SlideShare a Scribd company logo
www.eng.it
An Empirical Study (Revised)The Significance of IFPUG Base
Functionality Types in Effort
Estimation
25°International Workshop on Software Measurement
(IWSM) and 10th International Conference on
Software Process and Product Measurement
(MENSURA)
Krakow (Poland) - October 5-7, 2015
PIFs for Projects
(PifPro’15)
Luigi Buglione
Cigdem Gencel
www.eng.it
Engineering At a glance
www.eng.it
www.eng.it
DEISER At a glance
www.deiser.com
www.eng.it4 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
BFC Types Goals of the presentation
 G1. Help project managers and estimators to obtain better estimates using
the same historical data
 G2. Propose a list of filtering criteria helping in obtaining better
homogeneous clusters for data analysis and process improvements
 G3. Identify and manage 'not visible' outliers in your own historical data
 G4. Go into a deeper detail when gathering more granular data in your
historical database, that help in consolidating CMMI ML2 goals and achieving
faster ML3 ones with better PALs (Process Asset Libraries)
 G5. Stimulate improvements in your organization supporting more and
more experience by quantitative data  depicting projects’ profiles
www.eng.it5 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
BFC Types Agenda
• Introduction
– A FSM History
– Estimation Techniques
– Top 10 Measurement problems
– Estimation and SPI
• Related works
• Empirical Study
– Data Collection
– Data Preparation
– Statistical Analysis & Results
• Conclusions & Prospects
• Q & A
www.eng.it6 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction Why profiling?
www.eng.it7 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction A FSM History
Source: FSM webpage: http://www.semq.eu/leng/sizestfsm.htm
www.eng.it8 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction Estimation Techniques
Source: Briand L., Wieczorek I., Resource Estimation in Software Engineering, ISERN Technical Report
00-05, International Software Engineering Research Network, 2000, URL: http://isern.iese.de/moodle/
www.eng.it9 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction Top-10 Problems in Measurement
1. Betting the Measurement Program on a Single Metric;
2. Trying to Find a Single Metric that Solves All Problems and Has No Evils
3. The Quest for an Industry Standard Set of Measures
4. Not Linking Measures to Behaviour; Failing to Realize that the
Measures Are the System
5. Assuming that One Set of Measures Will Be Good for "All Time"
6. Measuring the Wrong IT Output
7. Measuring in Business Terms, but the Wrong Business Terms
8. Failure to Quantify in Business Terms; Failure to Plan for Benefits
9. Neglecting the Full Range of IT-Related Outcomes
10. Lack of Commitment; Treating Measurement As a Non-Value-Added
Add-On
Source: Rubin H.A., The Top 10 Mistakes in IT Measurement, IT Metrics Strategies, Vol.II, No.11,
November 1996, URL: http://goo.gl/YhRBos
www.eng.it10 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction Estimation and SPI (CMMI-DEV, ML2)
MA – Measurement & Analysis PP – Project Planning
PMC – Project Monitoring & ControlREQM – Requirement Mgmt
SG1
Establish
Estimates
SG2
Develop a
Project Plan
SG3 Obtain
Committment
to the Plan
Measurement
Data
An agreed-to set
of requirements
Planning Data
Project Plans
www.eng.it11 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction Estimation and SPI (CMMI-DEV, ML3)
Senior Management
Project Mgmt,
Support &
Engineering PAs
OT Org.
Training
OPF Org.
Process
Focus
OPD Org.
Process
Definition Improvement
Information (e.g.
lessons learned,
data, artifacts)
Process Improvement proposals;
participation in definining, assessing, and
deploying processes
Resources and
Coordination
Std processes and
other assets
Training for projects and support
groups in std process and assets
Organization’s
business objectives
Std process,
work
environment std,
and other assets
www.eng.it12 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Introduction Estimation and SPI (CMMI-DEV, ML3 - OPD)
Create Org.
Process Assets
SP1.2
Establish
lifecycle
model
description
s
SP1.3
Establish
Tailoring
Criteria &
