SlideShare a Scribd company logo
Stream Processing with

Apache Flink
Maximilian Michels
Flink PMC member
mxm@apache.org
@stadtlegende
The Agenda
▪ What is Apache Flink?
▪ Streaming 101
▪ The Flink Engine
▪ A Quick Look at the API
2
Apache Flink
▪ A distributed open-source data analysis
framework
▪ True streaming at its core
▪ Streaming & Batch API
3
Historic data
Kafka,	RabbitMQ,	...
HDFS,	JDBC,	...
Event	logs
ETL, Graphs,

Machine Learning

Relational, …
Low latency,

windowing,
aggregations, ...
Organizations at Flink Forward
4
Featured in
5
Flink Community
Top 5 Apache Big Data project in the Apache
Software Foundation
500+ messages/month on the mailing list
8400+ commits
1500+ pull requests merged
950+ stars
510+ forks
Uses Cases for Flink
7
Use Case: Log File Analysis
▪ Load log files from a distributed file system
▪ Process them, sessionize according to the user id
▪ Write a view to the database or dump more data
for further processing
8
• Process
• Analyze
• Aggregate
Use Case: Tweet Impressions
9
Continuous Stream of Tweets
(each with a timestamp)
▪ How do we measure the importance of Tweets?
• Total number of views
• Views within a time period
▪ We need to process and aggregate Tweets!
Max Marie Jonas Tim are tweeting.
Use Case: Tweet Impressions
10
Max Marie Jonas Tim are tweeting.
Last minute
Last hour
Last day
Impressions
Impression Events Aggregation of Impressions Output
More	at:	http://data-artisans.com/extending-the-yahoo-streaming-benchmark/
Streaming 101
11
Why Stream Processing?
▪ Most problems have streaming nature
▪ Stream processing gives lower latency
▪ Data volumes more easily tamed
▪ More predictable resource consumption
12
Event	stream
batch
(solved)
event
based
Challenges in Streaming
▪ Latency
▪ Throughput
▪ Fault-Tolerance
▪ Correctness
▪ Elements may be out-of-order
▪ Elements may be processed more than
once
13
Windows
▪ A grouping of records according to time,
count, or session, e.g.
• Count: The last 100 records
• Session: All records for user X
• Time: All records of the last 2 minutes
14
Event Time
▪ Processing time: when data is processed
▪ Ingestion time: when data is loaded
▪ Event time: when data is generated
▪ Almost always, the three are different
▪ Event time helps to process out-of-order or
to replay elements as they occurred
15
Event Time & Watermarks
▪ Elements arrives: How do we know what time it
is?
▪ Processing time: take the hardware clock
▪ Event time: Watermarks
▪ Watermarks are timestamps
▪ No elements later than the timestamp are
expected to arrive
16
Event Time & Watermarks
17
0
0
0 0
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
Watermark. Event Timewindow operator
Event Time & Watermarks
171
0
0 0
1
Watermark. Event Timewindow operator
Event Time & Watermarks
17
1
0
0 0
1
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
2
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
2
1
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
1
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
2
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
2
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
2
2
2
Watermark. Event Timewindow operator
Event Time & Watermarks
17
0
0 0
1
1
2
1
2
2 2
