Chain Analytics
Demand Forecasting
Challenges:
• Predicting demand
for items that have
never been sold
before
• Estimating the
lowest cost
(Price/Time/…).
Techniques:
• Clustering
• Machine Learning
models for
regression.
Cost Optimization
Challenges:
• Structure of demand
forecast
• Demand of each
device is depend on
cost computing ->
exponential number of
variables
Techniques:
• Novel reformulation of
cost optimization
problem.
• Creation of efficient
alg.
1. All combinations were
recorded in cloud(Train)
2. Modeling(Train)
Machine
Learning
Prediction
Model
Expected
Label
建立生產線最佳化的數據分析能力
24
Copyright 2016 ITRI 工業技術研究院
未來技術主軸
• 佈建智能化檢測設備
• 檢測設備與生產線的緊密結合
• 上/下游供應商品質資料串連
Copyright 2016 ITRI 工業技術研究院
謝謝您的參與和聆聽!
26
感謝技術團隊的支援:
陳心怡 劉曉薇
吳潔瑜 藍于瀅
陳義昌 李漢文
林俊仁 劉定坤
卓嘉弘 王柏愷
陳泳昌

More Related Content

PDF
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
台灣資料科學年會
 
PDF
論文口試簡報製作技巧
滄碩 劉
 
PPTX
研華 智聯工廠與智能設備雙引擎|實踐智慧製造
鼎新電腦
 
PDF
モデルベース協調フィルタリングにおける推薦の透明性に関する検討
Okamoto Laboratory, The University of Electro-Communications
 
PPTX
行銷管理期中報告(星巴克).pptx
ssuser81464f
 
PDF
【Junior新趨勢_精準醫療】
Collaborator
 
PDF
i 聯網系列之7: 工業4.0簡報
Richardpei AIOT 綠色數位轉型顧問
 
PDF
【Junior新趨勢_矽光子】
Collaborator
 
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
台灣資料科學年會
 
論文口試簡報製作技巧
滄碩 劉
 
研華 智聯工廠與智能設備雙引擎|實踐智慧製造
鼎新電腦
 
モデルベース協調フィルタリングにおける推薦の透明性に関する検討
Okamoto Laboratory, The University of Electro-Communications
 
行銷管理期中報告(星巴克).pptx
ssuser81464f
 
【Junior新趨勢_精準醫療】
Collaborator
 
i 聯網系列之7: 工業4.0簡報
Richardpei AIOT 綠色數位轉型顧問
 
【Junior新趨勢_矽光子】
Collaborator
 

What's hot (20)