GL
Make Supporting
Process Assets
Available
SP1.4
Establish
Org. Meas.
Repository
SP1.5
Establish
Org. PAL
SP1.6
Establish
Work Env.
Std
Lifecycle models
Org. Standard Processes
Org. Measur. Repository
Org. Library of Process Doc
Tailoring Guidelines
SP1.1
Establish
Standard
Processes
www.eng.it13 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Source: Gencel C. & Buglione L., Do Different Functionality Types Affect the Relationship between
Software Functional Size and Effort?, Proceedings of IWSM/MENSURA 2007, Palma de Mallorca (Spain),
November 5-8 2007, pp. 235-246
)()()()()(_ 543210 EIFBILFBEQBEOBEIBBEffortNW 
Use more independent variables
• when using FSM methods, e.g. use combinations of 2+ BFC types
 IFPUG BFC (EI, EO, EQ, ILF, EIF)
 COSMIC BFC (E, X, R, W)
• Results: increased R2 using the same dataset
Preconditions
• Historicize project data at the proper level of granularity. E.g.
 FSU at the BFC type level (by frequencies and – eventually – weigthed values)
 Effort at the SLC phase and/or by ReqType and/or…
 Defects by severity/priority class and/or resolution time by phase, and/or…
• Skill people – not only estimators – a bit more on Statistics
• Use something more than averages!
Related Works Analysis on the use of single BFC types
www.eng.it14 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Related Works
Study/Year Obs Source FSMM Filters R2
w/CFP
R2
w/BFC
Diff.
%
Buglione-
Gencel
(2008)
34
ISBSG r10 COSMIC
v2+ DQR/NewDev 0.7639 0.8919 +16.7
30 ISBSG r10 COSMIC
v2+
DQR/Enh 0.7086 0.8755 +23.6
Bajwa-
Gencel
(2009)
24 ISBSG r10 COSMIC
v2+
DQR/ApplType
(2)
0.29 0.78 +64.1
24 ISBSG r10 COSMIC
v2+
DQR/ApplType
(3)
0.29 0.86 +66.3
Ferrucci-
Gravino-
Buglione
(2010)
15 Company’s
data
COSMIC
v2.2
Web-based
portals (all)
0.824 0.875 +5.82
8 Company’s
data
COSMIC
v2.2
Web-based
portals (subset
1)
0.910 0.966 +5.79
7 Company’s
data
COSMIC
v2.2
Web-based Inf.
Utilities (subset
2)
0.792 0.831 +4.69
Analysis on the use of single BFC types
www.eng.it15 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Data Collection (ISBSG r11, 2009)
FSMM No. Projects % of the
projects
IFPUG 3.799 75%
FISMA 496 10%
COSMIC 345 7%
Others (LOC, Dreger, etc.) 221 4%
NESMA 155 3%
Mark-II 36 1%
Total 5.052 100%
www.eng.it16 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Data Collection (ISBSG r11, 2009)
Entity Attribute Definition
Product Count Approach The description of the technique that was used
to size the project (e.g. IFPUG, COSMIC, etc.)
Product Functional Size
The count of unadjusted FP. The unit is based
on the measurement method that is used to
measure the functional size.
Product Application Type The type of the application (e.g. MIS).
Project Normalized Work Effort
The effort used during the full life cycle. For
those projects that have covered less than a
complete life cycle effort, this value is an
estimate. For those projects covering the full life
cycle and those projects whose development
life cycle coverage is not known, this value and
value of summary work effort is same.
Project Development Type This field tells that whether the development is
new, enhanced or re-developed
Project Business Area Type
This identifies the subset within the
organisation being addressed by the project. It
may be different to the organisation type or the
same. (e.g.: Manufacturing, Personnel,
Finance).
Project Programming
Language Type
The primary language used for the
development: JAVA, C++, PL/1, Natural, Cobol
etc.
www.eng.it17 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Data Preparation
Step Attribute Filter
Projects
Excluded
Remaining
Projects
0 --- --- --- 5052
1 Count Approach = IFPUG 1,253 3,799
2 Data Quality Rating (DQR) = {A | B} 3,799 3,614
3
Quality Rating for Unadjusted
Function Points (UFP)
= {A | B} 3,614 2,879
4 BFC Types = {Not Empty} 1,482 1,397
Four subsets derived:
ID
#
projects
Dev
Type
Application Type Bus. Type Prog.Lang.
1 37 NewDev Fin trans. Process/accounting Insurance All
2 14 NewDev Fin trans. Process/accounting Insurance COBOL
3 15 NewDev Fin trans. Process/accounting Insurance Visual Basic
4 16 NewDev Fin trans. Process/accounting Banking COBOL