Watermark. Event Timewindow operator
18
Tumbling Windows of 4 Seconds
123412
4
59
9 0
20
20
22212326323321
26
35
18
Tumbling Windows of 4 Seconds
123412
4
59
9
0
20
20
22212326323321
26
35
18
Tumbling Windows of 4 Seconds
123412
4
59
9
20
20
22212326323321
26
35
0-3
18
Tumbling Windows of 4 Seconds
123412
4
59
9
20
20
22212326323321
26
35
0-3
18
Tumbling Windows of 4 Seconds
1
23412
4
59
9
20
20
22212326323321
26
35
0-3
18
Tumbling Windows of 4 Seconds
12
3412
4
59
9
20
20
22212326323321
26
35
0-3
18
Tumbling Windows of 4 Seconds
123
412
4
59
9
20
20
22212326323321
26
35
0-3
4-7
18
Tumbling Windows of 4 Seconds
123
412
4
59
9
20
20
22212326323321
26
35
0-3
4-7
18
Tumbling Windows of 4 Seconds
123
4
12
4
59
9
20
20
22212326323321
26
35
0-3
4-7
18
Tumbling Windows of 4 Seconds
123
4
1
2
4
59
9
20
20
22212326323321
26
35
0-3
4-7
18
Tumbling Windows of 4 Seconds
123
4
12
4
59
9
20
20
22212326323321
26
35
0-3
4-7
18
Tumbling Windows of 4 Seconds
123
4
12
4
59
9
20
20
22212326323321
26
35
4-7
18
Tumbling Windows of 4 Seconds
4
4
59
9
20
20
22212326323321
26
35
4-7
18
Tumbling Windows of 4 Seconds
4
59
9
20
20
22212326323321
26
35
4-7
18
Tumbling Windows of 4 Seconds
45
9
9
20
20
22212326323321
26
35
8-11
4-7
18
Tumbling Windows of 4 Seconds
45
9
9
20
20
22212326323321
26
35
8-11
4-7
18
Tumbling Windows of 4 Seconds
45
9
9
20
20
22212326323321
26
35
8-11
4-7
18
Tumbling Windows of 4 Seconds
45
9
9
20
20
22212326323321
26
35
8-11
18
Tumbling Windows of 4 Seconds
9
9
20
20
22212326323321
26
35
8-11
18
Tumbling Windows of 4 Seconds
9
20
20
22212326323321
26
35
20-23
8-11
18
Tumbling Windows of 4 Seconds
9
20
20
22212326323321
26
35
20-23
8-11
18
Tumbling Windows of 4 Seconds
9
20
20
22212326323321
26
35
20-23
8-11
18
Tumbling Windows of 4 Seconds
9
20
20
22212326323321
26
35
20-23
18
Tumbling Windows of 4 Seconds
20
20
22212326323321
26
35
20-23
18
Tumbling Windows of 4 Seconds
20
22212326323321
26
35
20-23
18
Tumbling Windows of 4 Seconds
20222123
26323321
26
35
24-27
20-23
18
Tumbling Windows of 4 Seconds
20222123
26323321
26
35
24-27
20-23
18
Tumbling Windows of 4 Seconds
20222123
26
323321
26
35
32-35
24-27
20-23
18
Tumbling Windows of 4 Seconds
20222123
26
323321
26
35
32-35
24-27
20-23
18
Tumbling Windows of 4 Seconds
20222123
26
3233
21
26
35
32-35
24-27
20-23
18
Tumbling Windows of 4 Seconds
20222123
26
3233
21
26
35
32-35
24-27
20-23
18
Tumbling Windows of 4 Seconds
20222123
26
3233
21
26
35
32-35
24-27
18
Tumbling Windows of 4 Seconds
26
3233
26
35
32-35
24-27
18
Tumbling Windows of 4 Seconds
26
3233
35
32-35
24-27
18
Tumbling Windows of 4 Seconds
26
323335
The Flink Engine
19
From Program to Execution
case	class	Path	(from:	Long,	to:	Long)	
val	tc	=	edges.iterate(10)	{		
		paths:	DataSet[Path]	=>	
				val	next	=	paths	
						.join(edges)	
						.where("to")	
						.equalTo("from")	{	
								(path,	edge)	=>		
										Path(path.from,	edge.to)	
						}	
						.union(paths)	
						.distinct()	
				next	
		}
Cost-based
optimizer
Type extraction
stack
Task
scheduling
Recovery
metadata
Pre-flight (Client)
Master
Workers
DataSource
orders.tbl
Filter
Map DataSource
lineitem.tbl
Join
Hybrid Hash
buildHT probe
hash-part [0] hash-part [0]
GroupRed
sort
forward
Program
Dataflow

