SlideShare a Scribd company logo
TensorFlow
Internal
Hyunghun Cho
(webofthink@snu.ac.kr)
1
Overview
■ Dataflow-like model
■ Runs on a wide variety of different H/W platform
2※ Source: tensorflow.org
※ Source: github.com/zer0n/deepframeworks
Basic concepts
■ Tensor
– definition: an array with more than two axes
– arbitrary dimensionality array
■ Directed graph describes T/F computation
– node: instantiation of an Operation
■ Operation
– an abstract computation
– have attribute(s)
■ Kernel
– particular implementation of an Operation
– run on a type of device (e.g. CPU, GPU)
■ Variable
– special Operation to persistent mutable Tensor
■ Session
– Created to interact with T/F system
3
nodein out
0…* 0…*
※ Source: T/F white paper
Programming Model
■ Example T/F code and corresponding computation graph
■ Single machine and distributed system architecture
4※ Source: T/F white paper
Previous work
■ DistBelief
– Downpour SGD
– Sandblaster L-BFGS
■ Related to
– Project Adam
• MSR
– Parameter
Server project
5
※ Source: Large Scale Distributed Deep Networks
※ Source: parameter server architecture github wiki
※ Source: Project Adam paper
Feature Comparison
Feature
Tensor
Flow
Theano Torch Caffe Chainer CNTK
Run on
Single Machine
O O O O O O
Run on
Distributed
Machines
O X X X X O
Symbolic
differentiation
O O X X O X
Implemented by
C++
O X X O X X
6
※ Source: T/F white paper
■ For detail, refer to Wikipedia
Execution Mode
■ Single Device
■ Multi Device
– Node placement
– Cross-Device Communication
■ Distributed
– Fault Tolerance
• Error handling between Send-Receive node pair
• Periodic health check to worker process
7
Programming Idioms
■ Programming Idioms
– Data Parallel Training
• sequential SGD
– Model Parallel Training
• Recurrent deep LSTM
– Concurrent Steps
8
Code Metrics
■ Source
– https://github.com/tensorflow/tensorflow
■ Code Summary
– Total 114MB
• 3373 files including C/C++, python, HTML, …
– Top 5 languages for implementation
• C++ and Python are the major languages
• Protocol Buffers: provide mechanism for serializing structured data
9
language files blank comment code
C++ 1092 46473 43399 276160
C/C++ Header 779 23457 44727 86274
Python 641 27622 46660 97570
Protocol Buffers 179 2217 7294 8724
Java 167 8296 17325 49374
C# 116 4285 8653 34347
How it works
■ Python-C++ connection with SWIG wrapper
10
[tensorflow.i] [py_func.i]
[py_func.h] [py_func.cc]
v v
Code Structure
■ C++ implementation under /core folder
11
Folder C/C++ Header C++ Protocol Buffers 총합계
./tensorflow/core/client/ 511 511
./tensorflow/core/common_runtime/ 1384 8526 9910
./tensorflow/core/common_runtime/gpu/ 644 3674 4318
./tensorflow/core/distributed_runtime/ 581 2579 3160
./tensorflow/core/distributed_runtime/rpc/ 434 2759 3193
./tensorflow/core/example/ 116 209 45 370
./tensorflow/core/framework/ 3539 14022 451 18012
./tensorflow/core/graph/ 952 5586 6538
./tensorflow/core/kernels/ 9180 42188 11 51379
./tensorflow/core/lib/core/ 573 1240 25 1838
./tensorflow/core/lib/gtl/ 1452 1943 3395
./tensorflow/core/lib/hash/ 36 400 436
./tensorflow/core/lib/histogram/ 60 324 384
./tensorflow/core/lib/io/ 340 2134 2474
./tensorflow/core/lib/jpeg/ 78 767 845
./tensorflow/core/lib/png/ 37 311 348
./tensorflow/core/lib/random/ 690 856 1546
./tensorflow/core/lib/strings/ 532 3111 3643
./tensorflow/core/lib/wav/ 13 166 179
./tensorflow/core/ops/ 9346 9346
./tensorflow/core/ops/compat/ 25 204 229
./tensorflow/core/platform/ 805 738 1543
./tensorflow/core/platform/default/ 349 290 639
./tensorflow/core/platform/posix/ 31 656 687
./tensorflow/core/protobuf/ 333 333
./tensorflow/core/public/ 202 202
./tensorflow/core/user_ops/ 20 20
./tensorflow/core/util/ 1354 4426 170 5950
./tensorflow/core/util/ctc/ 600 298 898
./tensorflow/core/util/sparse/ 504 498 1002
총합계 24511 107782 1035 133328
C++ framework
■ Key classes
12
C++ kernels
■ Inherit from OpKernel
■ Kernel is implemented per CPU / GPU [How to]
– GPU version uses CUDA library
13
[constant_op.h]
[constant_op.cc]
[constant_op_gpu.cu.cc]
Code Structure
■ Python implementation under /python folder
14
Folder C/C++ Header C++ Protocol Buffers Python 총합계
./tensorflow/python/ 168 168
./tensorflow/python/client/ 33 475 2031 2539
./tensorflow/python/framework/ 13 686 7097 7796
./tensorflow/python/kernel_tests/ 25391 25391
./tensorflow/python/lib/core/ 26 316 342
./tensorflow/python/lib/io/ 52 75 31 158
./tensorflow/python/ops/ 14995 14995
./tensorflow/python/platform/ 888 888
./tensorflow/python/platform/default
/
389 389
./tensorflow/python/summary/ 1168 1168
./tensorflow/python/summary/impl/ 693 693
./tensorflow/python/tools/ 280 280
./tensorflow/python/training/ 6 7732 7738
./tensorflow/python/user_ops/ 7 7
./tensorflow/python/util/ 51 51
총합계 124 1552 6 60921 62603
Python Implementation
■ Operations
■ Trainings
15
Code Summary
■ The Python part
– Various operations and trainings
– API:
• the most complete and the easiest to use
■ The C++ part
– Framework and kernel functions
– API:
• offer some performance advantages
• supports deployment to small devices such as Android
16
Meta Framework
■ Keras
■ TensorFlow Slim
– a lightweight library for defining, training and evaluating models
■ Skflow
– provide Scikit Learn style API
■ PrettyTensor
– support a chainable object syntax to quickly define neural networks
■ TFLearn
– a modular and transparent deep learning library
17

