SlideShare a Scribd company logo
Gaussian Process Latent Variable Model 
(GPLVM) 
James McMurray 
PhD Student 
Department of Empirical Inference 
11/02/2014
Outline of talk 
Introduction 
Why are latent variable models useful? 
De
nition of a latent variable model 
Graphical Model representation 
PCA recap 
Principal Components Analysis (PCA) 
Probabilistic PCA based methods 
Probabilistic PCA (PPCA) 
Dual PPCA 
GPLVM 
Examples 
Practical points 
Variants 
Conclusion 
Conclusion 
References
Why are latent variable models useful? 
I Data has structure.
Why are latent variable models useful? 
I Observed high-dimensional data often lies on a 
lower-dimensional manifold. 
Example Swiss Roll" dataset
Why are latent variable models useful? 
I The structure in the data means that we don't need such high 
dimensionality to describe it. 
I The lower dimensional space is often easier to work with. 
I Allows for interpolation between observed data points.
De
nition of a latent variable model 
I Assumptions: 
I Assume that the observed variables actually result from a 
smaller set of latent variables. 
I Assume that the observed variables are independent given the 
latent variables. 
I Diers slightly from dimensionality reduction paradigm which 
wishes to
nd a lower-dimensional embedding in the 
high-dimensional space. 
I With the latent variable model we specify the functional form 
of the mapping: 
y = g(x) +  
where x are the latent variables, y are the observed variables 
and  is noise. 
I Obtain dierent latent variable models for dierent 
assumptions on g(x) and
Graphical model representation 
Graphical Model example of Latent Variable Model 
Taken from Neil Lawrence: 
http: // ml. dcs. shef. ac. uk/ gpss/ gpws14/ gp_ gpws14_ session3. pdf
Plan 
Introduction 
Why are latent variable models useful? 
De
nition of a latent variable model 
Graphical Model representation 
PCA recap 
Principal Components Analysis (PCA) 
Probabilistic PCA based methods 
Probabilistic PCA (PPCA) 
Dual PPCA 
GPLVM 
Examples 
Practical points 
Variants 
Conclusion 
Conclusion 
References
Principal Components Analysis (PCA) 
I Returns orthogonal dimensions of maximum variance. 
I Works well if data lies on a plane in the higher dimensional 
space. 
I Linear method (although variants allow non-linear application, 
e.g. kernel PCA). 
Example application of PCA. Taken from 
http: // www. nlpca. org/ pca_ principal_ component_ analysis. html
Plan 
Introduction 
Why are latent variable models useful? 
De
nition of a latent variable model 
Graphical Model representation 
PCA recap 
Principal Components Analysis (PCA) 
Probabilistic PCA based methods 
Probabilistic PCA (PPCA) 
Dual PPCA 
GPLVM 
Examples 
Practical points 
Variants 
Conclusion 
Conclusion 
References
Probabilistic PCA (PPCA) 
I A probabilistic version of PCA. 
I Probabilistic formulation is useful for many reasons: 
I Allows comparison with other techniques via likelihood 
measure. 
I Facilitates statistical testing. 
I Allows application of Bayesian methods. 
I Provides a principled way of handling missing values - via 
Expectation Maximization.
PPCA De
nition 
I Consider a set of centered data of n observations and d 
dimensions: Y = [y1; : : : ; yn]T . 
I We assume this data has a linear relationship with some 
embedded latent space data xn. Where Y 2 RND and 
x 2 RNq. 
I yn = Wxn + n, where xn is the q-dimensional latent variable 
associated with each observation, and W 2 RDq is the 
transformation matrix relating the observed and latent space. 
I We assume a spherical Gaussian distribution for the noise with 
a mean of zero and a covariance of
1I 
I Likelihood for an observation yn is: 
p (ynjxn;W;
) = N 
 
ynjWxn;
1I
PPCA Derivation 
I Marginalise latent variables xn, put a Gaussian prior on W and 
solve using maximum likelihood. 
I The prior used for xn in the integration is a zero mean, unit 
covariance Gaussian distribution: 
p(xn) = N(xnj0; I) 
p(ynjW;
) = 
Z 
p(ynjxn;W;
)p(xn)dxn 
p(ynjW;
) = 
Z 
N 
 
ynjWxn;
1I 
 
N(xnj0; I)dxn 
p(ynjW;
) = N(ynj0;WWT +
1I) 
I Assuming i.i.d. data, the likelihood of the full set is the 
product of the individual probabilities: 
p(Y jW;
) = 
YN 
n=1 
p(ynjW;
)
PPCA Derivation 
I To calculate that marginalisation step we use the summation 
and scaling properties of Gaussians. 
I Sum of Gaussian variables is Gaussian. 
Xn 
i=1 
N(i ; 2 
i )  N 
  
