This document discusses reducing the computational complexity of a 2D Gaussian filter for image smoothing. It begins with an abstract that notes 2D Gaussian filters are commonly used for image smoothing but require heavy computational resources. It then proposes using fixed-point arithmetic rather than floating point to implement the filter on an FPGA, which can increase efficiency and decrease area and complexity. The document is divided into sections that cover the theory behind image filtering, image smoothing and sharpening, quality metrics for evaluation, and an energy scalable Gaussian smoothing filter architecture. It concludes by discussing results and benefits of implementing the filter using fixed-point arithmetic on an FPGA.