www.eng.it18 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Statistical Analysis & Results - UFP
A typical elaboration (subset #3) only with UFP…
Linear Regression Statistics
R 0.817
R Square 0.667
Stand. Error 2911.091
Total Number Of Cases 15
ANOVA
d.f. SS MS F p-level
Regression 1. 220,988,529.59 220988529.59 26.08 0.00
Residual 13. 110,167,824.81 8474448.06
Total 14. 331,156,354.40
Coeff. Std Err LCL UCL t Stat
p-
level
H0 (2%)
rejected?
Intercept 2149.62 849.57 -102.01 4401.26 2.53 0.03 No
Total
(IFPUG FP) 3.97 0.78 1.91 6.03 5.11 0.00 Yes
T (2%) 2.65
www.eng.it19 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Statistical Analysis & Results – BFC+
..and applying more BFCs
Linear Regression Statistics
R 0.932
R Square 0.868
Stand. Error 2205.569
Total Number Of Cases 15
ANOVA
d.f. SS MS F p-level
Regression 5. 287375530.43 57475106.09 11.82 0.00
Residual 9. 43780823.97 4864536.00
Total 14. 331156354.40
www.eng.it20 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Statistical Analysis & Results – BFC+
..and applying more BFCs (…next)
Coeff.
Std
Error LCL UCL t Stat p-level
H0 (2%)
rejected?
Intercept 2076.14 878.79 -403.31 4555.59 2.36 0.04 No
EI -14.74 39.13 -125.16 95.67 -0.38 0.72 No
EO 4.67 36.98 -99.67 109.01 0.13 0.90 No
EQ 26.25 9.81 -1.44 53.93 2.67 0.03 Yes
ILF -24.26 12.58 -59.76 11.23 -1.93 0.09 No
EIF 34.85 14.23 -5.29 74.99 2.45 0.04 Yes
T (2%) 2.90
www.eng.it21 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Empirical Study Statistical Analysis & Results
Subset # prj
R2
w/Total
FP
Is Total FP
significant?
R2 w/FP
for each
BFC Type
Diff%
(R2)
Which BFC
Types are
significant?
#1 37 0.290 Yes 0.369 +21% No
#2 14 0.057 No 0.838 +93% Yes (ILF)
#3 15 0.667 Yes 0.868 +23% Yes (EQ, EIF)
#4 16 0.720 Yes 0.893 +19% Yes (EO)
Data set # points EI EO EQ ILF EIF
Subset1 37 16.9% 24.6% 19.3% 21.7% 17.6%
Subset2 14 19.8% 39.0% 6.3% 14.4% 20.6%
Subset3 15 17.0% 21.6% 22.8% 23.4% 15.3%
Subset4 16 18.7% 31.0% 11.4% 27.7% 11.2%
% distribution of BFC types by value
Summary Data
www.eng.it22 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
BFC Types Conclusions & Perspectives
• FSM Methods
 Born with the goal to provide more objectivity in sizing FUR for a software system
 The IFPUG method has the heritage of the Albrecht’s FPA and evolves it from 1986
 Current version is v4.3.1 (Jan 2010) and is also an ISO standard (20926:2009)
 Several methods have arisen and share common principles and background (ISO 14143-x)
• BFC Types
 Each FSM method has a series of basic countable elements contributing to the final fsu
value, generically called by ISO “BFC”
 IFPUG FPA has 5 BFC: EI, EO, EQ, ILF, EIF
 Regression analysis with ANOVA
 Sizing & Estimation issues
 R2 values increased in 3 out of 4 cases (from +19% till +93%)
 Programming language (no set in subset #1) can impact in absolute terms on
predictability
 Some lessons learned
 Positive Effects: using that approach yet at lower maturity levels (e.g. ML2) can improve
significantly estimates, helping in saving resources to be reinvested in other project
activities, anticipating also the achievement of ML3 concepts (e.g. PAL)  functional
profiles
 Precondition: gather historical FSM data at that level of granularity
 …let’s remember when estimating anyway that any fsu is a product size for software FURs
(and not a project size)  deal with NFR and their impact on the overall project effort
within the defined project scope
 New issues
 ISBSG D&E r13 increased the number of projects to 6670, more fields (also for Agile
projects)
 Same analysis (and profiles) can be investigated for nfsu (e.g. using non-functional
models/techniques) for depicting non-functional profiles
www.eng.it23 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Lessons Learned...BFC Types
URL:www.dilbert.com
www.eng.it24 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Q & A
Dziękuję za uwagę!
Thanks for your attention!
BFC Types
www.eng.it25 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel
Our Contact Data
Cigdem
Gencel
Deiser
cigdem.gencel@deiser.com
Luigi
Buglione
Engineering Ingegneria Informatica/ETS
luigi.buglione@eng.it
BFC Types