More Related Content

What's hot (20)

PDF
Tuning Apache/MySQL/PHP para desenvolvedores
Douglas V. Pasqua
 
PDF
Debugging PySpark: Spark Summit East talk by Holden Karau
Spark Summit
 
PDF
Btrfs + Snapper + Samba で作る「以前のバージョン」に戻せるファイルサーバー
Fuminobu Takeyama
 
PDF
HBase Blockcache 101
Nick Dimiduk
 
PDF
Spark SQL Deep Dive @ Melbourne Spark Meetup
Databricks
 
PDF
Oracle on kubernetes 101 - Dec/2021
Nelson Calero
 
PDF
Release and patching strategy
Jitendra Singh
 
PPTX
Understanding Oracle GoldenGate 12c
IT Help Desk Inc
 
PPTX
Modernizing Applications by Replacing F5 with the NGINX Application Delivery ...
NGINX, Inc.
 
PPTX
Memory access tracing [poug17]
Mahmoud Hatem
 
PPTX
How to design a file system
Nikhil Anurag VN
 
PDF
MySQL Ecosystem in 2023 - FOSSASIA'23 - Alkin.pptx.pdf
Alkin Tezuysal
 
PPSX
What I learnt: Elastic search & Kibana : introduction, installtion & configur...
Rahul K Chauhan
 
