TEMPERATURE MEASUREMENT
Temperature is one of the important parameter which measured in every industry and it is the
effect of hotness and coldness of material.
Units of measurement:
1) Degree centigrade (oC)
2) Kelvin(o K)
3) Fahrenheit(o F)
4) Rankine (o R)
Conversion:
oF = (oC*9)/5+32
oK =0C+273.15
oR = oF+459.67
Temperature indicators:
There are two types of temperature indicators (thermometers)
1) filled bulb temperature indicator
2) bi-metallic strip temperature indicator
Filled bulb temperature indicator:
The principle behind filled bulb temperature indicator is that when filled bulb exposed to
process temperature, due to expansion of the fluid it will rise up and it is connected to bourden
tube and it will deflect with respect to the pressure of fluid and intern temperature of fluid.
We know that as temperature increases, pressure increases with the constant volume hence
temperature and pressure are proportional. The figures are shown below,
They are classified based on the filling material used
1) liquid filled(class I)
2) vapor filled (class II)
3) gas filled (class III)
4) mercury filled(class v)
Class Temperature range Response
Class- I -125 oF to 600 oF slower
Class- II -40 oF to 600 oF faster
Class- III -450 oF to 1400 oF fastest
Class- V -40 oF to 1200 oF fastest
Fig1. Class I liquid filled temperature indicator.
Fig2. Class II Vapor filled temperature indicator
Suppose if we want temperature gauge to be panel mounted, by using capillary extension we
can pass the fluid but limited to small distance. The fig. shown below,
Fig. armored capillary extension temperature gauge
Bimetallic strip temperature indicator
Bimetallic strip temperature indicator uses two different material of different coefficient of
expansion and which are attached each other.
Figure above shows has fixed support and metals (metal1 and metal2) attached each other
assume metal1 has high expansion coefficient than metal 2, if we heat at the bottom metal1 try
to expand more than metal2 so it moves upwards.
By using this property it can be used in temperature indicators, the fig shown below,
Usually we use helical form bimetallic strip in which one end is fixed and other end is free to
rotate.
Range: -70 oC to 50 oC minimum
100 oC to 550 oC maximum
Advantages:
 Good response time compared to filled tube thermometer
 Good linear response.
Disadvantages:
 Hysteresis is more in bimetallic strip thermometer
 Limited to direct mounting only because we can’t mount thermometer in panel
mounted as in filled bulb thermometer by using capillary extension.
 Deformation of bimetallic strip will cause failure or error in measurement.
Temperature transmitters
Temperature transmitter are used for local indication, transmission, controlling and recording
of measured temperature variable.
There are mainly 3 types of temperature sensor are used
1) RTD (Resistive Temperature Detector)
2) Thermocouple
3) Thermistor
RTD (Resistance Temperature Detectors)
It works on the principle that material will change its resistance, when there is a change in
temperature. RTD’ are positive temperature coefficient (PTC), it means, as temperature
increases, resistance increases.
RTD’s are linear in nature. The relation between the R vs. T gives the sensitivity of RTD 0.385
ohm/°C (nominal for Pt-100).
Each resistance versus temperature relation for an RTD is qualified by a term known as “alpha”.
“Alpha” is the slope of the resistance between 0°C and 100°C. This is also referred to as the
temperature coefficient of resistance, with the most common being 0.00385 ohm/ohm/°C.
While replacing the RTD make sure that the temperature coefficient of new RTD should be
same as the old RTD.
RTD’s are constructed of resistive material with leads placed in sheath
Resistive material may be
1) Platinum
2) Nickel
3) Copper
Platinum is more linear and has maximum range compared to nickel and copper so platinum is
preferred more than copper and nickel.
Ex: Pt-100 where Pt represents Platinum and 100 denotes the 100 ohm resistance at 0°C.
The resistive material can be wire wounded in sheath or thin film type.
Sensor sheath mainly used to protect the resistive material usually we often use stainless steel
sheath but for higher temperature we go for Inconel or haste alloy.
The fig. shown below.
The sensing element (RTD) may be single or dual in the single sheath, it is better we use two or
more sensing element and it is beneficial due to following reasons
1) Backup sensing element(if one sensing element fails)
2) Any drift in measurement can be identified
3) We can send the input to the two different independent controllers
4) Average of two outputs will be more accurate than single sensing element
Wiring configurations
There are three types of wiring configurations
1) Two wire configuration
2) Three wire configuration
3) Four wire configuration
Two wire configuration
It is the simplest wire configuration used where the high accuracy of measurement is not
needed.