More Related Content

PDF
Requirements effort estimation state of the practice - mohamad kassab
IWSM Mensura
 
PDF
The effects of duration based moving windows with estimation by analogy - sou...
IWSM Mensura
 
PDF
Software or Service? That’s the question!
Luigi Buglione
 
PDF
Tips and hints for an effective cosmic learning process gained from industria...
IWSM Mensura
 
PDF
Practical usage of fpa and automatic code review piotr popovski
IWSM Mensura
 
PPTX
Workshop early or rapid cosmic fsm - Frank Vogelezang
IWSM Mensura
 
PDF
When do software issues get reported in large open source software - Rakesh Rana
IWSM Mensura
 
PDF
Accounting for non functional and project requirements - cosmic and ifpug dev...
IWSM Mensura
 
Requirements effort estimation state of the practice - mohamad kassab
IWSM Mensura
 
The effects of duration based moving windows with estimation by analogy - sou...
IWSM Mensura
 
Software or Service? That’s the question!
Luigi Buglione
 
Tips and hints for an effective cosmic learning process gained from industria...
IWSM Mensura
 
Practical usage of fpa and automatic code review piotr popovski
IWSM Mensura
 
Workshop early or rapid cosmic fsm - Frank Vogelezang
IWSM Mensura
 
When do software issues get reported in large open source software - Rakesh Rana
IWSM Mensura
 
Accounting for non functional and project requirements - cosmic and ifpug dev...
IWSM Mensura
 

What's hot (20)

PDF
L4A - Lean for (being) Agile - Some thoughts and tips for a progressive path ...
Luigi Buglione
 
PDF
Software Estimation Methodology - MVC Points
Nagaraja Gundappa
 
PDF
Insights on Research Techniques towards Cost Estimation in Software Design
IJECEIAES
 
PDF
Effort estimation for web applications
Nagaraja Gundappa
 
PDF
Enhancing the Software Effort Prediction Accuracy using Reduced Number of Cos...
IRJET Journal
 
PDF
IRJET- Application of Machine Learning in Predicting Key Performance Indicato...
IRJET Journal
 
PDF
COMPARATIVE STUDY OF SOFTWARE ESTIMATION TECHNIQUES
ijseajournal
 
PDF
1806 cosmic progress
Charles Symons
 
PDF
Drupalcon la estimation john_nollin
Hai Vo Hoang
 
PDF
IRJET- Analysis of Change Order in Road Construction Projects
IRJET Journal
 
PDF
Furuyama - analysis of factors that affect productivity
International Software Benchmarking Standards Group (ISBSG)
 
PDF
50120130405029
IAEME Publication
 
PPT
A Regression Analysis Approach for Building a Prediction Model for System Tes...
MIMOS Berhad/Open University Malaysia/Universiti Teknologi Malaysia
 
PDF
On-the-fly Collaboration for Legacy Business Process Systems in An Open Servi...
Förderverein Technische Fakultät
 
PPT
Estimation
weebill
 
PDF
SOFTWARE COST ESTIMATION USING FUZZY NUMBER AND PARTICLE SWARM OPTIMIZATION
IJCI JOURNAL
 
PDF
IRJET- A Study on Project Management Techniques to Avoid Project Failure
IRJET Journal
 
PDF
Planning and Optimization of Resource Constrained Project Scheduling by using...
IRJET Journal
 
PDF
Earned Value Management for Design and Construction Project
ijtsrd
 
PPTX
Review on cost estimation technque for web application [part 1]
Sayed Mohsin Reza
 
L4A - Lean for (being) Agile - Some thoughts and tips for a progressive path ...
Luigi Buglione
 
Software Estimation Methodology - MVC Points
Nagaraja Gundappa
 
Insights on Research Techniques towards Cost Estimation in Software Design
IJECEIAES
 
Effort estimation for web applications
Nagaraja Gundappa
 
Enhancing the Software Effort Prediction Accuracy using Reduced Number of Cos...
IRJET Journal
 
IRJET- Application of Machine Learning in Predicting Key Performance Indicato...
IRJET Journal
 
COMPARATIVE STUDY OF SOFTWARE ESTIMATION TECHNIQUES
ijseajournal
 
1806 cosmic progress
Charles Symons
 
Drupalcon la estimation john_nollin
Hai Vo Hoang
 
IRJET- Analysis of Change Order in Road Construction Projects
IRJET Journal
 
Furuyama - analysis of factors that affect productivity
International Software Benchmarking Standards Group (ISBSG)
 
50120130405029
IAEME Publication
 
A Regression Analysis Approach for Building a Prediction Model for System Tes...
MIMOS Berhad/Open University Malaysia/Universiti Teknologi Malaysia
 
