SlideShare a Scribd company logo
PCM
 PCM consists of three steps to digitize an
analog signal:
1. Sampling
2. Quantization
3. Binary encoding
 Before we sample, we have to filter the
signal to limit the maximum frequency of
the signal as it affects the sampling rate.
 Filtering should ensure that we do not
distort the signal, ie remove high frequency
components that affect the signal shape.
Figure : Components of PCM encoder
Sampling
 Analog signal is sampled every TS secs.
 Ts is referred to as the sampling interval.
 fs = 1/Ts is called the sampling rate or
sampling frequency.
 There are 3 sampling methods:
 Ideal - an impulse at each sampling instant
 Natural - a pulse of short width with varying
amplitude
 Flattop - sample and hold, like natural but with
single amplitude value
 The process is referred to as pulse amplitude
modulation PAM and the outcome is a signal
with analog (non integer) values
Figure: Three different sampling methods for PCM
According to the Nyquist theorem, the
sampling rate must be
at least 2 times the highest frequency
contained in the signal.
Note
Quantization
 Sampling results in a series of pulses of
varying amplitude values ranging between
two limits: a min and a max.
 The amplitude values are infinite between the
two limits.
 We need to map the infinite amplitude values
onto a finite set of known values.
 This is achieved by dividing the distance
between min and max into L zones, each of
height 
 = (max - min)/L
Quantization Levels
 The midpoint of each zone is assigned a
value from 0 to L-1 (resulting in L
values)
 Each sample falling in a zone is then
approximated to the value of the
midpoint.
Quantization Zones
 Assume we have a voltage signal with
amplitutes Vmin=-20V and Vmax=+20V.
 We want to use L=8 quantization levels.
 Zone width = (20 - -20)/8 = 5
 The 8 zones are: -20 to -15, -15 to -10,
-10 to -5, -5 to 0, 0 to +5, +5 to +10,
+10 to +15, +15 to +20
 The midpoints are: -17.5, -12.5, -7.5, -
2.5, 2.5, 7.5, 12.5, 17.5
Encoding
 Each zone is then assigned a binary code.
 The number of bits required to encode the
zones, or the number of bits per sample as it
is commonly referred to, is obtained as
follows:
nb = log2 L
 Given our example, nb = 3
 The 8 zone (or level) codes are therefore:
000, 001, 010, 011, 100, 101, 110, and 111
 Assigning codes to zones:
 000 will refer to zone -20 to -15
 001 to zone -15 to -10, etc.
Figure 4.26 Quantization and encoding of a sampled signal
Quantization Error
 When a signal is quantized, we introduce an
error - the coded signal is an approximation
of the actual amplitude value.
 The difference between actual and coded
value (midpoint) is referred to as the
quantization error.
 The more zones, the smaller  which results
in smaller errors.
 BUT, the more zones the more bits required
to encode the samples -> higher bit rate
Quantization Noise
 The effect of quantization errors in a PCM encoder
is treated as additive noise with a subjective
effect that is similar to band-limited white noise.
 Hence, the quality of the signal can be
quantitatively measured by the signal-to-
quantization noise ratio (SQR).
Bit rate and bandwidth
requirements of PCM
 The bit rate of a PCM signal can be calculated form
the number of bits per sample x the sampling rate
Bit rate = nb x fs
 The bandwidth required to transmit this signal
depends on the type of line encoding used. Refer to
previous section for discussion and formulas.
 A digitized signal will always need more bandwidth
than the original analog signal. Price we pay for
robustness and other features of digital transmission.
We want to digitize the human voice. What is the bit rate,
assuming 8 bits per sample?
Solution
The human voice normally contains frequencies from 0
to 4000 Hz. So the sampling rate and bit rate are
calculated as follows:
Example
PCM Decoder
 To recover an analog signal from a digitized
signal we follow the following steps:
 We use a hold circuit that holds the amplitude
value of a pulse till the next pulse arrives.
 We pass this signal through a low pass filter with a
cutoff frequency that is equal to the highest
frequency in the pre-sampled signal.
 The higher the value of L, the less distorted a
signal is recovered.
Figure: Components of a PCM decoder
We have a low-pass analog signal of 4 kHz. If we send the
analog signal, we need a channel with a minimum
bandwidth of 4 kHz. If we digitize the signal and send 8
bits per sample, we need a channel with a minimum
bandwidth of 8 × 4 kHz = 32 kHz.
Example 4.15
Delta Modulation
 This scheme sends only the difference
between pulses, if the pulse at time tn+1 is
higher in amplitude value than the pulse at