The accuracy is less because, lead wires add the resistance with the sensor output. It is used
only up to 100meter cable.
Three wire configuration
In order to minimize the effects of the lead resistances, a three-wire configuration can be used.
Using this method the two leads to the sensor are on connected to arms. There is a lead
resistance in each arm of the bridge so that the resistance is cancelled out, so long as the two
lead resistances are accurately the same. This is used up to 600 meters of cable.
Four wire configuration
The four-wire resistance thermometer configuration increases the accuracy and reliability of
the resistance being measured. The resistance error due to lead wire resistance is zero. In the
diagram above a standard two-terminal RTD is used with another pair of wires to form an
additional loop that cancels out the lead resistance. The above Wheatstone bridge method uses
a little more copper wire and is not a perfect solution.
Features:
Range: -200° to 1475°F
Interchangeability = ±0.25°C at 0°C
Sensitivity: 0.385 ohm/°C (nominal for Pt-100)
The current international standard which specifies tolerance, and the temperature-to-electrical
resistance relationship for platinum RTD is IEC 60751.
Accuracy of RTD’s are classified into Class A and Class B according to IEC-60751
Class A  ±0.6 ohm at 0°C
Class B  ±1.2 ohm at 0°C
Advantages:
 RTD’s are more linear compared to Thermocouple and Thermistor.
 Good accuracy.
 Good repeatability.
 Less drift compared to thermocouple.
 Good stability at high temperature
Disadvantages:
 Response time is high compared to thermocouple.
 Less sensitivity compared to thermistor
 Costlier (because of platinum resistive element)
 Requires three or four-wire operation
 Affected by shock and vibration
Thermocouple:
Thermocouple is a temperature-measuring device consisting of two dissimilar conductors that
contact each other at one spots. It produces a voltage when the temperature of one of the spots
differs from the reference temperature at other parts of the circuit. This is called Seeback effect.
The below figure shows that the reference temperature is maintained constant and other end is
exposed to target surface to measure the temperature. And output is taken at lead wires (cold or
reference junction). If lead wires are short copper wires are normally used.
As temperature increases the output voltage increases, the linearity between the temperature
and the voltage depends on the combination of metal used to make the thermocouple.
There are many types of thermocouple, Type B, E, J, K, N, R, S, and T.
Advantages:
 Thermocouple can be used -450 o
F to 4200 o
F
 It is very rugged
 it is self-powered i.e. active transducer
 there is no self-heat
Disadvantages:
 Cold junction compensation is required.
 nonlinear temperature vs. voltage relationship
 Accuracy is less compared to RTD.
In conclusion selection of sensor is depends on the temperature range
We know that RTD can be used up to 850 o
C above that thermocouple is the
choice. Even though thermocouple is less cost compared to RTD, it requires more
maintenance i.e. Frequent calibration, replacement and even it has lower
accuracy and this would lead to cost more than what initial savings instead of
using RTD.
Only reason to use thermocouple is that for temperature above 850 o
C.
For applications where only trends required or several degrees of error is
acceptable than we go for thermocouple.
But for control applications where very high accuracy is needed we go for
properly designed and installed RTD sensor below 500 o
C. Up to 850 o
C we can use
but there is a drift after this range.
INSTALLATION:
All temperature measuring instruments either temperature indicators/thermometer (gauge) or
temperature transmitter requires special installation called thermowell.
Thermowell:
Thermowells are tubular fittings used to protect temperature sensors installed in industrial
processes.
The fig shown below,
The thermowell are either tubular or machined bar stock. Usually tubular Thermowells are
used for low pressure and low flow applications.
Immersion length is the total length from tip of the thermowell to the point of fluid immersed.
Insertion length is the total length from tip of the thermowell to bottom of end connection
either it may be flanged or threaded connection.
The temperature sensors are inserted into the bore of the thermowell and it should be tight fit
else there is a time lag in measurement, so that the materials which transfers temperature
more easily are filled in the gap.
Installing temperature elements in thermowells adds time lag and errors to the measurement.