On-the-fly Collaboration for Legacy Business Process Systems in An Open Servi...
Förderverein Technische Fakultät
 
Estimation
weebill
 
SOFTWARE COST ESTIMATION USING FUZZY NUMBER AND PARTICLE SWARM OPTIMIZATION
IJCI JOURNAL
 
IRJET- A Study on Project Management Techniques to Avoid Project Failure
IRJET Journal
 
Planning and Optimization of Resource Constrained Project Scheduling by using...
IRJET Journal
 
Earned Value Management for Design and Construction Project
ijtsrd
 
Review on cost estimation technque for web application [part 1]
Sayed Mohsin Reza
 
Ad

Viewers also liked (13)

PPTX
Патріотичне виховання
selezengalina
 
PPT
Plans del pp pel govern
sergicogu
 
PDF
Guanabana, Graviola
goodmantgyjvhrxme
 
DOC
загрязнение Copy
Наталия Иванова
 
PDF
Anestesia casosclinicosoptimize
Walter Ciarrocchi
 
PDF
6a sesion ordinaria_cte_secundaria
Hernan Mejia
 
PDF
2 - 4 Year Micro Venture Fund Prospectus by ICI Argent Ltd
Mac Murray
 
PPS
Telas do GESP
guest7cb28477
 
PDF
Presentación protocolo corticoides 2013
SEMES Diabetes Grupo de trabajo
 
PPTX
Формування здорового способу життя учнів
zhmur t zhmur
 
PDF
L'Univers i la Terra
Vicent
 
PPT
Створення сприятливих умов для виховання у дітей національного світогляду
zhmur t zhmur
 
PPTX
Формування практичних навичок під час вивчення модуля "Вязання гачком"
selezengalina
 
Патріотичне виховання
selezengalina
 
Plans del pp pel govern
sergicogu
 
Guanabana, Graviola
goodmantgyjvhrxme
 
загрязнение Copy
Наталия Иванова
 
Anestesia casosclinicosoptimize
Walter Ciarrocchi
 
6a sesion ordinaria_cte_secundaria
Hernan Mejia
 
2 - 4 Year Micro Venture Fund Prospectus by ICI Argent Ltd
Mac Murray
 
Telas do GESP
guest7cb28477
 
Presentación protocolo corticoides 2013
SEMES Diabetes Grupo de trabajo
 
Формування здорового способу життя учнів
zhmur t zhmur
 
L'Univers i la Terra
Vicent
 
Створення сприятливих умов для виховання у дітей національного світогляду
zhmur t zhmur
 
Формування практичних навичок під час вивчення модуля "Вязання гачком"
selezengalina
 
Ad

Similar to The significance of ifpug base functionality types in effort estimation cigdem gencel (20)

PPT
3 Software Estmation.ppt
Soham De
 
PDF
Using the ISBSG data to improve your organization success - van Heeringen (Me...
Harold van Heeringen
 
PDF
IJSRED-V2I4P8
IJSRED
 
PDF
Improve Estimation maturity using Functional Size Measurement and Historical ...
Harold van Heeringen
 
PDF
The Significance of IFPUG in Effort Estimation Base Functionality Types
Luigi Buglione
 
PPT
ISMA 9 - van Heeringen - Using IFPUG and ISBSG to improve organization success
Harold van Heeringen
 
PPTX
Software Metrics - Software Engineering
Drishti Bhalla
 
PPT
Ch15-22-23 (1).ppt
B86RanePranavMurari
 
PPTX
Iwsm2014 an evaluation of simple function point as a replacement of ifpug f...
Nesma
 
PDF
The value of benchmarking software projects
Harold van Heeringen
 
PDF
Productivity Factors in Software Development for PC Platform
IJERA Editor
 
PPT
8 project planning
randhirlpu
 
PPT
Iwsm2014 lies damned lies & software metrics (charles symons)
Nesma
 
PDF
Estimating IT projects - Guest lecture University of Twente
Frank Vogelezang
 
PDF
Function Points
Chris Farrell
 
PPT
Software Estimating and Performance Measurement
Harold van Heeringen
 
PPTX
Estimation sharbani bhattacharya
Sharbani Bhattacharya
 
PPT
Managing software project, software engineering
Rupesh Vaishnav
 
PPT
software effort estimation
Besharam Dil
 
PDF
Ogilvie - Beyond the statistical average
International Software Benchmarking Standards Group (ISBSG)
 
3 Software Estmation.ppt
Soham De
 
Using the ISBSG data to improve your organization success - van Heeringen (Me...
Harold van Heeringen
 
