This document discusses statistical methods for analyzing high-throughput biomedical screens and common pitfalls. It introduces several statistical tests such as t-tests, ANOVA, Fisher's exact test, and the Mann-Whitney U test. It also discusses challenges like multiple testing, resampling techniques, and biases that can occur like studiedness bias and abundance bias in big data analyses. Controlling false discovery rates and considering effect sizes are recommended over solely relying on p-values to determine biological significance.