time tn, then a single bit, say a “1”, is used to
indicate the positive value.
 If the pulse is lower in value, resulting in a
negative value, a “0” is used.
 This scheme works well for small changes in
signal values between samples.
 If changes in amplitude are large, this will
result in large errors.
Figure 4.28 The process of delta modulation
Figure 4.29 Delta modulation components
Figure 4.30 Delta demodulation components
Delta PCM (DPCM)
 Instead of using one bit to indicate positive
and negative differences, we can use more
bits -> quantization of the difference.
 Each bit code is used to represent the value
of the difference.
 The more bits the more levels -> the higher
the accuracy.
Nonuniform Quantization
 The type of quantization so far discussed is called
uniform quantization because the quantization
levels are assumed to be equally spaced. This
technique achieves the maximum SQR only for a
full-amplitude signal. In practice, this cannot be
the case, and the average SQR can be significantly
lower than the maximum given in (2.2). Figure
2.8(a) depicts uniform quantization of a full-
amplitude and a smaller sinusoidal signal. It can be
seen qualitatively that the approximation of the
smaller signal is inferior to that of the larger signal.
Example
Nonuniform Quantization
 How much lower an SQR we have in a practical
system depends on the dynamic range (the ratio of
maximum and minimum amplitudes) of the analog
signal.
 where A is the maximum amplitude of the
signal being quantized, and Amax is the full-load
range of the quantizer. This implies lower SQR for
small signals compared to large signals.
The probability of occurrence of small amplitudes in
speech is much greater than large ones.
Consequently, it seems appropriate to provide many
quantization levels in the small amplitude range
and only a few in the region of large ampli- tudes.
As long as the total number of levels remains
unchanged, no increase in trans- mission bandwidth
will be required. However, the average SQR will
improve. This technique is referred to as
nonuniform quantization. Figure 2.8(b) illustrates
the improvement in quantization of low-amplitude
signals compared to uniform quantization.
Modern telephony applications make use of low-
bit-rate voice coding techniques in order to
conserve bandwidth. The primary motivations for
low-bit-rate coding are the need to minimize
transmission costs and storage and the need to
transmit over channels of limited capacity, such as
mobile radio channels. In addition, there are also
needs to share capacity for different services, such
as voice, audio, data, graph- ics, and images, in
integrated services networks and to support
variable-rate coding in packet-oriented networks
Low Bit-Rate Voice Coding
Digital Encoding of Waveforms
Following the introduction of PCM, network operators
soon realized that by using 32-kbit/s adaptive
differential PCM (ADPCM), they could double the
capacity of important narrow bandwidth links such as
undersea cables. At that time, the goal of speech
coding was to provide a compression technology that
would enable copper cables to handle the continual
growth in voice traffic.
Digital encoding of waveforms, however, entails the
introduction of some kind of coding distortion, such as
quantization noise.
Digital Encoding of Waveforms
Speech coders compress speech by analyzing and
then quantizing features of the speech waveforms
in ways that attempt to minimize any audible
impairment [6]. As such, the basic challenge in
waveform encoding is to achieve the minimum
possible distortion for a given encod- ing rate or,
equivalently, to achieve a given acceptable level of
distortion with the least possible encoding rate [7].
The process of speech compression is very
computa- tionally intensive, incurs delays, and
requires powerful DSPs for implementation.
Digital Encoding of Waveforms
Some encoding techniques, such as PCM, are
lossless, providing a reconstructed waveform that
exactly matches the original signal sample for
sample. Other meth- ods achieve higher
compression through lossy techniques, which do
not allow exact reconstruction of the signal but
instead seek to preserve its information-bearing
characteristics [7].
Digital Encoding of Waveforms
Basic requirements in the design of low-bit-rate
coders can be summarized as [5]:
Data rate;
High quality of reconstructed signals;
Low encoder/decoder delays;
Low complexity and power consumption;
Robustness to random and bursty channel bit
errors and data losses;
Robust concatenation of codecs;
Graceful degradation of quality with increasing
bit error rates.