PDF
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
CHENHuiMei
 
PDF
Case Study_CCL.pdf
Collaborator
 
PPTX
Junior新趨勢:低軌道衛星
Collaborator
 
PDF
崇越論文競賽簡報
Ricky Lee
 
PPTX
落合流先生流の論文要旨フォーマット
森 哲也
 
PDF
管科年會Ppt
Ricky Lee
 
PDF
Case_Study_充電樁.pdf
Collaborator
 
PPTX
社群媒體與圖書館
皓仁 柯
 
PDF
麥肯錫新人培訓7堂課
周建良 Zhou Jian Liang
 
PPTX
論文口試
pico start
 
PDF
星巴克年度行銷企劃書
jocelyn95851
 
PDF
打造 AIoT 智慧物聯網時代解決方案
Poy Chang
 
PPTX
データサイエンス概論第一 5 時系列データの解析
Seiichi Uchida
 
PDF
研究分野をサーベイする
Takayuki Itoh
 
PDF
Pythonではじめるロケーションデータ解析
Hiroaki Sengoku
 
PDF
車用連結器
Collaborator
 
PDF
製造業智慧化發展策略
Pei Hung Hsieh
 
PDF
Junior產業:PCB產業
Collaborator
 
PDF
《解構顧客價值鏈》--數位轉型必讀!以商業模式創新決勝
Charles Lee
 
PDF
Junior新趨勢: 邊緣運算
Collaborator
 
AOI智慧升級─AI訓練師在地養成計畫_台灣人工智慧學校
CHENHuiMei
 
Case Study_CCL.pdf
Collaborator
 
Junior新趨勢:低軌道衛星
Collaborator
 
崇越論文競賽簡報
Ricky Lee
 
落合流先生流の論文要旨フォーマット
森 哲也
 
管科年會Ppt
Ricky Lee
 
Case_Study_充電樁.pdf
Collaborator
 
社群媒體與圖書館
皓仁 柯
 
麥肯錫新人培訓7堂課
周建良 Zhou Jian Liang
 
論文口試
pico start
 
星巴克年度行銷企劃書
jocelyn95851
 
打造 AIoT 智慧物聯網時代解決方案
Poy Chang
 
データサイエンス概論第一 5 時系列データの解析
Seiichi Uchida
 
研究分野をサーベイする
Takayuki Itoh
 
Pythonではじめるロケーションデータ解析
Hiroaki Sengoku
 
車用連結器
Collaborator
 
製造業智慧化發展策略
Pei Hung Hsieh
 
Junior產業:PCB產業
Collaborator
 
《解構顧客價值鏈》--數位轉型必讀!以商業模式創新決勝
Charles Lee
 
Junior新趨勢: 邊緣運算
Collaborator
 
Ad

Similar to 智慧檢測技術與工業自動化 (20)

PPT
L1_Introduction.ppt
Varsha506533
 
PDF
Safety Verification and Software aspects of Automotive SoC
Pankaj Singh
 
PDF
“Enabling Ultra-low Power Edge Inference and On-device Learning with Akida,” ...
Edge AI and Vision Alliance
 
PPTX
Anomaly Detection using Deep Auto-Encoders | Gianmario Spacagna
Data Science Milan
 
PPT
FPGA_prototyping proccesing with conclusion
PersiPersi1
 
PDF
EIOT Unit 1n.pdf
RameshGande2
 
PDF
Combining out - of - band monitoring with AI and big data for datacenter aut...
Ganesan Narayanasamy
 
PDF
2020 vision - the journey from research lab to real-world product
KTN
 
PPTX
2015 01 24 Coding4Fun at Tajamar
Bruno Capuano
 
PPTX
Machine Learning Impact on IoT - Part 2
Value Amplify Consulting
 
PPTX
DEVENDRAPLC .pptx
DEVENDRA SHRIVASH
 
PDF
Debugging At The Electronic System Level 1st Edition Frank Rogin
menonyafeihs
 
PDF
Fingerprint base security system
praful borad
 
PDF
Vdsg /Craftworks Industrial-AI
Vienna Data Science Group
 
PDF
Introduction to AIoT & TinyML - with Arduino
Andri Yadi
 
PPTX
Pin pointpresentation
Levan Huan
 
PDF
“How to Run Audio and Vision AI Algorithms at Ultra-low Power,” a Presentatio...
Edge AI and Vision Alliance
 
PPTX
Heart rate monitor system
Skyinthe Raw
 
L1_Introduction.ppt
Varsha506533
 
Safety Verification and Software aspects of Automotive SoC
Pankaj Singh
 
“Enabling Ultra-low Power Edge Inference and On-device Learning with Akida,” ...
Edge AI and Vision Alliance
 
Anomaly Detection using Deep Auto-Encoders | Gianmario Spacagna
Data Science Milan
 
FPGA_prototyping proccesing with conclusion
PersiPersi1
 
EIOT Unit 1n.pdf
RameshGande2
 
Combining out - of - band monitoring with AI and big data for datacenter aut...
Ganesan Narayanasamy
 
