The Importance of the InChI Identifier
as a Foundation Technology for
eScience Platforms at RSC
Antony Williams
Bio-IT,
Boston, April 27th
2014
Without the InChI…
• ChemSpider is unlikely to have been built
• It would not have grown into one of the
domains primary online chemistry resources
• The Royal Society of Chemistry would not
have it as an online database, would not
have a large cheminformatics team and
would not be involved in a number of large
scale funded projects around chemistry data
• ~30 million chemicals and growing
• Data sourced from >500 different sources
• Crowd sourced curation and annotation
• Ongoing deposition of data from our journals
and our collaborators
• Structure centric hub for web-searching
• …and a really big dictionary!!!
ChemSpider
ChemSpider
Experimental/Predicted Properties
Literature references
Patents references
So what is Yohimbine?
Of course it is out there…
Drugbox: 3001/5080 with InChIs
Chembox:5436/7690 with InChIs
Tell me more…
• Where can I find the molfile for Yohimbine?
• Papers/Patents about Yohimbine?
• What are the side effects of Yohimbine?
• Where can I order Yohimbine?
• What are the physicochemical properties?
• Metabolic pathways?
• Different synonyms of Yohimbine?
• Synthesis of Yohimbine?
• Side effects of Yohimbine?
• Etc….
Quantity!
Yohimbine on ChemSpider
Downsides of Overall Approach
• Meshing data together based on InChIs
worked for simple molecules
• 2D layout errors inherited or limited by
algorithm
• Complex molecules that are meant to be the
same thing were NOT deduplicated.
Compounds differing by one stereocenter,
named the same, meant to be the same, are
not the same
Yohimbine on
ChemSpider..Quality?
So where can we travel???
So where can we travel???
InChI String Search via Google
Give me InChIKeys…
And where can we travel???
ChemSpider
BRENDA
Wikipedia
ChEMBL
ChEBI
DrugBank
Aggregator
Enzymes
Encyclopedia
Pharmacology
Curated Chemicals
Drug-Drug Target
How do we build it?
• We deal in Molfiles or SDF files – with coordinates
• Deposit anything that has an InChI – we support
what InChI can handle, good and bad
• Standardization based on “InChI standardization”
• InChIs aggregate (certain) tautomers
• We link out to external sites using their IDs
Downsides of InChI
• InChI was a moving target (multi versions) but
overall worked as planned.
• Good for small molecules – but no polymers, issues
with inorganics, organometallics, imperfect
stereochemistry. ChemSpider is “small molecules”
• InChI used as the “deduplicator” – FIRST version of
a compound into the database becomes THE
structure to deduplicate against…
Side Effects of InChI Usage
SMILES by comparison…
Side Effects of InChI Usage
Standardization Issues
Depiction based on molfile
Standardize
Use the SRS as a guidance document for
standardization
Adjust as necessary to our needs
Nitro groups
Salt and Ionic Bonds
Ammonium salts
CVSP
NPC Browser Set
Checking include InChI
• Many SDF files contain InChIs and SMILES
– comparing the structure contained within
the file with the associated InChI is useful –
turned up a number of errors in checking
online databases
So, I’m writing an article…
With these…I will lose data 
But linking with InChI …
Structure Searching the Web
Data in Publications
• This is not new, you know the story…
• So much data of value is contained within a
publication and delivered in a PDF form
• PDF files, and unclear licensing/copyright, limit
access to data so I can rework, reuse,
repurpose, text mine etc.
• “I specialize in XXXX. I want a database of
YYYY extracted from publications and made
available, for free, with the capabilities I need,
and the publishers should just do it”
“Data enable” publications?
• We would LOVE to bring data out of our archive
• What could we do?
• Find chemical names and generate structures
• Find chemical images and generate structures
• Find reactions – and make a database!
• Find data (MP, BP, LogP) and host. Build
models!
• Find figures and database them
• Find spectra (and link to structures)
• Validate the data algorithmically
RSC Archive – since 1841
Text Mining
The N-(β-hydroxyethyl)-N-methyl-N'-(2-trifluoromethyl-1,3,4-
thiadiazol-5-yl)urea prepared in Example 6 , thionyl chloride ( 5
ml ) and benzene ( 50 ml ) were charged into a glass reaction
vessel equipped with a mechanical stirrer , thermometer and
reflux condenser .