However, by using a spring loaded fitting(stainless steel) so the element firmly contacts the
bottom of the thermowell and for temperatures over 288°C (550°F) Inconel 718® springs
should be provided rather than stainless steel.
Stem profiles:
There are three stem profiles available
1) Straight profile
2) Stepped profile
3) Tapered profile
Straight profile
The straight profile is shown in figure. And it has same diameter throughout the immersion
length i.e. U length.
Due to increase in tip diameter which has large drag force and slow response time compared to
other styles but good strength for high flow and high pressure.
Stepped profile
In stepped profile there is a change in the diameter to reduce the drag force, and due to small
tip diameter it will give faster response compared to straight profile.
Importantly this profile has higher natural frequency so it will avoid vibration effects as
compared to straight profile but one demerit is that it will erode easily due to smaller tip
diameter and even it has less strength for high flow and high pressure.
Tapered profile
We know that in stepped profile will provide less strength for high flow and high pressure but it
gives the faster response. But in straight profile will provide good strength for high flow and
high pressure but slower response.
To compromise between the strength and response time tapered profile is the perfect choice.
The optimum immersion length leads to good accuracy and response time and it is important
because Thermowells vibrates as their natural frequency is approached, this causes them to
eventually fracture and fail. So design of the optimum immersion length is very important.
We know that each thermowell has its natural frequency depends on the shape, length, and
MOC (Material of Construction) and the shedding frequency is generated around the
thermowell, when shedding frequency reaches the natural frequency of thermowell, vibration
of thermowell takes place and failure or breakage of thermowell will takes place. Hence to
avoid this failure, we should select a proper stem profile which as high natural frequency
(stepped profile) and proper immersion length.
Shedding frequency of thermowell should always less than equal to 80% of natural frequency is
the thumb rule for selection of thermowell. i.e. fs/fn ≤ 0.8
ASME Performance Test Code PTC 19.3 TW provides information and calculation procedures for
Thermowells.
The minimum recommendations for immersion length is Between 1/3 to 2/3 of pipe diameter
(Inside diameter) and if we come to response time of the sensor which depends on the tip
diameter and tip thickness.
End connections of thermowell:
there are mainly 3 types of connection
1) Threaded connection
2) Welded connection
3) Flanged connection
Threaded connection:
Threaded connection used for low pressure and low flow application.
Welded connection:
Welded connection used for high pressure and high flow application and it provides tight shut
shut off for hazardous fluid applications.
Flanged connection:
Due to corrosion effect on the welded connection, we go for flanged connection in which
thermowell flange should be one class higher than mating pipe flange(1 ½ “).

More Related Content

PPTX
Temperature measurement
PDF
Temperature measurement part i
PPT
Temperature measurement
POT
Temperature Measurements
PPTX
Bimetallic thermometer
PPTX
Low pressure measurement
PPTX
Thermowells & Accessories
PPT
Temperature measurments
Temperature measurement
Temperature measurement part i
Temperature measurement
Temperature Measurements
Bimetallic thermometer
Low pressure measurement
Thermowells & Accessories
Temperature measurments

What's hot (20)

PPSX
Thermocouple
PPTX
Temparature measurement presentation
PPTX
PPTX
Bimetallic thermometer
PPTX
Thermal plant instrumentation and control
PPT
Temperature Sensors
PPTX
Temperature measurement
PDF
High vacuummeasurement
PPTX
Level measurement
PPTX
bimetallic strip
PPTX
Level measurement
PPTX
Temperature sensor
PPTX
Introduction to Industrial Instrumentation
PPT
Level measurement
PPT
Industrial Temperature Measurement
PDF
Level Measurement
PPT
Torque measurement
PPT
Level Measurement
PPTX
Temperature Measurement
PPTX
OPTICAL PYROMETER
Thermocouple
Temparature measurement presentation
Bimetallic thermometer
Thermal plant instrumentation and control
Temperature Sensors
Temperature measurement
High vacuummeasurement
Level measurement
bimetallic strip
Level measurement
Temperature sensor
Introduction to Industrial Instrumentation