Xn 
i=1 
i ; 
Xn 
i=1 
2 
i 
! 
I Scaling a Gaussian leads to a Gaussian: 
wN(; 2)  N(w;w22) 
I So: 
y = Wx +  ; x  N(0; I) ;   N(0; 2I) 
Wx  N(0;WWT) 
Wx +   N(0;WWT + 2I)

More Related Content

What's hot (20)

PPTX
[授業]洞察問題解決プロセスの分析(眼編)
Reiji Ohkuma
 
PPTX
Sampling survey
Serod Khuyagaa
 
PDF
2 4.devianceと尤度比検定
logics-of-blue
 
PDF
コミュニティ分類アルゴリズムの高速化とソーシャルグラフへの応用
mosa siru
 
PPTX
Розрахункові методи підтвердження теплоізоляційних властивостей вікон та фаса...
Mykhailo Orlenko
 
PDF
Pyclustering tutorial - K-means
Andrei Novikov
 
PPT
ανάλυση προβλήματος
sziovas
 
PPS
Розв'язування вправ на знаходження похідної функції
Anetico
 
PDF
Lec3 c++operator
Turuu Tsogt
 
PPTX
Deployment diagram
Scene Angel
 
PDF
NIPS2010読み会: A New Probabilistic Model for Rank Aggregation
sleepy_yoshi
 
PDF
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
Tatsuya Yokota
 
PPTX
Isolation forest
kataware
 
PDF
メディアにおける顧客体験と
エンゲージメントの最適化(日経電子版)at DOMO City Tour 2018
Hideki Yamauchi
 
PPT
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ:ΠΟΛΥΜΕΣΑ
nelhkanell
 
PDF
潜在クラス分析
Yoshitake Takebayashi
 
PDF
星野「調査観察データの統計科学」第3章
Shuyo Nakatani
 
PDF
生成對抗模式 GAN 的介紹
Yen-lung Tsai
 
PDF
人工知能2018 強化学習の応用
Hirotaka Hachiya
 
PDF
20180116 量子コンピュータ概説
Masakazu Shinoda
 
[授業]洞察問題解決プロセスの分析(眼編)
Reiji Ohkuma
 
Sampling survey
Serod Khuyagaa
 
2 4.devianceと尤度比検定
logics-of-blue
 
コミュニティ分類アルゴリズムの高速化とソーシャルグラフへの応用
mosa siru
 
Розрахункові методи підтвердження теплоізоляційних властивостей вікон та фаса...
Mykhailo Orlenko
 
Pyclustering tutorial - K-means
Andrei Novikov
 
ανάλυση προβλήματος
sziovas
 
Розв'язування вправ на знаходження похідної функції
Anetico
 
Lec3 c++operator
Turuu Tsogt
 
Deployment diagram
Scene Angel
 
NIPS2010読み会: A New Probabilistic Model for Rank Aggregation
sleepy_yoshi
 
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
Tatsuya Yokota
 
Isolation forest
kataware
 
メディアにおける顧客体験と
エンゲージメントの最適化(日経電子版)at DOMO City Tour 2018
Hideki Yamauchi
 
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ:ΠΟΛΥΜΕΣΑ
nelhkanell
 
潜在クラス分析
Yoshitake Takebayashi
 
星野「調査観察データの統計科学」第3章
Shuyo Nakatani
 
生成對抗模式 GAN 的介紹
Yen-lung Tsai
 
人工知能2018 強化学習の応用
Hirotaka Hachiya
 
20180116 量子コンピュータ概説
Masakazu Shinoda
 

Viewers also liked (15)

PPTX
Dimension Reduction And Visualization Of Large High Dimensional Data Via Inte...
wl820609
 
PDF
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Ryan B Harvey, CSDP, CSM
 
PPT
Topic Models
Claudia Wagner
 
PDF
Manifold learning with application to object recognition
zukun
 
PDF
関東CV勉強会 Kernel PCA (2011.2.19)
Akisato Kimura
 
PPTX
Self-organizing map
Tarat Diloksawatdikul
 
PDF
[Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametri...
Shuyo Nakatani
 