The reaction mixture was heated at reflux with stirring , for a
period of about one-half hour .
After this time the benzene and unreacted thionyl chloride were
stripped from the reaction mixture under reduced pressure to
yield the desired product N-(β-chloroethyl)-N-methyl-N'-(2-
trifluoromethyl-1,3,4-thiaidazol-5-yl)urea as a solid residue
Text Mining
The N-(β-hydroxyethyl)-N-methyl-N'-(2-trifluoromethyl-1,3,4-
thiadiazol-5-yl)urea prepared in Example 6 , thionyl chloride ( 5
ml ) and benzene ( 50 ml ) were charged into a glass reaction
vessel equipped with a mechanical stirrer , thermometer and
reflux condenser .
The reaction mixture was heated at reflux with stirring , for a
period of about one-half hour .
After this time the benzene and unreacted thionyl chloride were
stripped from the reaction mixture under reduced pressure to
yield the desired product N-(β-chloroethyl)-N-methyl-N'-(2-
trifluoromethyl-1,3,4-thiaidazol-5-yl)urea as a solid residue
But names = structures
• Systematic names can be generated FROM
chemical structures algorithmically
But names = structures
• …and structures from systematic names
But what of trivial names?
• What about trivial names, trade names, CAS
numbers, multilingual names etc.?
Searching that lipid in patents
Aspirin on ChemSpider
Work in Progress
Work in Progress
Work in Progress
Work in Progress
But Context Gives Reactions
The N-(β-hydroxyethyl)-N-methyl-N'-(2-trifluoromethyl-1,3,4-
thiadiazol-5-yl)urea prepared in Example 6 , thionyl chloride ( 5
ml ) and benzene ( 50 ml ) were charged into a glass reaction
vessel equipped with a mechanical stirrer , thermometer and
reflux condenser .
The reaction mixture was heated at reflux with stirring , for a
period of about one-half hour .
After this time the benzene and unreacted thionyl chloride were
stripped from the reaction mixture under reduced pressure to
yield the desired product N-(β-chloroethyl)-N-methyl-N'-(2-
trifluoromethyl-1,3,4-thiaidazol-5-yl)urea as a solid residue
ChemSpider Reactions
ChemSpider as a Foundation
• >30 million chemicals (and growing)
• ChemSpider is free to access for everyone –
and the API means people program against it
• What projects can we benefit?
Support grant-based services
• Multiple European consortium-based grants
• PharmaSea (FP7 funded)
• Open PHACTS (IMI funded)
• UK National Chemical Database Service
(http://cds.rsc.org) – developing data repository
for lab data, integrate Electronic Lab Notebooks
• Open Drug Discovery projects
PharmaSea
• 3-year Innovative Medicines Initiative project
• Integrating chemistry and biology data using
semantic web technologies
• Open code, open data, open standards
• Academics, Pharmas, Publishers…
• To put medicines in the pipeline…
Open PHACTS
All Databases We Generate…
• All databases and systems we build now
include generated InChIs
• InChIs are facilitating discoverability via
searching on Google (see Chris’ talk) but
also for querying and linking
But we are still VERY LIMITED
• RSC deals with way more than organics,
inorganics, organometallics – we are building a
data repository to include materials, polymers,
ambiguous materials etc.
• There are many plans for InChI moving forward
– Markush, polymers, organometallics etc
The great promise should be
obvious
• InChIs are here to stay
• They will evolve, they will encompass, we will
adopt and adapt
• Public and private databases will federate &
build a linked environment of validated data!
• Data validation and standardization is
needed
• Open Data will continue to proliferate
• InChIs are in the “Semantic Web” already
If InChI never existed …
• ChemSpider would never have been built
• Database linking would suffer dramatically
• The web would not be “structure searchable”
• Cheminformatics tools would likely not be
linking to public domain databases in the
same way
Thank you
Email: williamsa@rsc.org
ORCID: 0000-0002-2668-4821
Twitter: @ChemConnector
Personal Blog: www.chemconnector.com
SLIDES: www.slideshare.net/AntonyWilliams

The importance of the InChI identifier as a foundation technology for eScience platforms

  • 1.