Graph
Memory
manager
Out-of-core
algorithms
Batch &
Streaming
State &
Checkpoints
deploy

operators
track

intermediate

results
Flink Applications
21
Streaming
topologies
Heavy
Batch jobs
Machine Learning at scale
Graph processing at scale
E.g.: Non-Native Iterations
22
Step Step Step Step Step
Client
for	(int	i	=	0;	i	<	maxIterations;	i++)	{	
	 //	Execute	MapReduce	job	
}
Iterative Processing in Flink
▪ Built-in iterations and delta iterations
▪ Executes machine learning and graph
algorithms efficiently
23
E.g.: Non-Native Streaming
24
discretize
stream
Job Job Job Job
while	(true)	{	
		//	get	next	few	records	
		//	issue	batch	job	
}
Pipelining
25
Basic building block to “keep data moving”
• Low latency
• Operators push data
forward
• Data shipping as
buffers, not tuple-
wise
• Natural handling of
Flink Engine
1. Execute everything as streams
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
3. Mutable state in operators State	+	
Computation
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
3. Mutable state in operators
4. Operate on managed memory
State	+	
Computation
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
3. Mutable state in operators
4. Operate on managed memory
5. Special code paths for batch
State	+	
Computation
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
3. Mutable state in operators
4. Operate on managed memory
5. Special code paths for batch
6. HA mode – no single point of failure
State	+	
Computation
Flink Engine
1. Execute everything as streams
2. Iterative (cyclic) dataflows
3. Mutable state in operators
4. Operate on managed memory
5. Special code paths for batch
6. HA mode – no single point of failure
7. Checkpointing of operator state
State	+	
Computation
Flink Eco System
Gelly
Table
ML
SAMOA
DataSet (Java/Scala/Python) DataStream
HadoopM/R
Local Cluster Yarn
Dataflow
Dataflow
MRQL
Table
Cascading
Streaming dataflow runtime
Storm
Zeppelin
Flink Eco System
Gelly
Table
ML
SAMOA
DataSet (Java/Scala/Python) DataStream
HadoopM/R
Local Cluster Yarn
Dataflow
Dataflow
MRQL
Table
Cascading
Streaming dataflow runtime
Storm
Zeppelin
HDFS
HBase
Kafka
RabbitMQ
Flume
HCatalog
JDBC
A Quick Look at the DataStream API
28
API Structure
//	Create	Environment	
StreamExecutionEnvironment	env	=	
			StreamExecutionEnvironment.getExecutionEnvironment();	
//	Add	Source	
DataStream<Type>	source	=	env.addSource(…);	
//	Perform	transformations	
DataStream<Type2>	trans	=	source.keyBy(“field”).map(…).timeWindow(...)	
//	Add	Sink	
trans.addSink(…);	
//	Execute!	
env.execute();
29
Hourly Impressions
//	read	from	Kafka	Tweet	Impressions	topic

DataStream<Tweet>	tweets	=

			env.addSource(new	FlinkKafkaConsumer<>(...));

//	count	total	number	of	tweets

DataStream<Tweet>	summaryStream	=	tweets	
			.filter(tweet	->	tweet.tweetId	!=	null)

			.keyBy(tweet	->	tweet.tweetId)

			.window(TumblingTimeWindows.of(Time.hours(1)))

			.sum("impressions");



//	output	to	Kafka	
summaryStream.addSink(	
				new	FlinkKafkaProducer<Tweet>(...));
30
class	Tweet	{

			String	tweetId;

			String	userId;

			String	text;

			long	impressions;

}
Up-to-date Daily Impressions
//	read	from	Kafka	Tweet	Impressions	topic

DataStream<Tweet>	tweets	=

			env.addSource(new	FlinkKafkaConsumer<>(...));

//	count	total	number	of	tweets

DataStream<Tweet>	summaryStream	=	tweets	
			.filter(tweet	->	tweet.tweetId	!=	null)

			.keyBy(tweet	->	tweet.tweetId)

			.window(SlidingTimeWindows.of(	
						Time.days(1),	Time.minutes(1)))

			.sum("impressions");



//	output	to	database	or	Kafka	
summaryStream.addSink(	
				new	FlinkKafkaProducer<Tweet>(...));
31
class	Tweet	{

			String	tweetId;

			String	userId;

			String	text;

			long	impressions;

}
Hourly Impression Summary
DataStream<Summary>	summaryStream	=	tweets

			.keyBy(tweet	->	tweet.tweetId)

			.window(TumblingTimeWindows.of(Time.hours(1)))

			.apply(new	WindowFunction<>()	{

						public	void	apply(String	tweetId,		
																								TimeWindow	window,

																								Iterable<Tweet>	impressions,

																								Collector<Summary>	out)	{

									long	count	=	0;	Tweet	tweet	=	null;

									for	(Tweet	val	:	impressions)	{

												tweet	=	val;	count++;

									}

									//	output	summary

									out.collect(new	Summary(tweet,	count,

												window.getStart(),

												window.getEnd()));	
									}

});
32
class	Tweet	{

			String	tweetId;

			String	userId;

			String	text;