PDF
DevConf 2014 Kernel Networking Walkthrough
Thomas Graf
 
PPTX
Nfs version 4 protocol presentation
Abu Osama
 
PDF
無線LANデバイスについて(kernelレベル)
Yuki Uchikoba
 
PDF
Présentation de Zabbix - Zabbix Lyon - ZUG
Zabbix User Group
 
PPTX
The Confused Deputy Problem
Shay Ben-Haroche
 
PDF
Kafka on ZFS: Better Living Through Filesystems
confluent
 
PDF
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
Databricks
 
Tuning Apache/MySQL/PHP para desenvolvedores
Douglas V. Pasqua
 
Debugging PySpark: Spark Summit East talk by Holden Karau
Spark Summit
 
Btrfs + Snapper + Samba で作る「以前のバージョン」に戻せるファイルサーバー
Fuminobu Takeyama
 
HBase Blockcache 101
Nick Dimiduk
 
Spark SQL Deep Dive @ Melbourne Spark Meetup
Databricks
 
Oracle on kubernetes 101 - Dec/2021
Nelson Calero
 
Release and patching strategy
Jitendra Singh
 
Understanding Oracle GoldenGate 12c
IT Help Desk Inc
 
Modernizing Applications by Replacing F5 with the NGINX Application Delivery ...
NGINX, Inc.
 
Memory access tracing [poug17]
Mahmoud Hatem
 
How to design a file system
Nikhil Anurag VN
 
MySQL Ecosystem in 2023 - FOSSASIA'23 - Alkin.pptx.pdf
Alkin Tezuysal
 
What I learnt: Elastic search & Kibana : introduction, installtion & configur...
Rahul K Chauhan
 
DevConf 2014 Kernel Networking Walkthrough
Thomas Graf
 
Nfs version 4 protocol presentation
Abu Osama
 
無線LANデバイスについて(kernelレベル)
Yuki Uchikoba
 
Présentation de Zabbix - Zabbix Lyon - ZUG
Zabbix User Group
 
The Confused Deputy Problem
Shay Ben-Haroche
 
Kafka on ZFS: Better Living Through Filesystems
confluent
 
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
Databricks
 

Viewers also liked (6)

PDF
파알못의 파이썬 크롤러 이해하기
Hyeyeon Yang
 
PDF
배워봅시다 머신러닝 with TensorFlow
Jang Hoon
 
PPTX
Howto_Tensorflow+Linear Regression
Hyo jeong Lee
 
PDF
텐서플로 걸음마 (TensorFlow Tutorial)
Taejun Kim
 
PDF
Deep dive into deeplearn.js
Kai Sasaki
 
PDF
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
Taehoon Kim
 
파알못의 파이썬 크롤러 이해하기
Hyeyeon Yang
 
배워봅시다 머신러닝 with TensorFlow
Jang Hoon
 
Howto_Tensorflow+Linear Regression
Hyo jeong Lee
 
텐서플로 걸음마 (TensorFlow Tutorial)
Taejun Kim
 
Deep dive into deeplearn.js
Kai Sasaki
 
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
Taehoon Kim
 
Ad

Similar to Tensorflow internal (20)

PPTX
Tensorflow in practice by Engineer - donghwi cha
Donghwi Cha
 
PPTX
An Introduction to TensorFlow architecture
Mani Goswami
 
PDF
Tensor flow white paper
Ying wei (Joe) Chou
 
PDF
Tensorflow in Docker
Eric Ahn
 
PDF
Optimize + Deploy Distributed Tensorflow, Spark, and Scikit-Learn Models on GPUs
Chris Fregly
 
PDF
High Performance Distributed TensorFlow with GPUs - TensorFlow Chicago Meetup...
Chris Fregly
 
PDF
TensorFlow for HPC?
inside-BigData.com
 
PDF
Lecture 4: Deep Learning Frameworks
Mohamed Loey
 
PPTX
24-TensorFlow-Clipper.pptxnjjjjnjjjjjjmm
SasidharaKashyapChat
 
PDF
Julien Simon - Deep Dive: Compiling Deep Learning Models
Julien SIMON
 
PPTX
hpcpp.pptx
pradhyumnpurohit1
 
PDF
TensorFlow example for AI Ukraine2016
Andrii Babii
 
PDF
High Performance Distributed TensorFlow with GPUs - Nvidia GPU Tech Conferenc...
Chris Fregly
 
PDF
TensorFlow meetup: Keras - Pytorch - TensorFlow.js
Stijn Decubber
 
PDF
The Flow of TensorFlow
Jeongkyu Shin
 
PDF
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
PDF
TensorFlow 2.0 Autographs - For TFUG - Vik Pant
Devatanu Banerjee
 