Level measurement
Industrial Temperature Measurement
Level Measurement
Torque measurement
Level Measurement
Temperature Measurement
OPTICAL PYROMETER
Ad

Viewers also liked (7)

PPTX
Temperature measurement ppt
PPT
Temperature
PPTX
Pressure measuring devices
PPT
Pressure Measurement
PPTX
Interchangeability & selective assembly
PPTX
Temperature
Temperature measurement ppt
Temperature
Pressure measuring devices
Pressure Measurement
Interchangeability & selective assembly
Temperature
Ad

Similar to Temperature measurement (20)

PPTX
Industrial Temperature Measurement
PPTX
Rtd (resistance temperature detector)
PPT
Presentation (Temperature )
PPT
TemperatureMeasurement TemperatureMeasurement
PPT
Temperature Measurement
PPTX
DOC-20240915-WA0078..pptxits sensor and transducers
PDF
TEMPERATURE MEASUREMENGT...TEMPERATURE MEASUREMENGT
PPTX
Temperature Transducers.pptx
PPTX
Temperature measurment devices
PPTX
Temperaturemsmt 130906055901-
PDF
Temperature measurement part II
PPT
Temprature sensors
PDF
Temperature Measuring and Control
PPTX
Course of mesurement
PDF
Introduction to rtd and thermocouple by yogesh k. kirange
PPTX
Electrical temperature measurement
PPT
TemperatureTemperature Sensor Training.ppt
PDF
temperaturesensor-200308103503 sensors t
DOC
Project report on design and fabrication of temperature measurement setup
PPTX
thermometry
Industrial Temperature Measurement
Rtd (resistance temperature detector)
Presentation (Temperature )
TemperatureMeasurement TemperatureMeasurement
Temperature Measurement
DOC-20240915-WA0078..pptxits sensor and transducers
TEMPERATURE MEASUREMENGT...TEMPERATURE MEASUREMENGT
Temperature Transducers.pptx
Temperature measurment devices
Temperaturemsmt 130906055901-
Temperature measurement part II
Temprature sensors
Temperature Measuring and Control
Course of mesurement
Introduction to rtd and thermocouple by yogesh k. kirange
Electrical temperature measurement
TemperatureTemperature Sensor Training.ppt
temperaturesensor-200308103503 sensors t
Project report on design and fabrication of temperature measurement setup
thermometry

Temperature measurement

  • 1. TEMPERATURE MEASUREMENT Temperature is one of the important parameter which measured in every industry and it is the effect of hotness and coldness of material. Units of measurement: 1) Degree centigrade (oC) 2) Kelvin(o K) 3) Fahrenheit(o F) 4) Rankine (o R) Conversion: oF = (oC*9)/5+32 oK =0C+273.15 oR = oF+459.67 Temperature indicators: There are two types of temperature indicators (thermometers) 1) filled bulb temperature indicator 2) bi-metallic strip temperature indicator Filled bulb temperature indicator: The principle behind filled bulb temperature indicator is that when filled bulb exposed to process temperature, due to expansion of the fluid it will rise up and it is connected to bourden tube and it will deflect with respect to the pressure of fluid and intern temperature of fluid. We know that as temperature increases, pressure increases with the constant volume hence temperature and pressure are proportional. The figures are shown below, They are classified based on the filling material used 1) liquid filled(class I) 2) vapor filled (class II) 3) gas filled (class III) 4) mercury filled(class v) Class Temperature range Response Class- I -125 oF to 600 oF slower Class- II -40 oF to 600 oF faster Class- III -450 oF to 1400 oF fastest Class- V -40 oF to 1200 oF fastest
  • 2. Fig1. Class I liquid filled temperature indicator. Fig2. Class II Vapor filled temperature indicator Suppose if we want temperature gauge to be panel mounted, by using capillary extension we can pass the fluid but limited to small distance. The fig. shown below,
  • 3. Fig. armored capillary extension temperature gauge Bimetallic strip temperature indicator Bimetallic strip temperature indicator uses two different material of different coefficient of expansion and which are attached each other.
  • 4. Figure above shows has fixed support and metals (metal1 and metal2) attached each other assume metal1 has high expansion coefficient than metal 2, if we heat at the bottom metal1 try to expand more than metal2 so it moves upwards. By using this property it can be used in temperature indicators, the fig shown below, Usually we use helical form bimetallic strip in which one end is fixed and other end is free to rotate. Range: -70 oC to 50 oC minimum 100 oC to 550 oC maximum Advantages:  Good response time compared to filled tube thermometer  Good linear response.