    The Importance ofthe InChI Identifier as a Foundation Technology for eScience Platforms at RSC Antony Williams Bio-IT, Boston, April 27th 2014
  • 2.
    Without the InChI… •ChemSpider is unlikely to have been built • It would not have grown into one of the domains primary online chemistry resources • The Royal Society of Chemistry would not have it as an online database, would not have a large cheminformatics team and would not be involved in a number of large scale funded projects around chemistry data
  • 3.
    • ~30 millionchemicals and growing • Data sourced from >500 different sources • Crowd sourced curation and annotation • Ongoing deposition of data from our journals and our collaborators • Structure centric hub for web-searching • …and a really big dictionary!!!
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
    So what isYohimbine?
  • 10.
    Of course itis out there… Drugbox: 3001/5080 with InChIs Chembox:5436/7690 with InChIs
  • 11.
    Tell me more… •Where can I find the molfile for Yohimbine? • Papers/Patents about Yohimbine? • What are the side effects of Yohimbine? • Where can I order Yohimbine? • What are the physicochemical properties? • Metabolic pathways? • Different synonyms of Yohimbine? • Synthesis of Yohimbine? • Side effects of Yohimbine? • Etc….
  • 12.
  • 13.
  • 14.
    Downsides of OverallApproach • Meshing data together based on InChIs worked for simple molecules • 2D layout errors inherited or limited by algorithm • Complex molecules that are meant to be the same thing were NOT deduplicated. Compounds differing by one stereocenter, named the same, meant to be the same, are not the same
  • 15.
  • 16.
    So where canwe travel???
  • 17.
    So where canwe travel???
  • 19.
    InChI String Searchvia Google Give me InChIKeys…
  • 20.
    And where canwe travel???
  • 21.
  • 22.
  • 23.
    How do webuild it? • We deal in Molfiles or SDF files – with coordinates • Deposit anything that has an InChI – we support what InChI can handle, good and bad • Standardization based on “InChI standardization” • InChIs aggregate (certain) tautomers • We link out to external sites using their IDs
  • 24.
    Downsides of InChI •InChI was a moving target (multi versions) but overall worked as planned. • Good for small molecules – but no polymers, issues with inorganics, organometallics, imperfect stereochemistry. ChemSpider is “small molecules” • InChI used as the “deduplicator” – FIRST version of a compound into the database becomes THE structure to deduplicate against…
  • 25.
    Side Effects ofInChI Usage
  • 26.
  • 27.
    Side Effects ofInChI Usage
  • 28.
  • 29.
    Standardize Use the SRSas a guidance document for standardization Adjust as necessary to our needs
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
    Checking include InChI •Many SDF files contain InChIs and SMILES – comparing the structure contained within the file with the associated InChI is useful – turned up a number of errors in checking online databases
  • 36.
    So, I’m writingan article…
  • 37.
    With these…I willlose data 
  • 38.
  • 39.
  • 40.
    Data in Publications •This is not new, you know the story… • So much data of value is contained within a publication and delivered in a PDF form • PDF files, and unclear licensing/copyright, limit access to data so I can rework, reuse, repurpose, text mine etc. • “I specialize in XXXX. I want a database of YYYY extracted from publications and made available, for free, with the capabilities I need, and the publishers should just do it”
  • 41.
    “Data enable” publications? •We would LOVE to bring data out of our archive • What could we do? • Find chemical names and generate structures • Find chemical images and generate structures • Find reactions – and make a database! • Find data (MP, BP, LogP) and host. Build models! • Find figures and database them • Find spectra (and link to structures) • Validate the data algorithmically
  • 42.
    RSC Archive –since 1841
  • 43.