PDF
WSDM2016読み会 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Kotaro Tanahashi
 
PDF
Visualizing Data Using t-SNE
Tomoki Hayashi
 
PDF
AutoEncoderで特徴抽出
Kai Sasaki
 
PDF
LDA入門
正志 坪坂
 
PDF
非線形データの次元圧縮 150905 WACODE 2nd
Mika Yoshimura
 
PDF
CVIM#11 3. 最小化のための数値計算
sleepy_yoshi
 
PDF
Numpy scipyで独立成分分析
Shintaro Fukushima
 
PDF
Hyperoptとその周辺について
Keisuke Hosaka
 
Dimension Reduction And Visualization Of Large High Dimensional Data Via Inte...
wl820609
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Ryan B Harvey, CSDP, CSM
 
Topic Models
Claudia Wagner
 
Manifold learning with application to object recognition
zukun
 
関東CV勉強会 Kernel PCA (2011.2.19)
Akisato Kimura
 
Self-organizing map
Tarat Diloksawatdikul
 
[Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametri...
Shuyo Nakatani
 
WSDM2016読み会 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Kotaro Tanahashi
 
Visualizing Data Using t-SNE
Tomoki Hayashi
 
AutoEncoderで特徴抽出
Kai Sasaki
 
LDA入門
正志 坪坂
 
非線形データの次元圧縮 150905 WACODE 2nd
Mika Yoshimura
 
CVIM#11 3. 最小化のための数値計算
sleepy_yoshi
 
Numpy scipyで独立成分分析
Shintaro Fukushima
 
Hyperoptとその周辺について
Keisuke Hosaka
 
Ad

Similar to The Gaussian Process Latent Variable Model (GPLVM) (20)

PDF
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
One Algorithm to Rule Them All: How to Automate Statistical Computation
Work-Bench
 
PPTX
Particle filter
Mohammad Reza Jabbari
 
PDF
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
Iosif Itkin
 
PDF
The Sample Average Approximation Method for Stochastic Programs with Integer ...
SSA KPI
 
PDF
reportVPLProject
Sebastien Speierer
 
PDF
proposal_pura
Erick Lin
 
PDF
Lecture-11 principal component analysis.pdf
TalhaShahid49
 
PDF
9.2. SE5072_Multi-fidelity for data s.pdf
AmirhosseinShokrani
 
PDF
A quantum-inspired optimization heuristic for the multiple sequence alignment...
Konstantinos Giannakis
 
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
An approximate possibilistic
csandit
 
PDF
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
sipij
 
PDF
A Robust Method Based On LOVO Functions For Solving Least Squares Problems
Dawn Cook
 
PPTX
Principal component analysis
Farah M. Altufaili
 
PDF
post119s1-file3
Venkata Suhas Maringanti
 
PDF
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
SSA KPI
 
PDF
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Rafael Nogueras
 
PDF
Chap 8. Optimization for training deep models
Young-Geun Choi
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
The Statistical and Applied Mathematical Sciences Institute
 
One Algorithm to Rule Them All: How to Automate Statistical Computation
Work-Bench
 
Particle filter
Mohammad Reza Jabbari
 
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
Iosif Itkin
 
The Sample Average Approximation Method for Stochastic Programs with Integer ...
SSA KPI
 
reportVPLProject
Sebastien Speierer
 
proposal_pura
Erick Lin
 
Lecture-11 principal component analysis.pdf
TalhaShahid49
 
9.2. SE5072_Multi-fidelity for data s.pdf
AmirhosseinShokrani
 
A quantum-inspired optimization heuristic for the multiple sequence alignment...
Konstantinos Giannakis
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
An approximate possibilistic
csandit
 
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
sipij
 
A Robust Method Based On LOVO Functions For Solving Least Squares Problems
Dawn Cook
 
Principal component analysis
Farah M. Altufaili
 
post119s1-file3
Venkata Suhas Maringanti
 
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
SSA KPI
 
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Rafael Nogueras
 
Chap 8. Optimization for training deep models
Young-Geun Choi
 
Ad

Recently uploaded (20)

PPTX
Lamarckism is one of the earliest theories of evolution, proposed before Darw...
Laxman Khatal
 
PPTX
Animal Reproductive Behaviors Quiz Presentation in Maroon Brown Flat Graphic ...
LynetteGaniron1
 