2020 vision - the journey from research lab to real-world product
KTN
 
2015 01 24 Coding4Fun at Tajamar
Bruno Capuano
 
Machine Learning Impact on IoT - Part 2
Value Amplify Consulting
 
DEVENDRAPLC .pptx
DEVENDRA SHRIVASH
 
Debugging At The Electronic System Level 1st Edition Frank Rogin
menonyafeihs
 
Fingerprint base security system
praful borad
 
Vdsg /Craftworks Industrial-AI
Vienna Data Science Group
 
Introduction to AIoT & TinyML - with Arduino
Andri Yadi
 
Pin pointpresentation
Levan Huan
 
“How to Run Audio and Vision AI Algorithms at Ultra-low Power,” a Presentatio...
Edge AI and Vision Alliance
 
Heart rate monitor system
Skyinthe Raw
 
Ad

More from CHENHuiMei (20)

PDF
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
PDF
QIF對AOI設備業之衝擊與機會
CHENHuiMei
 
PDF
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
CHENHuiMei
 
PDF
基於少樣本深度學習之橡膠墊片檢測系統
CHENHuiMei
 
PDF
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
CHENHuiMei
 
PDF
IIoT發展趨勢及設備業者因應之_微軟葉怡君
CHENHuiMei
 
PDF
精密機械的空間軌跡精度光學檢測法_台大范光照
CHENHuiMei
 
PDF
Report
CHENHuiMei
 
PDF
Deep learning
CHENHuiMei
 
PDF
When AOI meets AI
CHENHuiMei
 
PDF
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
CHENHuiMei
 
PDF
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
CHENHuiMei
 
PDF
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
CHENHuiMei
 
PDF
2018AOI論壇_AOI and IoT產線應用_工研院周森益
CHENHuiMei
 
PDF
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
CHENHuiMei
 
PDF
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
CHENHuiMei
 
PDF
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
CHENHuiMei
 
PDF
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
CHENHuiMei
 
PDF
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
CHENHuiMei
 
PDF
200704 Dr. Schenk 產品策略
CHENHuiMei
 
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
CHENHuiMei
 
QIF對AOI設備業之衝擊與機會
CHENHuiMei
 
產研融合推手-台大AOI設備研發聯盟_台大陳亮嘉
CHENHuiMei
 
基於少樣本深度學習之橡膠墊片檢測系統
CHENHuiMei
 
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
CHENHuiMei
 
IIoT發展趨勢及設備業者因應之_微軟葉怡君
CHENHuiMei
 
精密機械的空間軌跡精度光學檢測法_台大范光照
CHENHuiMei
 
Report
CHENHuiMei
 
Deep learning
CHENHuiMei
 
When AOI meets AI
CHENHuiMei
 
2018AOI論壇_基於生成對抗網路之非監督式AOI技術_工研院蔡雅惠
CHENHuiMei
 
2018AOIEA論壇Keynote_眺望趨勢 量測設備未來10年發展重點_致茂曾一士
CHENHuiMei
 
2018AOI論壇Keynote_AI入魂製造領域現況與趨勢_工研院熊治民
CHENHuiMei
 
2018AOI論壇_AOI and IoT產線應用_工研院周森益
CHENHuiMei
 
2018AOI論壇_AOI參與整廠協作之實務建議_達明機器人黃鐘賢
CHENHuiMei
 
2018AOI論壇_深度學習在電腦視覺應用上的疑問_中央大學曾定章
CHENHuiMei
 
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
CHENHuiMei
 
2018AOI論壇_時機已到 AOI導入邊緣運算_SAS林育宏
CHENHuiMei
 
2018AOI論壇_如何導入深度學習來提升工業瑕疵檢測技術_工研院賴璟皓
CHENHuiMei
 
200704 Dr. Schenk 產品策略
CHENHuiMei
 

Recently uploaded (20)

PDF
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
PDF
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PDF
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PDF
REPORT: Heating appliances market in Poland 2024
SPIUG
 