IJSRED-V2I4P8
IJSRED
 
Improve Estimation maturity using Functional Size Measurement and Historical ...
Harold van Heeringen
 
The Significance of IFPUG in Effort Estimation Base Functionality Types
Luigi Buglione
 
ISMA 9 - van Heeringen - Using IFPUG and ISBSG to improve organization success
Harold van Heeringen
 
Software Metrics - Software Engineering
Drishti Bhalla
 
Ch15-22-23 (1).ppt
B86RanePranavMurari
 
Iwsm2014 an evaluation of simple function point as a replacement of ifpug f...
Nesma
 
The value of benchmarking software projects
Harold van Heeringen
 
Productivity Factors in Software Development for PC Platform
IJERA Editor
 
8 project planning
randhirlpu
 
Iwsm2014 lies damned lies & software metrics (charles symons)
Nesma
 
Estimating IT projects - Guest lecture University of Twente
Frank Vogelezang
 
Function Points
Chris Farrell
 
Software Estimating and Performance Measurement
Harold van Heeringen
 
Estimation sharbani bhattacharya
Sharbani Bhattacharya
 
Managing software project, software engineering
Rupesh Vaishnav
 
software effort estimation
Besharam Dil
 
Ogilvie - Beyond the statistical average
International Software Benchmarking Standards Group (ISBSG)
 

More from IWSM Mensura (20)

PDF
Software or service that's the question luigi buglione
IWSM Mensura
 
PDF
Quantitative functional change impact analysis in activity diagrams a cosmi...
IWSM Mensura
 
PDF
Performance measurement of agile teams harold van heeringen
IWSM Mensura
 
PDF
Measurement as-a-service a new way of organizing metrics programs - wilhelm m...
IWSM Mensura
 
PDF
Improving the cosmic approximate sizing using the fuzzy logic epcu model al...
IWSM Mensura
 
PDF
Functional size measurement for processor load estimation hassan soubra
IWSM Mensura
 
PDF
From software to service sustainability a still broader perspective - luigi...
IWSM Mensura
 
PDF
Estimation and measuring of software size within the atos gobal delivery plat...
IWSM Mensura
 
PDF
Energy wasting rate jérôme rocheteau
IWSM Mensura
 
PDF
Do we measure functional size or do we count thomas fehlmann
IWSM Mensura
 
PDF
Designing an unobtrusive analytics framework for monitoring java applications...
IWSM Mensura
 
PDF
Combining qualitative and quantitative software process evaluation sylvie t...
IWSM Mensura
 
PDF
Automatic measurements of use cases with cosmic thomas fehlmann
IWSM Mensura
 
PDF
Automated functional size measurement for three tier object relational mappin...
IWSM Mensura
 
PDF
Applying manufacturing performance figures to measure software development ex...
IWSM Mensura
 
PDF
Analytic hierarchy process for pif thomas fehlmann
IWSM Mensura
 
PDF
An architecture for effort estimation of solutions donatien koulla moulla
IWSM Mensura
 
PDF
A unified model for custom software price determination in contracts robert...
IWSM Mensura
 
PDF
A process to improve the accuracy of mk ii fp to cosmic charles symons
IWSM Mensura
 
PDF
Automatic measurements of use cases with cosmic thomas fehlmann
IWSM Mensura
 
Software or service that's the question luigi buglione
IWSM Mensura
 
Quantitative functional change impact analysis in activity diagrams a cosmi...
IWSM Mensura
 
Performance measurement of agile teams harold van heeringen
IWSM Mensura
 
Measurement as-a-service a new way of organizing metrics programs - wilhelm m...
IWSM Mensura
 
Improving the cosmic approximate sizing using the fuzzy logic epcu model al...
IWSM Mensura
 
Functional size measurement for processor load estimation hassan soubra
IWSM Mensura
 
From software to service sustainability a still broader perspective - luigi...
IWSM Mensura
 
Estimation and measuring of software size within the atos gobal delivery plat...
IWSM Mensura
 
Energy wasting rate jérôme rocheteau
IWSM Mensura
 
Do we measure functional size or do we count thomas fehlmann
IWSM Mensura
 
Designing an unobtrusive analytics framework for monitoring java applications...
IWSM Mensura
 
Combining qualitative and quantitative software process evaluation sylvie t...
IWSM Mensura
 
Automatic measurements of use cases with cosmic thomas fehlmann
IWSM Mensura
 
Automated functional size measurement for three tier object relational mappin...
IWSM Mensura
 
Applying manufacturing performance figures to measure software development ex...
IWSM Mensura
 