    Text Mining The N-(β-hydroxyethyl)-N-methyl-N'-(2-trifluoromethyl-1,3,4- thiadiazol-5-yl)ureaprepared in Example 6 , thionyl chloride ( 5 ml ) and benzene ( 50 ml ) were charged into a glass reaction vessel equipped with a mechanical stirrer , thermometer and reflux condenser . The reaction mixture was heated at reflux with stirring , for a period of about one-half hour . After this time the benzene and unreacted thionyl chloride were stripped from the reaction mixture under reduced pressure to yield the desired product N-(β-chloroethyl)-N-methyl-N'-(2- trifluoromethyl-1,3,4-thiaidazol-5-yl)urea as a solid residue
  • 44.
    Text Mining The N-(β-hydroxyethyl)-N-methyl-N'-(2-trifluoromethyl-1,3,4- thiadiazol-5-yl)ureaprepared in Example 6 , thionyl chloride ( 5 ml ) and benzene ( 50 ml ) were charged into a glass reaction vessel equipped with a mechanical stirrer , thermometer and reflux condenser . The reaction mixture was heated at reflux with stirring , for a period of about one-half hour . After this time the benzene and unreacted thionyl chloride were stripped from the reaction mixture under reduced pressure to yield the desired product N-(β-chloroethyl)-N-methyl-N'-(2- trifluoromethyl-1,3,4-thiaidazol-5-yl)urea as a solid residue
  • 45.
    But names =structures • Systematic names can be generated FROM chemical structures algorithmically
  • 46.
    But names =structures • …and structures from systematic names
  • 47.
    But what oftrivial names? • What about trivial names, trade names, CAS numbers, multilingual names etc.?
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
    But Context GivesReactions The N-(β-hydroxyethyl)-N-methyl-N'-(2-trifluoromethyl-1,3,4- thiadiazol-5-yl)urea prepared in Example 6 , thionyl chloride ( 5 ml ) and benzene ( 50 ml ) were charged into a glass reaction vessel equipped with a mechanical stirrer , thermometer and reflux condenser . The reaction mixture was heated at reflux with stirring , for a period of about one-half hour . After this time the benzene and unreacted thionyl chloride were stripped from the reaction mixture under reduced pressure to yield the desired product N-(β-chloroethyl)-N-methyl-N'-(2- trifluoromethyl-1,3,4-thiaidazol-5-yl)urea as a solid residue
  • 55.
  • 56.
    ChemSpider as aFoundation • >30 million chemicals (and growing) • ChemSpider is free to access for everyone – and the API means people program against it • What projects can we benefit?
  • 57.
    Support grant-based services •Multiple European consortium-based grants • PharmaSea (FP7 funded) • Open PHACTS (IMI funded) • UK National Chemical Database Service (http://cds.rsc.org) – developing data repository for lab data, integrate Electronic Lab Notebooks • Open Drug Discovery projects
  • 59.
  • 60.
    • 3-year InnovativeMedicines Initiative project • Integrating chemistry and biology data using semantic web technologies • Open code, open data, open standards • Academics, Pharmas, Publishers… • To put medicines in the pipeline…
  • 61.
  • 62.
    All Databases WeGenerate… • All databases and systems we build now include generated InChIs • InChIs are facilitating discoverability via searching on Google (see Chris’ talk) but also for querying and linking
  • 63.
    But we arestill VERY LIMITED • RSC deals with way more than organics, inorganics, organometallics – we are building a data repository to include materials, polymers, ambiguous materials etc. • There are many plans for InChI moving forward – Markush, polymers, organometallics etc
  • 64.
    The great promiseshould be obvious • InChIs are here to stay • They will evolve, they will encompass, we will adopt and adapt • Public and private databases will federate & build a linked environment of validated data! • Data validation and standardization is needed • Open Data will continue to proliferate • InChIs are in the “Semantic Web” already
  • 65.
    If InChI neverexisted … • ChemSpider would never have been built • Database linking would suffer dramatically • The web would not be “structure searchable” • Cheminformatics tools would likely not be linking to public domain databases in the same way
  • 66.
    Thank you Email: [email protected] ORCID:0000-0002-2668-4821 Twitter: @ChemConnector Personal Blog: www.chemconnector.com SLIDES: www.slideshare.net/AntonyWilliams