  • 5. Disadvantages:  Hysteresis is more in bimetallic strip thermometer  Limited to direct mounting only because we can’t mount thermometer in panel mounted as in filled bulb thermometer by using capillary extension.  Deformation of bimetallic strip will cause failure or error in measurement. Temperature transmitters Temperature transmitter are used for local indication, transmission, controlling and recording of measured temperature variable. There are mainly 3 types of temperature sensor are used 1) RTD (Resistive Temperature Detector) 2) Thermocouple 3) Thermistor RTD (Resistance Temperature Detectors) It works on the principle that material will change its resistance, when there is a change in temperature. RTD’ are positive temperature coefficient (PTC), it means, as temperature increases, resistance increases. RTD’s are linear in nature. The relation between the R vs. T gives the sensitivity of RTD 0.385 ohm/°C (nominal for Pt-100). Each resistance versus temperature relation for an RTD is qualified by a term known as “alpha”. “Alpha” is the slope of the resistance between 0°C and 100°C. This is also referred to as the temperature coefficient of resistance, with the most common being 0.00385 ohm/ohm/°C. While replacing the RTD make sure that the temperature coefficient of new RTD should be same as the old RTD. RTD’s are constructed of resistive material with leads placed in sheath Resistive material may be 1) Platinum 2) Nickel 3) Copper Platinum is more linear and has maximum range compared to nickel and copper so platinum is preferred more than copper and nickel.
  • 6. Ex: Pt-100 where Pt represents Platinum and 100 denotes the 100 ohm resistance at 0°C. The resistive material can be wire wounded in sheath or thin film type. Sensor sheath mainly used to protect the resistive material usually we often use stainless steel sheath but for higher temperature we go for Inconel or haste alloy. The fig. shown below. The sensing element (RTD) may be single or dual in the single sheath, it is better we use two or more sensing element and it is beneficial due to following reasons 1) Backup sensing element(if one sensing element fails) 2) Any drift in measurement can be identified 3) We can send the input to the two different independent controllers 4) Average of two outputs will be more accurate than single sensing element Wiring configurations There are three types of wiring configurations 1) Two wire configuration 2) Three wire configuration 3) Four wire configuration Two wire configuration It is the simplest wire configuration used where the high accuracy of measurement is not needed.
  • 7. The accuracy is less because, lead wires add the resistance with the sensor output. It is used only up to 100meter cable. Three wire configuration In order to minimize the effects of the lead resistances, a three-wire configuration can be used. Using this method the two leads to the sensor are on connected to arms. There is a lead resistance in each arm of the bridge so that the resistance is cancelled out, so long as the two lead resistances are accurately the same. This is used up to 600 meters of cable. Four wire configuration The four-wire resistance thermometer configuration increases the accuracy and reliability of the resistance being measured. The resistance error due to lead wire resistance is zero. In the diagram above a standard two-terminal RTD is used with another pair of wires to form an additional loop that cancels out the lead resistance. The above Wheatstone bridge method uses a little more copper wire and is not a perfect solution.
  • 8. Features: Range: -200° to 1475°F Interchangeability = ±0.25°C at 0°C Sensitivity: 0.385 ohm/°C (nominal for Pt-100) The current international standard which specifies tolerance, and the temperature-to-electrical resistance relationship for platinum RTD is IEC 60751. Accuracy of RTD’s are classified into Class A and Class B according to IEC-60751 Class A  ±0.6 ohm at 0°C Class B  ±1.2 ohm at 0°C Advantages:  RTD’s are more linear compared to Thermocouple and Thermistor.  Good accuracy.  Good repeatability.  Less drift compared to thermocouple.  Good stability at high temperature Disadvantages:  Response time is high compared to thermocouple.  Less sensitivity compared to thermistor  Costlier (because of platinum resistive element)  Requires three or four-wire operation  Affected by shock and vibration Thermocouple: Thermocouple is a temperature-measuring device consisting of two dissimilar conductors that contact each other at one spots. It produces a voltage when the temperature of one of the spots differs from the reference temperature at other parts of the circuit. This is called Seeback effect. The below figure shows that the reference temperature is maintained constant and other end is exposed to target surface to measure the temperature. And output is taken at lead wires (cold or reference junction). If lead wires are short copper wires are normally used. As temperature increases the output voltage increases, the linearity between the temperature and the voltage depends on the combination of metal used to make the thermocouple.