More Related Content

Similar to TeleCom Lecture 07.ppt (20)

PPT
359484366-LECTURE-4-Analog-to-Digital-Conversion-ppt.ppt
Rasheed673196
 
PPT
Analog-to-Digital-Conversion-10032025-081456am.ppt
digitalsystems00
 
PPT
ch4_2_v1.ppt111111111111111111111111111111
sitalamalakar108
 
PPT
4. Analog to digital conversation (1).ppt
test22333
 
PPT
ch4_2_v1.ppt
ASMZahidKausar
 
PPT
Pulse code mod
Akanksha_Seth
 
PDF
PCM pulse code modulation.pdf
AbdullahAlMamun939850
 
DOC
Lecture7 encodingmodulation
H K
 
PPT
1 PCM & Encoding
Water Birds (Ali)
 
PDF
_Pulse-Modulation-Techniqnes.pdf
SoyallRobi
 
PPTX
Pulse code modulation (PCM)
Mahima Shastri
 
PDF
COML02E_Data Communication _8_Pulse Modulation.pdf
engrdrex07
 
PPT
Introduction to communication system lecture4
Jumaan Ally Mohamed
 
PPTX
Pulse Code Modulation
Muhammad Ridwanul Hoque
 
PPT
Digital Transmission
anuragyadav94
 
PPTX
BDSP-Lecture 2.pptxh ryuhxfh fhhruujsfthnf
kelwaa99
 
PPTX
digital comMUNICATION ENGINEERING LECTURES
sharmin105kuet
 
PPTX
digital communication and Digital pulse Modulation.pptx
maheshgramaone
 
PPTX
Presentation ct
surabhisushant
 
PDF
Te 4 pulse_modulation
Shohan Ean
 
359484366-LECTURE-4-Analog-to-Digital-Conversion-ppt.ppt
Rasheed673196
 
Analog-to-Digital-Conversion-10032025-081456am.ppt
digitalsystems00
 
ch4_2_v1.ppt111111111111111111111111111111
sitalamalakar108
 
4. Analog to digital conversation (1).ppt
test22333
 
ch4_2_v1.ppt
ASMZahidKausar
 
Pulse code mod
Akanksha_Seth
 
PCM pulse code modulation.pdf
AbdullahAlMamun939850
 
Lecture7 encodingmodulation
H K
 
1 PCM & Encoding
Water Birds (Ali)
 
_Pulse-Modulation-Techniqnes.pdf
SoyallRobi
 
Pulse code modulation (PCM)
Mahima Shastri
 
COML02E_Data Communication _8_Pulse Modulation.pdf
engrdrex07
 
Introduction to communication system lecture4
Jumaan Ally Mohamed
 
Pulse Code Modulation
Muhammad Ridwanul Hoque
 
Digital Transmission
anuragyadav94
 
BDSP-Lecture 2.pptxh ryuhxfh fhhruujsfthnf
kelwaa99
 
digital comMUNICATION ENGINEERING LECTURES
sharmin105kuet
 
digital communication and Digital pulse Modulation.pptx
maheshgramaone
 
Presentation ct
surabhisushant
 
Te 4 pulse_modulation
Shohan Ean
 

More from RiyaBatool (18)