Analytic hierarchy process for pif thomas fehlmann
IWSM Mensura
 
An architecture for effort estimation of solutions donatien koulla moulla
IWSM Mensura
 
A unified model for custom software price determination in contracts robert...
IWSM Mensura
 
A process to improve the accuracy of mk ii fp to cosmic charles symons
IWSM Mensura
 
Automatic measurements of use cases with cosmic thomas fehlmann
IWSM Mensura
 

Recently uploaded (20)

PDF
49784907924775488180_LRN2959_Data_Pump_23ai.pdf
Abilash868456
 
PDF
IEEE-CS Tech Predictions, SWEBOK and Quantum Software: Towards Q-SWEBOK
Hironori Washizaki
 
PDF
Micromaid: A simple Mermaid-like chart generator for Pharo
ESUG
 
PPTX
The-Dawn-of-AI-Reshaping-Our-World.pptxx
parthbhanushali307
 
PPTX
Why Use Open Source Reporting Tools for Business Intelligence.pptx
Varsha Nayak
 
PPTX
slidesgo-unlocking-the-code-the-dynamic-dance-of-variables-and-constants-2024...
kr2589474
 
PPTX
Smart Panchayat Raj e-Governance App.pptx
Rohitnikam33
 
PDF
What to consider before purchasing Microsoft 365 Business Premium_PDF.pdf
Q-Advise
 
PPTX
Web Testing.pptx528278vshbuqffqhhqiwnwuq
studylike474
 
PDF
The Role of Automation and AI in EHS Management for Data Centers.pdf
TECH EHS Solution
 
PDF
QAware_Mario-Leander_Reimer_Architecting and Building a K8s-based AI Platform...
QAware GmbH
 
DOCX
Can You Build Dashboards Using Open Source Visualization Tool.docx
Varsha Nayak
 
PPTX
Odoo Integration Services by Candidroot Solutions
CandidRoot Solutions Private Limited
 
PDF
On Software Engineers' Productivity - Beyond Misleading Metrics
Romén Rodríguez-Gil
 
PPTX
Presentation about variables and constant.pptx
kr2589474
 
PPTX
Can You Build Dashboards Using Open Source Visualization Tool.pptx
Varsha Nayak
 
PPT
Why Reliable Server Maintenance Service in New York is Crucial for Your Business
Sam Vohra
 
PDF
Why Use Open Source Reporting Tools for Business Intelligence.pdf
Varsha Nayak
 
PDF
Wondershare Filmora 14.5.20.12999 Crack Full New Version 2025
gsgssg2211
 
PDF
Salesforce Implementation Services Provider.pdf
VALiNTRY360
 
49784907924775488180_LRN2959_Data_Pump_23ai.pdf
Abilash868456
 
IEEE-CS Tech Predictions, SWEBOK and Quantum Software: Towards Q-SWEBOK
Hironori Washizaki
 
Micromaid: A simple Mermaid-like chart generator for Pharo
ESUG
 
The-Dawn-of-AI-Reshaping-Our-World.pptxx
parthbhanushali307
 
Why Use Open Source Reporting Tools for Business Intelligence.pptx
Varsha Nayak
 
slidesgo-unlocking-the-code-the-dynamic-dance-of-variables-and-constants-2024...
kr2589474
 
Smart Panchayat Raj e-Governance App.pptx
Rohitnikam33
 
What to consider before purchasing Microsoft 365 Business Premium_PDF.pdf
Q-Advise
 
Web Testing.pptx528278vshbuqffqhhqiwnwuq
studylike474
 
The Role of Automation and AI in EHS Management for Data Centers.pdf
TECH EHS Solution
 
QAware_Mario-Leander_Reimer_Architecting and Building a K8s-based AI Platform...
QAware GmbH
 
Can You Build Dashboards Using Open Source Visualization Tool.docx
Varsha Nayak
 
Odoo Integration Services by Candidroot Solutions
CandidRoot Solutions Private Limited
 
On Software Engineers' Productivity - Beyond Misleading Metrics
Romén Rodríguez-Gil
 
Presentation about variables and constant.pptx
kr2589474
 
Can You Build Dashboards Using Open Source Visualization Tool.pptx
Varsha Nayak
 
Why Reliable Server Maintenance Service in New York is Crucial for Your Business
Sam Vohra
 
Why Use Open Source Reporting Tools for Business Intelligence.pdf
Varsha Nayak
 
Wondershare Filmora 14.5.20.12999 Crack Full New Version 2025
gsgssg2211
 
Salesforce Implementation Services Provider.pdf
VALiNTRY360
 

The significance of ifpug base functionality types in effort estimation cigdem gencel