PDF
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Jan Wiegelmann
 
PDF
Tensor flow intro and summit info feb 2017
Sam Witteveen
 
PDF
Deep Learning with Apache Spark and GPUs with Pierce Spitler
Databricks
 
Tensorflow in practice by Engineer - donghwi cha
Donghwi Cha
 
An Introduction to TensorFlow architecture
Mani Goswami
 
Tensor flow white paper
Ying wei (Joe) Chou
 
Tensorflow in Docker
Eric Ahn
 
Optimize + Deploy Distributed Tensorflow, Spark, and Scikit-Learn Models on GPUs
Chris Fregly
 
High Performance Distributed TensorFlow with GPUs - TensorFlow Chicago Meetup...
Chris Fregly
 
TensorFlow for HPC?
inside-BigData.com
 
Lecture 4: Deep Learning Frameworks
Mohamed Loey
 
24-TensorFlow-Clipper.pptxnjjjjnjjjjjjmm
SasidharaKashyapChat
 
Julien Simon - Deep Dive: Compiling Deep Learning Models
Julien SIMON
 
hpcpp.pptx
pradhyumnpurohit1
 
TensorFlow example for AI Ukraine2016
Andrii Babii
 
High Performance Distributed TensorFlow with GPUs - Nvidia GPU Tech Conferenc...
Chris Fregly
 
TensorFlow meetup: Keras - Pytorch - TensorFlow.js
Stijn Decubber
 
The Flow of TensorFlow
Jeongkyu Shin
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
TensorFlow 2.0 Autographs - For TFUG - Vik Pant
Devatanu Banerjee
 
Distributed TensorFlow on Hadoop, Mesos, Kubernetes, Spark
Jan Wiegelmann
 
Tensor flow intro and summit info feb 2017
Sam Witteveen
 
Deep Learning with Apache Spark and GPUs with Pierce Spitler
Databricks
 
Ad

More from Hyunghun Cho (9)

PDF
2018 소프트웨어에 물들다 - 기계는 어떻게 생각할까?
Hyunghun Cho
 
PDF
Somul 2017 소프트웨어, 사람과 사물의 소통을 향하여
Hyunghun Cho
 
PDF
Do IoT Yourself 3rd : Open API - revision 3
Hyunghun Cho
 
PDF
IoT Web App - 수집된 정보의 가공, 처리, 융합
Hyunghun Cho
 
PDF
Do IoT Yourself! - 사물 간의 연결을 위한 Open API
Hyunghun Cho
 
PDF
IoT, 기술의 혁신과 미래 그리고 통찰
Hyunghun Cho
 
PDF
GameTube app-swing-introduction
Hyunghun Cho
 
PPTX
Home sensor prototype on Arduino & Raspberry Pi with Node.JS
Hyunghun Cho
 
PDF
REST to JavaScript for Better Client-side Development
Hyunghun Cho
 
2018 소프트웨어에 물들다 - 기계는 어떻게 생각할까?
Hyunghun Cho
 
Somul 2017 소프트웨어, 사람과 사물의 소통을 향하여
Hyunghun Cho
 
Do IoT Yourself 3rd : Open API - revision 3
Hyunghun Cho
 
IoT Web App - 수집된 정보의 가공, 처리, 융합
Hyunghun Cho
 
Do IoT Yourself! - 사물 간의 연결을 위한 Open API
Hyunghun Cho
 
IoT, 기술의 혁신과 미래 그리고 통찰
Hyunghun Cho
 
GameTube app-swing-introduction
Hyunghun Cho
 
Home sensor prototype on Arduino & Raspberry Pi with Node.JS
Hyunghun Cho
 
REST to JavaScript for Better Client-side Development
Hyunghun Cho
 

Recently uploaded (20)

PDF
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
PPTX
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
PDF
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
PDF
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
PDF
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
PDF
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
PDF
Download Canva Pro 2025 PC Crack Full Latest Version
bashirkhan333g
 