PPTX
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
PPTX
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
PDF
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
PDF
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
PDF
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PDF
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PDF
Brief History of Internet - Early Days of Internet
sutharharshit158
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
PPTX
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
PDF
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 
The Future of Mobile Is Context-Aware—Are You Ready?
iProgrammer Solutions Private Limited
 
SparkLabs Primer on Artificial Intelligence 2025
SparkLabs Group
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
REPORT: Heating appliances market in Poland 2024
SPIUG
 
The-Ethical-Hackers-Imperative-Safeguarding-the-Digital-Frontier.pptx
sujalchauhan1305
 
OA presentation.pptx OA presentation.pptx
pateldhruv002338
 
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
Orbitly Pitch Deck|A Mission-Driven Platform for Side Project Collaboration (...
zz41354899
 
Make GenAI investments go further with the Dell AI Factory
Principled Technologies
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
Brief History of Internet - Early Days of Internet
sutharharshit158
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
Automating ArcGIS Content Discovery with FME: A Real World Use Case
Safe Software
 

智慧檢測技術與工業自動化

  • 1. Copyright 2015 ITRI工業技術研究院機密資料 禁止複製、轉載、外流 ITRI CONFIDENTIAL DOCUMENT DO NOT COPY OR DISTRIBUTE 智慧檢測技術與工業自動化 量測技術發展中心 儀器與感測技術發展組 周森益 2016.06.16
  • 2. Copyright 2016 ITRI 工業技術研究院 前言 • 面對新經濟模式,自動化生產/檢測,所遭遇 的全新挑戰。 • 當所有資料全部保存到雲端,我們如何看待 這些資料?
  • 3. Copyright 2016 ITRI 工業技術研究院 A Self-Learning Measurement System with Intelligent Software Meet industrial needs: • In-Situ inspection: dynamic environment • Quick response: valid measurement data and prediction mechanism • Flexible manufacture • User experience data analysis 1. False alarm 2. Miss detection 3. Unsuitable and manual coefficients setting from sensors 1. Fault detection decreased 2. Feasible or optimized coefficients settings from sensors 3. Self-diagnosis of maintenance and lifecycle time of sensors Increase measures’ accuracy & precision Fault detection Sensor 1 Sensor 2 Sensor … Sensor K Optical modules Hardware modules Measurement software Measurement System AS IS TO BE Sensor 1 Sensor 2 Sensor … Sensor K Optical modules Hardware modules Measurement System output Measurement software Intelligent Software Self-diagnosis Self-learning output 3