PPTX
Hashing.pptx
RiyaBatool
 
PPTX
Legal Liabilities of a software product.pptx
RiyaBatool
 
PPTX
Shaikh Ahmad Sarhindi.pptx
RiyaBatool
 
PPTX
Lecture5(VM).pptx
RiyaBatool
 
PPTX
lecture3(VM).pptx
RiyaBatool
 
PPTX
Lecture1(VM).pptx
RiyaBatool
 
PPT
lecture4(VM).ppt
RiyaBatool
 
PPTX
Xen Hypervisor.pptx
RiyaBatool
 
PPTX
TeleCom Lecture 04.pptx
RiyaBatool
 
PPTX
TeleCom Lecture 02.pptx
RiyaBatool
 
PPTX
part 3.pptx
RiyaBatool
 
PDF
VSS LEC5.pdf
RiyaBatool
 
PDF
VSS-2.pdf
RiyaBatool
 
PPTX
chapter 5.pptx
RiyaBatool
 
PPTX
chapter 10,11,13.pptx
RiyaBatool
 
PDF
VSS-1.pdf
RiyaBatool
 
PPTX
TeleCom Lecture 06.pptx
RiyaBatool
 
PPTX
TeleCom Lecture 05.pptx
RiyaBatool
 
Hashing.pptx
RiyaBatool
 
Legal Liabilities of a software product.pptx
RiyaBatool
 
Shaikh Ahmad Sarhindi.pptx
RiyaBatool
 
Lecture5(VM).pptx
RiyaBatool
 
lecture3(VM).pptx
RiyaBatool
 
Lecture1(VM).pptx
RiyaBatool
 
lecture4(VM).ppt
RiyaBatool
 
Xen Hypervisor.pptx
RiyaBatool
 
TeleCom Lecture 04.pptx
RiyaBatool
 
TeleCom Lecture 02.pptx
RiyaBatool
 
part 3.pptx
RiyaBatool
 
VSS LEC5.pdf
RiyaBatool
 
VSS-2.pdf
RiyaBatool
 
chapter 5.pptx
RiyaBatool
 
chapter 10,11,13.pptx
RiyaBatool
 
VSS-1.pdf
RiyaBatool
 
TeleCom Lecture 06.pptx
RiyaBatool
 
TeleCom Lecture 05.pptx
RiyaBatool
 
Ad

Recently uploaded (20)

PDF
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
PPTX
Milwaukee Marketo User Group - Summer Road Trip: Mapping and Personalizing Yo...
bbedford2
 
PPTX
Home Care Tools: Benefits, features and more
Third Rock Techkno
 
PPTX
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
PPTX
Foundations of Marketo Engage - Powering Campaigns with Marketo Personalization
bbedford2
 
PDF
ERP Consulting Services and Solutions by Contetra Pvt Ltd
jayjani123
 
PPTX
Customise Your Correlation Table in IBM SPSS Statistics.pptx
Version 1 Analytics
 
PDF
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
PDF
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
PDF
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
PDF
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
PPTX
Empowering Asian Contributions: The Rise of Regional User Groups in Open Sour...
Shane Coughlan
 
PPTX
AEM User Group: India Chapter Kickoff Meeting
jennaf3
 
PDF
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
PPTX
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PPTX
Finding Your License Details in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
NSF Converter Simplified: From Complexity to Clarity
Johnsena Crook
 
PDF
Everything you need to know about pricing & licensing Microsoft 365 Copilot f...
Q-Advise
 
PPTX
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
PDF
TheFutureIsDynamic-BoxLang witch Luis Majano.pdf
Ortus Solutions, Corp
 
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
Milwaukee Marketo User Group - Summer Road Trip: Mapping and Personalizing Yo...
bbedford2
 
Home Care Tools: Benefits, features and more
Third Rock Techkno
 
Agentic Automation Journey Session 1/5: Context Grounding and Autopilot for E...
klpathrudu
 
Foundations of Marketo Engage - Powering Campaigns with Marketo Personalization
bbedford2
 
ERP Consulting Services and Solutions by Contetra Pvt Ltd
jayjani123
 
Customise Your Correlation Table in IBM SPSS Statistics.pptx
Version 1 Analytics
 
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
Empowering Asian Contributions: The Rise of Regional User Groups in Open Sour...
Shane Coughlan
 