PPTX
Human Resources Information System (HRIS)
Amity University, Patna
 
PPTX
Hardware(Central Processing Unit ) CU and ALU
RizwanaKalsoom2
 
PDF
vMix Pro 28.0.0.42 Download vMix Registration key Bundle
kulindacore
 
PDF
Revenue streams of the Wazirx clone script.pdf
aaronjeffray
 
PDF
Driver Easy Pro 6.1.1 Crack Licensce key 2025 FREE
utfefguu
 
PDF
HiHelloHR – Simplify HR Operations for Modern Workplaces
HiHelloHR
 
PPTX
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PPTX
Tally software_Introduction_Presentation
AditiBansal54083
 
PPTX
Empowering Asian Contributions: The Rise of Regional User Groups in Open Sour...
Shane Coughlan
 
PDF
Odoo CRM vs Zoho CRM: Honest Comparison 2025
Odiware Technologies Private Limited
 
PPTX
Change Common Properties in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
PDF
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
Why Businesses Are Switching to Open Source Alternatives to Crystal Reports.pptx
Varsha Nayak
 
AI + DevOps = Smart Automation with devseccops.ai.pdf
Devseccops.ai
 
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
MiniTool Partition Wizard Free Crack + Full Free Download 2025
bashirkhan333g
 
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
Download Canva Pro 2025 PC Crack Full Latest Version
bashirkhan333g
 
Human Resources Information System (HRIS)
Amity University, Patna
 
Hardware(Central Processing Unit ) CU and ALU
RizwanaKalsoom2
 
vMix Pro 28.0.0.42 Download vMix Registration key Bundle
kulindacore
 
Revenue streams of the Wazirx clone script.pdf
aaronjeffray
 
Driver Easy Pro 6.1.1 Crack Licensce key 2025 FREE
utfefguu
 
HiHelloHR – Simplify HR Operations for Modern Workplaces
HiHelloHR
 
ChiSquare Procedure in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Tally software_Introduction_Presentation
AditiBansal54083
 
Empowering Asian Contributions: The Rise of Regional User Groups in Open Sour...
Shane Coughlan
 
Odoo CRM vs Zoho CRM: Honest Comparison 2025
Odiware Technologies Private Limited
 