  • 4. Copyright 2016 ITRI 工業技術研究院 roller steel CCD Lens CCD Lens AOI system (upper) AOI system (lower) Server User A User B Quality control router Slitting process Top view Wide steel Three median cut steels Side view Slitting process 高速相機 自製光源 待測物 檢測系統規格: 量測範圍: 400mm x133mm 影像解析: 3K x 1K 缺陷檢測解析度: 150 μm 線上檢測速度: 96 m/min 前段執行鋼條切割 與壓延製程 後段執行AOI檢測 瑕疵種類: 刮痕 汙點 鑿痕 油汙 Smart FAB - Top Quality Steel Strip Production Line 應用在消費性產品的鋼帶分條生產線,導入線上全檢目的: 1. 快速診斷不良品問題,可即刻修正提高生產良率。 2. 所有鋼捲皆有檢測資料記錄報告,提供下游客戶更完整的品質保障與投料參考。 4
  • 5. Copyright 2016 ITRI 工業技術研究院 檢測結果軟體頁面 生產線與檢測系統 鋼捲切割分條後產品 1.檢測資料上傳工廠ERP系統,紀錄包含料 號、鋼捲編號、刀序、鋼條寬度等。 2.檢測報表呈現單一鋼捲大範圍檢視,可檢 測出連續型瑕疵,用以改善製程。 面臨挑戰: (產品少量多樣檢測需求) 不同的原物料與製程,鋼捲具有不同的表 面粗糙度與色澤,例如酸洗製程、壓延製 程、鋼板材質與厚度等,將提高缺陷檢出 率的困難度。 5 已建置之生產線上量測系統
  • 6. Copyright 2016 ITRI 工業技術研究院 6  智能學習架構系統  higher detection/recognition rate and higher ‎readability report Training phase Testing phase Steel images Defect region (GO/NG) Feature selection • Area • Gray value • ‎Roundness • … Training feature extraction Training SVM model Testing feature extraction Classifying Classified results Unknown images Traditional AOI Learning orientated classification Feature correlation & normalized AI, machine learning SVM Type I: data points Type II : data points Training model self learning (linear, non-linear) Type III : data points Unknown pattern Predict  Type II  Quasi-Linear type  Non Linear type 瑕疵分類SVM
  • 7. Copyright 2016 ITRI 工業技術研究院 Intelligent System Input layer Hidden layer Output layer X1 X2 XN Ɵk f Ɵk f Ɵk f Hk HNk Ɵj f Ɵj f Y1 Yj YN0 … … … illumination Defect features Steel type/width Inspection coefficients Auto ROI adjusting Steel process Oil Non-oil PO CR PO CR Calendering Calendering 8
  • 8. Copyright 2016 ITRI 工業技術研究院 • 提高影像缺陷檢出率之機器學習 - 瑕疵判斷導入機器學習(Machine Learning)機制 提高檢出率(80% ↑)、瑕疵分類製程回饋 • 檢測系統智能化控制與預測 - 檢測系統關鍵參數適應性調整,包括光源亮度、相機參數、處理資料、瑕疵 分類演算法等。 - 系統自我診斷與預測功能,包括光源光衰判斷、系統維護保養、系統組件壽 命偵測等。 因應彈性製造進行智能調整及提升機台稼動率 發展機器學習及決策系統 相機模組 料號不同、材質不同、 系統適應性調整 光學模組 待測物 工廠生產資訊 9
  • 9. Copyright 2016 ITRI 工業技術研究院 Magic T-Box - Windows Phone/Tablet MMI Testing “Magic T-Box” is a software and hardware integrated solution for Windows tablets and Windows phones manufacturing functional tests. Industrial Technology Research Institute and Microsoft collaborate to design the “Magic T-Box” solution to enable Microsoft OEM and ODM partners to build high quality Windows device efficiently. 1.More than nineteen testing items : System Info, Battery, Brightness, Display, Front Camera, Rear Camera, Accelerometer, Gyrometer, ALS, Compass, GPS, Touch, Removable Device, Wifi, Bluetooth, SIM Card, Speaker and mic, Headset and mic,…,etc. 2.Integrated production record data will be analyzed in the cloud.( 1. Measured results were upload to database in cloud (Azure). 2. Intelligent algorithm start to analysis all measured data (Big Data) and show fit results automatically.) Human Inspection Automatic Magic T-Box Testing results upload to cloud 10