AEM User Group: India Chapter Kickoff Meeting
jennaf3
 
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Finding Your License Details in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
NSF Converter Simplified: From Complexity to Clarity
Johnsena Crook
 
Everything you need to know about pricing & licensing Microsoft 365 Copilot f...
Q-Advise
 
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
TheFutureIsDynamic-BoxLang witch Luis Majano.pdf
Ortus Solutions, Corp
 
Ad

TeleCom Lecture 07.ppt

  • 1. PCM  PCM consists of three steps to digitize an analog signal: 1. Sampling 2. Quantization 3. Binary encoding  Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.  Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape.
  • 2. Figure : Components of PCM encoder
  • 3. Sampling  Analog signal is sampled every TS secs.  Ts is referred to as the sampling interval.  fs = 1/Ts is called the sampling rate or sampling frequency.  There are 3 sampling methods:  Ideal - an impulse at each sampling instant  Natural - a pulse of short width with varying amplitude  Flattop - sample and hold, like natural but with single amplitude value  The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values
  • 4. Figure: Three different sampling methods for PCM
  • 5. According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. Note
  • 6. Quantization  Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.  The amplitude values are infinite between the two limits.  We need to map the infinite amplitude values onto a finite set of known values.  This is achieved by dividing the distance between min and max into L zones, each of height   = (max - min)/L
  • 7. Quantization Levels  The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)  Each sample falling in a zone is then approximated to the value of the midpoint.
  • 8. Quantization Zones  Assume we have a voltage signal with amplitutes Vmin=-20V and Vmax=+20V.  We want to use L=8 quantization levels.  Zone width = (20 - -20)/8 = 5  The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20  The midpoints are: -17.5, -12.5, -7.5, - 2.5, 2.5, 7.5, 12.5, 17.5
  • 9. Encoding  Each zone is then assigned a binary code.  The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows: nb = log2 L  Given our example, nb = 3  The 8 zone (or level) codes are therefore: 000, 001, 010, 011, 100, 101, 110, and 111  Assigning codes to zones:  000 will refer to zone -20 to -15  001 to zone -15 to -10, etc.
  • 10. Figure 4.26 Quantization and encoding of a sampled signal
  • 11. Quantization Error  When a signal is quantized, we introduce an error - the coded signal is an approximation of the actual amplitude value.  The difference between actual and coded value (midpoint) is referred to as the quantization error.  The more zones, the smaller  which results in smaller errors.  BUT, the more zones the more bits required to encode the samples -> higher bit rate
  • 12. Quantization Noise  The effect of quantization errors in a PCM encoder is treated as additive noise with a subjective effect that is similar to band-limited white noise.  Hence, the quality of the signal can be quantitatively measured by the signal-to- quantization noise ratio (SQR).
  • 13. Bit rate and bandwidth requirements of PCM  The bit rate of a PCM signal can be calculated form the number of bits per sample x the sampling rate Bit rate = nb x fs  The bandwidth required to transmit this signal depends on the type of line encoding used. Refer to previous section for discussion and formulas.  A digitized signal will always need more bandwidth than the original analog signal. Price we pay for robustness and other features of digital transmission.
  • 14. We want to digitize the human voice. What is the bit rate, assuming 8 bits per sample? Solution The human voice normally contains frequencies from 0 to 4000 Hz. So the sampling rate and bit rate are calculated as follows: Example
  • 15. PCM Decoder  To recover an analog signal from a digitized signal we follow the following steps:  We use a hold circuit that holds the amplitude value of a pulse till the next pulse arrives.  We pass this signal through a low pass filter with a cutoff frequency that is equal to the highest frequency in the pre-sampled signal.  The higher the value of L, the less distorted a signal is recovered.
  • 16. Figure: Components of a PCM decoder
  • 17. We have a low-pass analog signal of 4 kHz. If we send the analog signal, we need a channel with a minimum bandwidth of 4 kHz. If we digitize the signal and send 8 bits per sample, we need a channel with a minimum bandwidth of 8 × 4 kHz = 32 kHz. Example 4.15