}
class	Summary	{

			Tweet	tweet;

			long	impressions;

			long	beginTime;

			long	endTime;

}
Closing
33
Apache Flink
▪ A powerful framework with stream
processor at its core
▪ Features
• True Streaming with great Batch support
• Easy to use APIs, library ecosystem
• Fault-tolerant and Consistent
• Low latency - High throughput
• Growing community
I ♥ , do you?
35
▪ More information on flink.apache.org
▪ Flink Training at data-artisans.com
▪ Subscribe to the mailing lists
▪ Follow @ApacheFlink
▪ Next: 1.0.0 release
▪ Soon: Stream SQL, Mesos, Dynamic scaling
Thank you for your attention!
36

More Related Content

What's hot (20)

PPTX
Kostas Tzoumas - Apache Flink®: State of the Union and What's Next
Ververica
 
PPTX
Apache Incubator Samza: Stream Processing at LinkedIn
Chris Riccomini
 
PPTX
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Ververica
 
PPTX
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Flink Forward
 
PDF
Apache Flink: Better, Faster & Uncut - Piotr Nowojski, data Artisans
Evention
 
PPTX
Flink Forward Berlin 2017: Patrick Gunia - Migration of a realtime stats prod...
Flink Forward
 
PDF
Tech Talk @ Google on Flink Fault Tolerance and HA
Paris Carbone
 
PDF
2018-01 Seattle Apache Flink Meetup at OfferUp, Opening Remarks and Talk 2
Ververica
 
PDF
Pulsar connector on flink 1.14
宇帆 盛
 
PDF
Flink Forward SF 2017: Jamie Grier - Apache Flink - The latest and greatest
Flink Forward
 
PPTX
Fabian Hueske - Stream Analytics with SQL on Apache Flink
Ververica
 
PPTX
Debunking Common Myths in Stream Processing
Kostas Tzoumas
 
PPTX
Respond to and troubleshoot production incidents like an sa
Tom Cudd
 
PDF
Feeding a Squirrel in Time---Windows in Flink
Matthias J. Sax
 
PPTX
Flink internals web
Kostas Tzoumas
 
PDF
Unified Stream and Batch Processing with Apache Flink
DataWorks Summit/Hadoop Summit
 
PPTX
Aljoscha Krettek - The Future of Apache Flink
Flink Forward
 
PDF
Loophole: Timing Attacks on Shared Event Loops in Chrome
cgvwzq
 
PPTX
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward
 
PDF
Flink Forward SF 2017: Stefan Richter - Improvements for large state and reco...
Flink Forward
 
Kostas Tzoumas - Apache Flink®: State of the Union and What's Next
Ververica
 
Apache Incubator Samza: Stream Processing at LinkedIn
Chris Riccomini
 
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Ververica
 
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Flink Forward
 
Apache Flink: Better, Faster & Uncut - Piotr Nowojski, data Artisans
Evention
 
Flink Forward Berlin 2017: Patrick Gunia - Migration of a realtime stats prod...
Flink Forward
 
Tech Talk @ Google on Flink Fault Tolerance and HA
Paris Carbone
 
2018-01 Seattle Apache Flink Meetup at OfferUp, Opening Remarks and Talk 2
Ververica
 
Pulsar connector on flink 1.14
宇帆 盛
 
Flink Forward SF 2017: Jamie Grier - Apache Flink - The latest and greatest
Flink Forward
 
Fabian Hueske - Stream Analytics with SQL on Apache Flink
Ververica
 
Debunking Common Myths in Stream Processing
Kostas Tzoumas
 
Respond to and troubleshoot production incidents like an sa
Tom Cudd
 
Feeding a Squirrel in Time---Windows in Flink
Matthias J. Sax
 
Flink internals web
Kostas Tzoumas
 
Unified Stream and Batch Processing with Apache Flink
DataWorks Summit/Hadoop Summit
 
Aljoscha Krettek - The Future of Apache Flink
Flink Forward
 
Loophole: Timing Attacks on Shared Event Loops in Chrome
cgvwzq
 
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward
 
Flink Forward SF 2017: Stefan Richter - Improvements for large state and reco...
Flink Forward
 

Similar to Stream processing with Apache Flink - Maximilian Michels Data Artisans (20)