  • 10. Copyright 2016 ITRI 工業技術研究院 Incoming Quality Control (IQC) Raw material input In Process Quality Control (IPQC) Produce (manuf./ assembly) Out-Going Quality Control (OQC) Final Test TP / Exterior 後相機組裝 前相機組裝 排線整理 絕緣膠片黏貼 機殼外觀檢查 酒精擦拭接觸點 LCD Others HDMI Mic & SpeakerDisplay Removable Device Play Video Camera Microsoft’s ODM / OEM (目前現況) 11
  • 11. Copyright 2016 ITRI 工業技術研究院 CCD Motor MTF Target Auto Focus Camera Resolution AOI Color Temperature QR Code / Position AOI : Point / Line / Corner Chromaticity / Brightness SNR Audio Jack Holding Fixture A. Measure Size : 4 ~ 12 inch B. Adaptive fixture for all customized device ITRI CMS Magic T-Box Jitter / Backward / Input Separation 12
  • 12. Copyright 2016 ITRI 工業技術研究院 Headset Good qualityPoor quality but acceptable signal Sample A Sample B Sample A:穩定度較差,測試5次內會有1~2次fail的機會 Sample B:穩定度很好,測試都會過 Sample A的音訊以頻譜分析可以發現在極低頻段有明顯的噪 訊,此噪訊不一定會被人耳聽到。Sample B的音訊在頻譜分 析可以觀察到除了訊號外幾乎沒有噪訊。
  • 13. Copyright 2016 ITRI 工業技術研究院 Touchscreen 部分Touchscreen的Report Data有Offset及Jitter的現象 人工測試時會不知不覺地修正Device的錯誤 jitter Offset 斷線 透過精確地數值分析可確實地過濾不良品
  • 14. Copyright 2016 ITRI 工業技術研究院 19 Testing Items Cycle Time : < 2 min. More than 100 output data once How do you think about it ? Upload data to the cloud, then do analysis. + 15 ITRI CMS Magic T-Box ITRI CMS Magic Testing Box (T-Box)
  • 15. Copyright 2016 ITRI 工業技術研究院 Fault Detection and Classification Machine Unstably or Another Product Line ? Real-time Monitoring Run to Run Control Predict Model Measured Value Predict Value Variance Out of limits of the recipe? Update Model or Data Clean and maintain Adaptive Model for 少量多樣 Predictive Maintenance(PdM) Maintenance records Sensor Data + Machine Learning Prediction Model input output Benefit : 1. decrease downtime event 2. clear what happened 3. predict element’s life time Not Regular maintenance User experience independent 16 建立機器本身狀態的自我偵測分析能力
  • 16. 𝑛𝑒𝑡𝑗 = (𝑤1𝑗∗ 𝑥1 + 𝑤2𝑗 ∗ 𝑥2 + 𝑤3𝑗 ∗ 𝑥3) − 𝜃𝑗 17 Prediction Model 𝜔𝑖𝑗 Supervised Learning Training Dataset Input X predicted Y camera frame rate motor speed PLC/FPGA response rate optical illumination air inflow of pneumatic cylinder Maintenance records utilization rate Predictive Maintenance(PdM)Run by Run Control … … 𝜃𝑗 𝑛𝑒𝑡𝑗 f 𝑤1𝑗 𝑤𝑖𝑗 𝑥1 𝑥2 𝑥3 𝑤2𝑗 𝑤3𝑗 𝑦1 𝑦2 𝑦𝑗 = 𝑓(𝑛𝑒𝑡 𝑗) 𝑦1 𝜃𝑗 𝑛𝑒𝑡𝑗 f 𝜃𝑗 𝑛𝑒𝑡𝑗 f 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 Y : dead percentage Neural Network Test Data 1. summation function 2. activity function 3. transfer function Display Color Distance Camera IMF Sound Frequency Indicators
  • 17. SNR : 48.8 dB Standard Wav. Time (ms) Frequency The Same Input, but output A or B or C. It’s the sign that 1) DUT Normal 2) DUT Abnormal 3) Diff. DUT. But how to know in inspect-process ? A B Input Run 2 Run and FDC C SNR : 47.7 dB Diff. DUT