  • 9. There are many types of thermocouple, Type B, E, J, K, N, R, S, and T.
  • 10. Advantages:  Thermocouple can be used -450 o F to 4200 o F  It is very rugged  it is self-powered i.e. active transducer  there is no self-heat Disadvantages:  Cold junction compensation is required.  nonlinear temperature vs. voltage relationship  Accuracy is less compared to RTD. In conclusion selection of sensor is depends on the temperature range We know that RTD can be used up to 850 o C above that thermocouple is the choice. Even though thermocouple is less cost compared to RTD, it requires more maintenance i.e. Frequent calibration, replacement and even it has lower accuracy and this would lead to cost more than what initial savings instead of using RTD. Only reason to use thermocouple is that for temperature above 850 o C. For applications where only trends required or several degrees of error is acceptable than we go for thermocouple. But for control applications where very high accuracy is needed we go for properly designed and installed RTD sensor below 500 o C. Up to 850 o C we can use but there is a drift after this range. INSTALLATION: All temperature measuring instruments either temperature indicators/thermometer (gauge) or temperature transmitter requires special installation called thermowell. Thermowell: Thermowells are tubular fittings used to protect temperature sensors installed in industrial processes. The fig shown below,
  • 11. The thermowell are either tubular or machined bar stock. Usually tubular Thermowells are used for low pressure and low flow applications. Immersion length is the total length from tip of the thermowell to the point of fluid immersed. Insertion length is the total length from tip of the thermowell to bottom of end connection either it may be flanged or threaded connection.
  • 12. The temperature sensors are inserted into the bore of the thermowell and it should be tight fit else there is a time lag in measurement, so that the materials which transfers temperature more easily are filled in the gap. Installing temperature elements in thermowells adds time lag and errors to the measurement. However, by using a spring loaded fitting(stainless steel) so the element firmly contacts the bottom of the thermowell and for temperatures over 288°C (550°F) Inconel 718® springs should be provided rather than stainless steel. Stem profiles: There are three stem profiles available 1) Straight profile 2) Stepped profile 3) Tapered profile Straight profile
  • 13. The straight profile is shown in figure. And it has same diameter throughout the immersion length i.e. U length. Due to increase in tip diameter which has large drag force and slow response time compared to other styles but good strength for high flow and high pressure. Stepped profile In stepped profile there is a change in the diameter to reduce the drag force, and due to small tip diameter it will give faster response compared to straight profile. Importantly this profile has higher natural frequency so it will avoid vibration effects as compared to straight profile but one demerit is that it will erode easily due to smaller tip diameter and even it has less strength for high flow and high pressure. Tapered profile We know that in stepped profile will provide less strength for high flow and high pressure but it gives the faster response. But in straight profile will provide good strength for high flow and high pressure but slower response.
  • 14. To compromise between the strength and response time tapered profile is the perfect choice. The optimum immersion length leads to good accuracy and response time and it is important because Thermowells vibrates as their natural frequency is approached, this causes them to eventually fracture and fail. So design of the optimum immersion length is very important. We know that each thermowell has its natural frequency depends on the shape, length, and MOC (Material of Construction) and the shedding frequency is generated around the thermowell, when shedding frequency reaches the natural frequency of thermowell, vibration of thermowell takes place and failure or breakage of thermowell will takes place. Hence to avoid this failure, we should select a proper stem profile which as high natural frequency (stepped profile) and proper immersion length. Shedding frequency of thermowell should always less than equal to 80% of natural frequency is the thumb rule for selection of thermowell. i.e. fs/fn ≤ 0.8 ASME Performance Test Code PTC 19.3 TW provides information and calculation procedures for Thermowells. The minimum recommendations for immersion length is Between 1/3 to 2/3 of pipe diameter (Inside diameter) and if we come to response time of the sensor which depends on the tip diameter and tip thickness. End connections of thermowell: there are mainly 3 types of connection 1) Threaded connection 2) Welded connection 3) Flanged connection Threaded connection:
  • 15. Threaded connection used for low pressure and low flow application. Welded connection: Welded connection used for high pressure and high flow application and it provides tight shut shut off for hazardous fluid applications. Flanged connection: Due to corrosion effect on the welded connection, we go for flanged connection in which thermowell flange should be one class higher than mating pipe flange(1 ½ “).