  • 18. Delta Modulation  This scheme sends only the difference between pulses, if the pulse at time tn+1 is higher in amplitude value than the pulse at time tn, then a single bit, say a “1”, is used to indicate the positive value.  If the pulse is lower in value, resulting in a negative value, a “0” is used.  This scheme works well for small changes in signal values between samples.  If changes in amplitude are large, this will result in large errors.
  • 19. Figure 4.28 The process of delta modulation
  • 20. Figure 4.29 Delta modulation components
  • 21. Figure 4.30 Delta demodulation components
  • 22. Delta PCM (DPCM)  Instead of using one bit to indicate positive and negative differences, we can use more bits -> quantization of the difference.  Each bit code is used to represent the value of the difference.  The more bits the more levels -> the higher the accuracy.
  • 23. Nonuniform Quantization  The type of quantization so far discussed is called uniform quantization because the quantization levels are assumed to be equally spaced. This technique achieves the maximum SQR only for a full-amplitude signal. In practice, this cannot be the case, and the average SQR can be significantly lower than the maximum given in (2.2). Figure 2.8(a) depicts uniform quantization of a full- amplitude and a smaller sinusoidal signal. It can be seen qualitatively that the approximation of the smaller signal is inferior to that of the larger signal.
  • 25. Nonuniform Quantization  How much lower an SQR we have in a practical system depends on the dynamic range (the ratio of maximum and minimum amplitudes) of the analog signal.  where A is the maximum amplitude of the signal being quantized, and Amax is the full-load range of the quantizer. This implies lower SQR for small signals compared to large signals.
  • 26. The probability of occurrence of small amplitudes in speech is much greater than large ones. Consequently, it seems appropriate to provide many quantization levels in the small amplitude range and only a few in the region of large ampli- tudes. As long as the total number of levels remains unchanged, no increase in trans- mission bandwidth will be required. However, the average SQR will improve. This technique is referred to as nonuniform quantization. Figure 2.8(b) illustrates the improvement in quantization of low-amplitude signals compared to uniform quantization.
  • 27. Modern telephony applications make use of low- bit-rate voice coding techniques in order to conserve bandwidth. The primary motivations for low-bit-rate coding are the need to minimize transmission costs and storage and the need to transmit over channels of limited capacity, such as mobile radio channels. In addition, there are also needs to share capacity for different services, such as voice, audio, data, graph- ics, and images, in integrated services networks and to support variable-rate coding in packet-oriented networks Low Bit-Rate Voice Coding
  • 28. Digital Encoding of Waveforms Following the introduction of PCM, network operators soon realized that by using 32-kbit/s adaptive differential PCM (ADPCM), they could double the capacity of important narrow bandwidth links such as undersea cables. At that time, the goal of speech coding was to provide a compression technology that would enable copper cables to handle the continual growth in voice traffic. Digital encoding of waveforms, however, entails the introduction of some kind of coding distortion, such as quantization noise.
  • 29. Digital Encoding of Waveforms Speech coders compress speech by analyzing and then quantizing features of the speech waveforms in ways that attempt to minimize any audible impairment [6]. As such, the basic challenge in waveform encoding is to achieve the minimum possible distortion for a given encod- ing rate or, equivalently, to achieve a given acceptable level of distortion with the least possible encoding rate [7]. The process of speech compression is very computa- tionally intensive, incurs delays, and requires powerful DSPs for implementation.
  • 30. Digital Encoding of Waveforms Some encoding techniques, such as PCM, are lossless, providing a reconstructed waveform that exactly matches the original signal sample for sample. Other meth- ods achieve higher compression through lossy techniques, which do not allow exact reconstruction of the signal but instead seek to preserve its information-bearing characteristics [7].
  • 31. Digital Encoding of Waveforms Basic requirements in the design of low-bit-rate coders can be summarized as [5]: Data rate; High quality of reconstructed signals; Low encoder/decoder delays; Low complexity and power consumption; Robustness to random and bursty channel bit errors and data losses; Robust concatenation of codecs; Graceful degradation of quality with increasing bit error rates.