PDF
GK_GS One Liner For Competitive Exam.pdf
abhi01nm
 
PDF
Annual report 2024 - Inria - English version.pdf
Inria
 
PDF
A young gas giant and hidden substructures in a protoplanetary disk
Sérgio Sacani
 
PPTX
Q1 - W1 - D2 - Models of matter for science.pptx
RyanCudal3
 
PPTX
Akshay tunneling .pptx_20250331_165945_0000.pptx
akshaythaker18
 
PPTX
GB1 Q1 04 Life in a Cell (1).pptx GRADE 11
JADE ACOSTA
 
PPTX
Diuretic Medicinal Chemistry II Unit II.pptx
Dhanashri Dupade
 
PDF
Pharma Part 1.pdf #pharmacology #pharmacology
hikmatyt01
 
PDF
Chemokines and Receptors Overview – Key to Immune Cell Signaling
Benjamin Lewis Lewis
 
PDF
NRRM 330 Dynamic Equlibrium Presentation
Rowan Sales
 
PDF
crestacean parasitim non chordates notes
S.B.P.G. COLLEGE BARAGAON VARANASI
 
PDF
Continuous Model-Based Engineering of Software-Intensive Systems: Approaches,...
Hugo Bruneliere
 
PPTX
How to write a research paper July 3 2025.pptx
suneeta panicker
 
PDF
Adding Geochemistry To Understand Recharge Areas - Kinney County, Texas - Jim...
Texas Alliance of Groundwater Districts
 
PPTX
Immunopharmaceuticals and microbial Application
xxkaira1
 
PPTX
Pratik inorganic chemistry silicon based ppt
akshaythaker18
 
PPTX
Cooking Oil Tester How to Measure Quality of Frying Oil.pptx
M-Kube Enterprise
 
PPTX
MICROBIOLOGY PART-1 INTRODUCTION .pptx
Mohit Kumar
 
Lamarckism is one of the earliest theories of evolution, proposed before Darw...
Laxman Khatal
 
Animal Reproductive Behaviors Quiz Presentation in Maroon Brown Flat Graphic ...
LynetteGaniron1
 
GK_GS One Liner For Competitive Exam.pdf
abhi01nm
 
Annual report 2024 - Inria - English version.pdf
Inria
 
A young gas giant and hidden substructures in a protoplanetary disk
Sérgio Sacani
 
Q1 - W1 - D2 - Models of matter for science.pptx
RyanCudal3
 
Akshay tunneling .pptx_20250331_165945_0000.pptx
akshaythaker18
 
GB1 Q1 04 Life in a Cell (1).pptx GRADE 11
JADE ACOSTA
 
Diuretic Medicinal Chemistry II Unit II.pptx
Dhanashri Dupade
 
Pharma Part 1.pdf #pharmacology #pharmacology
hikmatyt01
 
Chemokines and Receptors Overview – Key to Immune Cell Signaling
Benjamin Lewis Lewis
 
NRRM 330 Dynamic Equlibrium Presentation
Rowan Sales
 
crestacean parasitim non chordates notes
S.B.P.G. COLLEGE BARAGAON VARANASI
 
Continuous Model-Based Engineering of Software-Intensive Systems: Approaches,...
Hugo Bruneliere
 
How to write a research paper July 3 2025.pptx
suneeta panicker
 
Adding Geochemistry To Understand Recharge Areas - Kinney County, Texas - Jim...
Texas Alliance of Groundwater Districts
 
Immunopharmaceuticals and microbial Application
xxkaira1
 
Pratik inorganic chemistry silicon based ppt
akshaythaker18
 
Cooking Oil Tester How to Measure Quality of Frying Oil.pptx
M-Kube Enterprise
 
MICROBIOLOGY PART-1 INTRODUCTION .pptx
Mohit Kumar
 

The Gaussian Process Latent Variable Model (GPLVM)