  • 18. Run 2 Run and FDC 43.6 dB 42.4 dB 45.3 dB 41.9 dB 47.2 dB 48.0 dB 46.8 dB 1.5 dB 2.6 dB0.5 dB 1.1 dB Predict Model Input 47.6 dB In Run 2 Run process, Predict Model will not be changed and just modify weight of Cluster B. 43.6 dB 42.4 dB 45.3 dB 41.9 dB 47.2 dB 48.0 dB 46.8 dB 1.5 dB 2.6 dB0.5 dB 1.1 dB Predict Model 47.6 dB Cluster A Cluster B Cluster C Cluster B Cluster C Cluster ADUT Normal
  • 19. Run 2 Run and FDC 43.6 dB 42.4 dB 45.3 dB 41.9 dB 47.2 dB 48.0 dB 46.8 dB 1.5 dB 2.6 dB0.5 dB 1.1 dB Predict Model Input 37.0 dB In Run 2 Run process, Predict Model will be changed and add New Cluster D. 43.6 dB 42.4 dB 45.3 dB 41.9 dB 47.2 dB 48.0 dB 46.8 dB 1.5 dB 2.6 dB0.5 dB 1.1 dB Predict Model Cluster B37.0 dB Cluster D Cluster A Cluster B Cluster C Cluster C Cluster A Diff. DUT
  • 20. Run 2 Run and FDC 43.6 dB 42.4 dB 45.3 dB 41.9 dB 47.2 dB 48.0 dB 46.8 dB 1.5 dB 2.6 dB0.5 dB 1.1 dB Predict Model Input 2.0 dB In Run 2 Run process, Predict Model will not be changed and know something wrong. 43.6 dB 42.4 dB 45.3 dB 41.9 dB 47.2 dB 48.0 dB 46.8 dB 1.5 dB 2.6 dB0.5 dB 1.1 dB Predict Model Cluster B Cluster A Cluster B Cluster C Cluster C Cluster A 2.0 dB DUT Abnormal
  • 21. SNR : 48.8 dB Standard Wav. Time (ms) Frequency The Same Input, but sometimes output A, other times output B. It’s the sign that MIC in mainboard will be broken. But how to know in inspect-process ? A B Input Example for Predictive Maintenance
  • 22. Example for Predictive Maintenance Maintenance records Broken 1 : Normal 5 times, Abnormal 15 times, Diff. DUT 2 times. Broken 2 : Normal 2 times, Abnormal 7 times, Diff. DUT 1 time. . . . Broken N : Normal 10 times, Abnormal 27 times, Diff. DUT 4 times. Input 2.0 dB Abnormal Abnormal : 6 times Normal : 2 times Diff. DUT : 1 time Broken percentage = 99 % Predict Model : 𝜔𝑖𝑗 𝑛𝑒𝑡𝑗 = (𝑤1𝑗∗ 𝑥1 + 𝑤2𝑗 ∗ 𝑥2 + 𝑤3𝑗 ∗ 𝑥3) − 𝜃𝑗 𝑦𝑗 = 𝑓(𝑛𝑒𝑡 𝑗) 1. summation function 2. activity function 3. transfer function 𝜃𝑗 𝑛𝑒𝑡𝑗 f 𝑤𝑖𝑗 𝑦1 𝜃𝑗 𝑛𝑒𝑡𝑗 f 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 Y : dead percentage
  • 23. Copyright 2016 ITRI 工業技術研究院 Combining Machine Learning and Optimization in Supply Chain Analytics Demand Forecasting Challenges: • Predicting demand for items that have never been sold before • Estimating the lowest cost (Price/Time/…). Techniques: • Clustering • Machine Learning models for regression. Cost Optimization Challenges: • Structure of demand forecast • Demand of each device is depend on cost computing -> exponential number of variables Techniques: • Novel reformulation of cost optimization problem. • Creation of efficient alg. 1. All combinations were recorded in cloud(Train) 2. Modeling(Train) Machine Learning Prediction Model Expected Label 建立生產線最佳化的數據分析能力 24
  • 24. Copyright 2016 ITRI 工業技術研究院 未來技術主軸 • 佈建智能化檢測設備 • 檢測設備與生產線的緊密結合 • 上/下游供應商品質資料串連
  • 25. Copyright 2016 ITRI 工業技術研究院 謝謝您的參與和聆聽! 26 感謝技術團隊的支援: 陳心怡 劉曉薇 吳潔瑜 藍于瀅 陳義昌 李漢文 林俊仁 劉定坤 卓嘉弘 王柏愷 陳泳昌