PPTX
Flink. Pure Streaming
Indizen Technologies
 
PDF
Stream Processing with Apache Flink
C4Media
 
PPTX
Data Stream Processing with Apache Flink
Fabian Hueske
 
PDF
Unified Stream & Batch Processing with Apache Flink (Hadoop Summit Dublin 2016)
ucelebi
 
PDF
Data Stream Analytics - Why they are important
Paris Carbone
 
PDF
Stream Processing with Apache Flink (Flink.tw Meetup 2016/07/19)
Apache Flink Taiwan User Group
 
PDF
Unlocking the Power of Apache Flink: An Introduction in 4 Acts
HostedbyConfluent
 
PPTX
QCon London - Stream Processing with Apache Flink
Robert Metzger
 
PPTX
GOTO Night Amsterdam - Stream processing with Apache Flink
Robert Metzger
 
PDF
Log Event Stream Processing In Flink Way
George T. C. Lai
 
PDF
Making Sense of Apache Flink: A Fearless Introduction
HostedbyConfluent
 
PDF
K. Tzoumas & S. Ewen – Flink Forward Keynote
Flink Forward
 
PDF
Apache flink
pranay kumar
 
PPTX
Have your cake and eat it too, further dispelling the myths of the lambda arc...
Dimos Raptis
 
PPTX
Flexible and Real-Time Stream Processing with Apache Flink
DataWorks Summit
 
PDF
Apache Flink @ Tel Aviv / Herzliya Meetup
Robert Metzger
 
PPTX
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Robert Metzger
 
PPTX
Real-time Stream Processing with Apache Flink
DataWorks Summit
 
PPTX
Apache Flink(tm) - A Next-Generation Stream Processor
Aljoscha Krettek
 
PPTX
Flink Streaming @BudapestData
Gyula Fóra
 
Flink. Pure Streaming
Indizen Technologies
 
Stream Processing with Apache Flink
C4Media
 
Data Stream Processing with Apache Flink
Fabian Hueske
 
Unified Stream & Batch Processing with Apache Flink (Hadoop Summit Dublin 2016)
ucelebi
 
Data Stream Analytics - Why they are important
Paris Carbone
 
Stream Processing with Apache Flink (Flink.tw Meetup 2016/07/19)
Apache Flink Taiwan User Group
 
Unlocking the Power of Apache Flink: An Introduction in 4 Acts
HostedbyConfluent
 
QCon London - Stream Processing with Apache Flink
Robert Metzger
 
GOTO Night Amsterdam - Stream processing with Apache Flink
Robert Metzger
 
Log Event Stream Processing In Flink Way
George T. C. Lai
 
Making Sense of Apache Flink: A Fearless Introduction
HostedbyConfluent
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
Flink Forward
 
Apache flink
pranay kumar
 
Have your cake and eat it too, further dispelling the myths of the lambda arc...
Dimos Raptis
 
Flexible and Real-Time Stream Processing with Apache Flink
DataWorks Summit
 
Apache Flink @ Tel Aviv / Herzliya Meetup
Robert Metzger
 
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Robert Metzger
 
Real-time Stream Processing with Apache Flink
DataWorks Summit
 
Apache Flink(tm) - A Next-Generation Stream Processor
Aljoscha Krettek
 
Flink Streaming @BudapestData
Gyula Fóra
 
Ad

More from Evention (20)

PDF
The Factorization Machines algorithm for building recommendation system - Paw...
Evention
 
PDF
A/B testing powered by Big data - Saurabh Goyal, Booking.com
Evention
 
PDF
Near Real-Time Fraud Detection in Telecommunication Industry - Burak Işıklı, ...
Evention
 
PDF
Assisting millions of active users in real-time - Alexey Brodovshuk, Kcell; K...
Evention
 
PDF
Machine learning security - Pawel Zawistowski, Warsaw University of Technolog...
Evention
 
PDF
Building a Modern Data Pipeline: Lessons Learned - Saulius Valatka, Adform
Evention
 
PDF
Privacy by Design - Lars Albertsson, Mapflat
Evention
 
PDF
Elephants in the cloud or how to become cloud ready - Krzysztof Adamski, GetI...
Evention
 
PDF
Deriving Actionable Insights from High Volume Media Streams - Jörn Kottmann, ...
Evention
 
PDF
Enhancing Spark - increase streaming capabilities of your applications - Kami...
Evention
 
PDF
7 Days of Playing Minesweeper, or How to Shut Down Whistleblower Defense with...
Evention
 