  • 1. Gaussian Process Latent Variable Model (GPLVM) James McMurray PhD Student Department of Empirical Inference 11/02/2014
  • 2. Outline of talk Introduction Why are latent variable models useful? De
  • 3. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 4. Why are latent variable models useful? I Data has structure.
  • 5. Why are latent variable models useful? I Observed high-dimensional data often lies on a lower-dimensional manifold. Example Swiss Roll" dataset
  • 6. Why are latent variable models useful? I The structure in the data means that we don't need such high dimensionality to describe it. I The lower dimensional space is often easier to work with. I Allows for interpolation between observed data points.
  • 7. De
  • 8. nition of a latent variable model I Assumptions: I Assume that the observed variables actually result from a smaller set of latent variables. I Assume that the observed variables are independent given the latent variables. I Diers slightly from dimensionality reduction paradigm which wishes to
  • 9. nd a lower-dimensional embedding in the high-dimensional space. I With the latent variable model we specify the functional form of the mapping: y = g(x) + where x are the latent variables, y are the observed variables and is noise. I Obtain dierent latent variable models for dierent assumptions on g(x) and
  • 10. Graphical model representation Graphical Model example of Latent Variable Model Taken from Neil Lawrence: http: // ml. dcs. shef. ac. uk/ gpss/ gpws14/ gp_ gpws14_ session3. pdf
  • 11. Plan Introduction Why are latent variable models useful? De
  • 12. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 13. Principal Components Analysis (PCA) I Returns orthogonal dimensions of maximum variance. I Works well if data lies on a plane in the higher dimensional space. I Linear method (although variants allow non-linear application, e.g. kernel PCA). Example application of PCA. Taken from http: // www. nlpca. org/ pca_ principal_ component_ analysis. html
  • 14. Plan Introduction Why are latent variable models useful? De
  • 15. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 16. Probabilistic PCA (PPCA) I A probabilistic version of PCA. I Probabilistic formulation is useful for many reasons: I Allows comparison with other techniques via likelihood measure. I Facilitates statistical testing. I Allows application of Bayesian methods. I Provides a principled way of handling missing values - via Expectation Maximization.
  • 18. nition I Consider a set of centered data of n observations and d dimensions: Y = [y1; : : : ; yn]T . I We assume this data has a linear relationship with some embedded latent space data xn. Where Y 2 RND and x 2 RNq. I yn = Wxn + n, where xn is the q-dimensional latent variable associated with each observation, and W 2 RDq is the transformation matrix relating the observed and latent space. I We assume a spherical Gaussian distribution for the noise with a mean of zero and a covariance of
  • 19. 1I I Likelihood for an observation yn is: p (ynjxn;W;
  • 20. ) = N ynjWxn;
  • 21. 1I
  • 22. PPCA Derivation I Marginalise latent variables xn, put a Gaussian prior on W and solve using maximum likelihood. I The prior used for xn in the integration is a zero mean, unit covariance Gaussian distribution: p(xn) = N(xnj0; I) p(ynjW;
  • 23. ) = Z p(ynjxn;W;
  • 25. ) = Z N ynjWxn;
  • 26. 1I N(xnj0; I)dxn p(ynjW;
  • 28. 1I) I Assuming i.i.d. data, the likelihood of the full set is the product of the individual probabilities: p(Y jW;
  • 29. ) = YN n=1 p(ynjW;
  • 30. )
  • 31. PPCA Derivation I To calculate that marginalisation step we use the summation and scaling properties of Gaussians. I Sum of Gaussian variables is Gaussian. Xn i=1 N(i ; 2 i ) N Xn i=1 i ; Xn i=1 2 i ! I Scaling a Gaussian leads to a Gaussian: wN(; 2) N(w;w22) I So: y = Wx + ; x N(0; I) ; N(0; 2I) Wx N(0;WWT) Wx + N(0;WWT + 2I)
  • 33. nd a solution for W by maximising the likelihood. I Results in an eigenvalue problem. I Turns out that the closed-form solution for W is achieved when W spans the principal sub-space of the data1. I Same solution as PCA: Probabilistic PCA I Can it be extended to capture non-linear features? 1Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component analysis. (1997).
  • 34. Dual PPCA I Similar to previous derivation of PPCA. I But marginalise W and optimise xn. I Same linear-Gaussian relationship between latent variables and data: p(YjX;W;
  • 35. ) = YD d=1 N(yd;:jWxd;:;
  • 36. 1I) I Place a conjugate prior on W: P(W) = YD d=1 N(wd;:j0; I) I Resulting marginal likelihood is: P(Y jX;
  • 37. ) = YD d=1 N(y:;d j0;XXT +
  • 38. 1I)
  • 39. Dual PPCA I Results in equivalent eigenvalue problem to PPCA. I So what is the bene
  • 40. t? I The eigendecomposition is now done on an N q instead of a d q matrix. I Recall marginal likelihood: P(Y jX;