Change Common Properties in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 

Tensorflow internal

  • 2. Overview ■ Dataflow-like model ■ Runs on a wide variety of different H/W platform 2※ Source: tensorflow.org ※ Source: github.com/zer0n/deepframeworks
  • 3. Basic concepts ■ Tensor – definition: an array with more than two axes – arbitrary dimensionality array ■ Directed graph describes T/F computation – node: instantiation of an Operation ■ Operation – an abstract computation – have attribute(s) ■ Kernel – particular implementation of an Operation – run on a type of device (e.g. CPU, GPU) ■ Variable – special Operation to persistent mutable Tensor ■ Session – Created to interact with T/F system 3 nodein out 0…* 0…* ※ Source: T/F white paper
  • 4. Programming Model ■ Example T/F code and corresponding computation graph ■ Single machine and distributed system architecture 4※ Source: T/F white paper
  • 5. Previous work ■ DistBelief – Downpour SGD – Sandblaster L-BFGS ■ Related to – Project Adam • MSR – Parameter Server project 5 ※ Source: Large Scale Distributed Deep Networks ※ Source: parameter server architecture github wiki ※ Source: Project Adam paper
  • 6. Feature Comparison Feature Tensor Flow Theano Torch Caffe Chainer CNTK Run on Single Machine O O O O O O Run on Distributed Machines O X X X X O Symbolic differentiation O O X X O X Implemented by C++ O X X O X X 6 ※ Source: T/F white paper ■ For detail, refer to Wikipedia
  • 7. Execution Mode ■ Single Device ■ Multi Device – Node placement – Cross-Device Communication ■ Distributed – Fault Tolerance • Error handling between Send-Receive node pair • Periodic health check to worker process 7
  • 8. Programming Idioms ■ Programming Idioms – Data Parallel Training • sequential SGD – Model Parallel Training • Recurrent deep LSTM – Concurrent Steps 8
  • 9. Code Metrics ■ Source – https://github.com/tensorflow/tensorflow ■ Code Summary – Total 114MB • 3373 files including C/C++, python, HTML, … – Top 5 languages for implementation • C++ and Python are the major languages • Protocol Buffers: provide mechanism for serializing structured data 9 language files blank comment code C++ 1092 46473 43399 276160 C/C++ Header 779 23457 44727 86274 Python 641 27622 46660 97570 Protocol Buffers 179 2217 7294 8724 Java 167 8296 17325 49374 C# 116 4285 8653 34347
  • 10. How it works ■ Python-C++ connection with SWIG wrapper 10 [tensorflow.i] [py_func.i] [py_func.h] [py_func.cc] v v
  • 11. Code Structure ■ C++ implementation under /core folder 11 Folder C/C++ Header C++ Protocol Buffers 총합계 ./tensorflow/core/client/ 511 511 ./tensorflow/core/common_runtime/ 1384 8526 9910 ./tensorflow/core/common_runtime/gpu/ 644 3674 4318 ./tensorflow/core/distributed_runtime/ 581 2579 3160 ./tensorflow/core/distributed_runtime/rpc/ 434 2759 3193 ./tensorflow/core/example/ 116 209 45 370 ./tensorflow/core/framework/ 3539 14022 451 18012 ./tensorflow/core/graph/ 952 5586 6538 ./tensorflow/core/kernels/ 9180 42188 11 51379 ./tensorflow/core/lib/core/ 573 1240 25 1838 ./tensorflow/core/lib/gtl/ 1452 1943 3395 ./tensorflow/core/lib/hash/ 36 400 436 ./tensorflow/core/lib/histogram/ 60 324 384 ./tensorflow/core/lib/io/ 340 2134 2474 ./tensorflow/core/lib/jpeg/ 78 767 845 ./tensorflow/core/lib/png/ 37 311 348 ./tensorflow/core/lib/random/ 690 856 1546 ./tensorflow/core/lib/strings/ 532 3111 3643 ./tensorflow/core/lib/wav/ 13 166 179 ./tensorflow/core/ops/ 9346 9346 ./tensorflow/core/ops/compat/ 25 204 229 ./tensorflow/core/platform/ 805 738 1543 ./tensorflow/core/platform/default/ 349 290 639 ./tensorflow/core/platform/posix/ 31 656 687 ./tensorflow/core/protobuf/ 333 333 ./tensorflow/core/public/ 202 202 ./tensorflow/core/user_ops/ 20 20 ./tensorflow/core/util/ 1354 4426 170 5950 ./tensorflow/core/util/ctc/ 600 298 898 ./tensorflow/core/util/sparse/ 504 498 1002 총합계 24511 107782 1035 133328
  • 12. C++ framework ■ Key classes 12
  • 13. C++ kernels ■ Inherit from OpKernel ■ Kernel is implemented per CPU / GPU [How to] – GPU version uses CUDA library 13 [constant_op.h] [constant_op.cc] [constant_op_gpu.cu.cc]
  • 14. Code Structure ■ Python implementation under /python folder 14 Folder C/C++ Header C++ Protocol Buffers Python 총합계 ./tensorflow/python/ 168 168 ./tensorflow/python/client/ 33 475 2031 2539 ./tensorflow/python/framework/ 13 686 7097 7796 ./tensorflow/python/kernel_tests/ 25391 25391 ./tensorflow/python/lib/core/ 26 316 342 ./tensorflow/python/lib/io/ 52 75 31 158 ./tensorflow/python/ops/ 14995 14995 ./tensorflow/python/platform/ 888 888 ./tensorflow/python/platform/default / 389 389 ./tensorflow/python/summary/ 1168 1168 ./tensorflow/python/summary/impl/ 693 693 ./tensorflow/python/tools/ 280 280 ./tensorflow/python/training/ 6 7732 7738 ./tensorflow/python/user_ops/ 7 7 ./tensorflow/python/util/ 51 51 총합계 124 1552 6 60921 62603
  • 16. Code Summary ■ The Python part – Various operations and trainings – API: • the most complete and the easiest to use ■ The C++ part – Framework and kernel functions – API: • offer some performance advantages • supports deployment to small devices such as Android 16
  • 17. Meta Framework ■ Keras ■ TensorFlow Slim – a lightweight library for defining, training and evaluating models ■ Skflow – provide Scikit Learn style API ■ PrettyTensor – support a chainable object syntax to quickly define neural networks ■ TFLearn – a modular and transparent deep learning library 17