PDF
Big Data Journey at a Big Corp - Tomasz Burzyński, Maciej Czyżowicz, Orange P...
Evention
 
PDF
Scaling Cassandra in all directions - Jimmy Mardell Spotify
Evention
 
PDF
Big Data for unstructured data Dariusz Śliwa
Evention
 
PDF
Elastic development. Implementing Big Data search Grzegorz Kołpuć
Evention
 
PDF
H2 o deep water making deep learning accessible to everyone -jo-fai chow
Evention
 
PDF
That won’t fit into RAM - Michał Brzezicki
Evention
 
PDF
Stream Analytics with SQL on Apache Flink - Fabian Hueske
Evention
 
PDF
Hopsworks Secure Streaming as-a-service with Kafka Flinkspark - Theofilos Kak...
Evention
 
PDF
ING CoreIntel - collect and process network logs across data centers in near ...
Evention
 
The Factorization Machines algorithm for building recommendation system - Paw...
Evention
 
A/B testing powered by Big data - Saurabh Goyal, Booking.com
Evention
 
Near Real-Time Fraud Detection in Telecommunication Industry - Burak Işıklı, ...
Evention
 
Assisting millions of active users in real-time - Alexey Brodovshuk, Kcell; K...
Evention
 
Machine learning security - Pawel Zawistowski, Warsaw University of Technolog...
Evention
 
Building a Modern Data Pipeline: Lessons Learned - Saulius Valatka, Adform
Evention
 
Privacy by Design - Lars Albertsson, Mapflat
Evention
 
Elephants in the cloud or how to become cloud ready - Krzysztof Adamski, GetI...
Evention
 
Deriving Actionable Insights from High Volume Media Streams - Jörn Kottmann, ...
Evention
 
Enhancing Spark - increase streaming capabilities of your applications - Kami...
Evention
 
7 Days of Playing Minesweeper, or How to Shut Down Whistleblower Defense with...
Evention
 
Big Data Journey at a Big Corp - Tomasz Burzyński, Maciej Czyżowicz, Orange P...
Evention
 
Scaling Cassandra in all directions - Jimmy Mardell Spotify
Evention
 
Big Data for unstructured data Dariusz Śliwa
Evention
 
Elastic development. Implementing Big Data search Grzegorz Kołpuć
Evention
 
H2 o deep water making deep learning accessible to everyone -jo-fai chow
Evention
 
That won’t fit into RAM - Michał Brzezicki
Evention
 
Stream Analytics with SQL on Apache Flink - Fabian Hueske
Evention
 
Hopsworks Secure Streaming as-a-service with Kafka Flinkspark - Theofilos Kak...
Evention
 
ING CoreIntel - collect and process network logs across data centers in near ...
Evention
 
Ad

Recently uploaded (20)

PPTX
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
PDF
Avatar for apidays apidays PRO June 07, 2025 0 5 apidays Helsinki & North 2...
apidays
 
PPTX
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
PPTX
ER_Model_Relationship_in_DBMS_Presentation.pptx
dharaadhvaryu1992
 
PPTX
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
PDF
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
PDF
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PPTX
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
PDF
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PDF
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
PDF
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
PPTX
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PDF
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
PPTX
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
PDF
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
PPT
Growth of Public Expendituuure_55423.ppt
NavyaDeora
 
apidays Helsinki & North 2025 - Running a Successful API Program: Best Practi...
apidays
 
Avatar for apidays apidays PRO June 07, 2025 0 5 apidays Helsinki & North 2...
apidays
 
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
ER_Model_Relationship_in_DBMS_Presentation.pptx
dharaadhvaryu1992
 
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
apidays Helsinki & North 2025 - Monetizing AI APIs: The New API Economy, Alla...
apidays
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
R Cookbook - Processing and Manipulating Geological spatial data with R.pdf
OtnielSimopiaref2
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Data Chunking Strategies for RAG in 2025.pdf
Tamanna
 
JavaScript - Good or Bad? Tips for Google Tag Manager
📊 Markus Baersch
 
Aict presentation on dpplppp sjdhfh.pptx
vabaso5932
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
OOPs with Java_unit2.pdf. sarthak bookkk
Sarthak964187
 
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
Growth of Public Expendituuure_55423.ppt
NavyaDeora
 

Stream processing with Apache Flink - Maximilian Michels Data Artisans