  • 41. ) = YD d=1 N(y:;d j0;XXT +
  • 42. 1I) I The covariance matrix is a covariance function: K = XXT +
  • 43. 1I I This linear kernel can be replaced by other covariance functions for non-linearity. I This is the GPLVM.
  • 44. GPLVM I Each dimension of the marginal distribution can be interpreted as an independent Gaussian Process2. I Dual PPCA is the special case where the output dimensions are assumed to be linear, independent and identically distributed. I GPLVM removes assumption of linearity. I Gaussian prior over the function space. I Choice of covariance function changes family of functions considered. I Popular kernels: I Exponentiated Quadratic (RBF) kernel I Matern kernels I Periodic kernels I Many more... 2Neil Lawrence: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. JMLR (2005)
  • 45. Plan Introduction Why are latent variable models useful? De
  • 46. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 47. Example: Frey Face data Example in GPMat
  • 48. Example: Motion Capture data Taken from Keith Grochow, et al. Style-based inverse kinematics. ACM Transactions on Graphics (TOG). Vol. 23. No. 3. ACM, 2004.
  • 49. Plan Introduction Why are latent variable models useful? De
  • 50. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 51. Practical points I Need to optimise over non-convex objective function. I Achieved using gradient-based methods (scaled conjugate gradients). I Several restarts to attempt to avoid local optima. I Cannot guarantee global optimum. I High computational cost for large datasets. I May need to optimise over most-informative subset of data, the active set for sparsi
  • 53. Practical points Initialisation can have a large eect on the
  • 54. nal results. Eect of poor initialisation on Swiss Roll dataset. PCA left, Isomap right. Taken from Probabilistic non-linear principal component analysis with Gaussian process latent variable models., Neil Lawrence, JMLR (2005).
  • 55. Plan Introduction Why are latent variable models useful? De
  • 56. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 57. Variants I There are a number of variants of the GPLVM. I For example, the GPLVM uses the same covariance function for each output dimension. I This can be changed, for example the Scaled GPLVM which introduces a scaling parameter for each output dimension3. I The Gaussian Process Dynamic Model (GPDM) adds another Gaussian process for dynamical mappings4. I The Bayesian GPLVM approximates integrating over both the latent variables and the mapping function5. 3Keith Grochow, et al. Style-based inverse kinematics. ACM Transactions on Graphics (TOG). Vol. 23. No. 3. ACM, 2004. 4Wang, Jack, Aaron Hertzmann, and David M. Blei. Gaussian process dynamical models. Advances in neural information processing systems. 2005. 5Titsias, Michalis, and Neil Lawrence. Bayesian Gaussian process latent variable model. (2010).
  • 58. Variants I The Shared GPLVM learns mappings from a shared latent space to two separate observational spaces. I Used by Disney Research in their paper Animating Non-Humanoid Characters with Human Motion Data for generating animations for non-human characters from human motion capture data. Shared GPLVM mappings as used by Disney Research I Video
  • 59. Variants I Can also put a Gaussian Process prior on X to produce Deep Gaussian Processes6. I Zhang et al. developed Invariant GPLVM7 - permits interpretation of causal relations between observed variables, by allowing arbitrary noise correlations between the latent variables. I Currently attempting to implement IGPLVM in GPy. 6Damianou, Andreas C., and Neil D. Lawrence. Deep Gaussian Processes. arXiv preprint arXiv:1211.0358 (2012). 7Zhang, K., Scholkopf, B., and Janzing, D. (2010). Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery. UAI 2010.
  • 60. Plan Introduction Why are latent variable models useful? De
  • 61. nition of a latent variable model Graphical Model representation PCA recap Principal Components Analysis (PCA) Probabilistic PCA based methods Probabilistic PCA (PPCA) Dual PPCA GPLVM Examples Practical points Variants Conclusion Conclusion References
  • 62. Conclusion I Implemented in GPy (Python) and GPMat (MATLAB). I Many practical applications - pose modelling, tweening I Especially if smooth interpolation is desireable. I Modeling of confounders. Thanks for your time Questions?
  • 63. References I Neil Lawrence, Gaussian process latent variable models for visualisation of high dimensional data. Advances in neural information processing systems 16.329-336 (2004): 3. I Neil Lawrence, Probabilistic non-linear principal component analysis wit Gaussian process latent variable models. JMLR (2005) I Gaussian Process Winter School, Sheeld 2013: http://ml.dcs.shef.ac.uk/gpss/gpws14/ I WikiCourseNote: http://wikicoursenote.com/wiki/ Probabilistic_PCA_with_GPLVM