  • 1. www.eng.it An Empirical Study (Revised)The Significance of IFPUG Base Functionality Types in Effort Estimation 25°International Workshop on Software Measurement (IWSM) and 10th International Conference on Software Process and Product Measurement (MENSURA) Krakow (Poland) - October 5-7, 2015 PIFs for Projects (PifPro’15) Luigi Buglione Cigdem Gencel
  • 2. www.eng.it Engineering At a glance www.eng.it
  • 3. www.eng.it DEISER At a glance www.deiser.com
  • 4. www.eng.it4 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel BFC Types Goals of the presentation  G1. Help project managers and estimators to obtain better estimates using the same historical data  G2. Propose a list of filtering criteria helping in obtaining better homogeneous clusters for data analysis and process improvements  G3. Identify and manage 'not visible' outliers in your own historical data  G4. Go into a deeper detail when gathering more granular data in your historical database, that help in consolidating CMMI ML2 goals and achieving faster ML3 ones with better PALs (Process Asset Libraries)  G5. Stimulate improvements in your organization supporting more and more experience by quantitative data  depicting projects’ profiles
  • 5. www.eng.it5 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel BFC Types Agenda • Introduction – A FSM History – Estimation Techniques – Top 10 Measurement problems – Estimation and SPI • Related works • Empirical Study – Data Collection – Data Preparation – Statistical Analysis & Results • Conclusions & Prospects • Q & A
  • 6. www.eng.it6 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction Why profiling?
  • 7. www.eng.it7 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction A FSM History Source: FSM webpage: http://www.semq.eu/leng/sizestfsm.htm
  • 8. www.eng.it8 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction Estimation Techniques Source: Briand L., Wieczorek I., Resource Estimation in Software Engineering, ISERN Technical Report 00-05, International Software Engineering Research Network, 2000, URL: http://isern.iese.de/moodle/
  • 9. www.eng.it9 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction Top-10 Problems in Measurement 1. Betting the Measurement Program on a Single Metric; 2. Trying to Find a Single Metric that Solves All Problems and Has No Evils 3. The Quest for an Industry Standard Set of Measures 4. Not Linking Measures to Behaviour; Failing to Realize that the Measures Are the System 5. Assuming that One Set of Measures Will Be Good for "All Time" 6. Measuring the Wrong IT Output 7. Measuring in Business Terms, but the Wrong Business Terms 8. Failure to Quantify in Business Terms; Failure to Plan for Benefits 9. Neglecting the Full Range of IT-Related Outcomes 10. Lack of Commitment; Treating Measurement As a Non-Value-Added Add-On Source: Rubin H.A., The Top 10 Mistakes in IT Measurement, IT Metrics Strategies, Vol.II, No.11, November 1996, URL: http://goo.gl/YhRBos
  • 10. www.eng.it10 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction Estimation and SPI (CMMI-DEV, ML2) MA – Measurement & Analysis PP – Project Planning PMC – Project Monitoring & ControlREQM – Requirement Mgmt SG1 Establish Estimates SG2 Develop a Project Plan SG3 Obtain Committment to the Plan Measurement Data An agreed-to set of requirements Planning Data Project Plans
  • 11. www.eng.it11 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction Estimation and SPI (CMMI-DEV, ML3) Senior Management Project Mgmt, Support & Engineering PAs OT Org. Training OPF Org. Process Focus OPD Org. Process Definition Improvement Information (e.g. lessons learned, data, artifacts) Process Improvement proposals; participation in definining, assessing, and deploying processes Resources and Coordination Std processes and other assets Training for projects and support groups in std process and assets Organization’s business objectives Std process, work environment std, and other assets
  • 12. www.eng.it12 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Introduction Estimation and SPI (CMMI-DEV, ML3 - OPD) Create Org. Process Assets SP1.2 Establish lifecycle model description s SP1.3 Establish Tailoring Criteria & GL Make Supporting Process Assets Available SP1.4 Establish Org. Meas. Repository SP1.5 Establish Org. PAL SP1.6 Establish Work Env. Std Lifecycle models Org. Standard Processes Org. Measur. Repository Org. Library of Process Doc Tailoring Guidelines SP1.1 Establish Standard Processes
  • 13. www.eng.it13 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Source: Gencel C. & Buglione L., Do Different Functionality Types Affect the Relationship between Software Functional Size and Effort?, Proceedings of IWSM/MENSURA 2007, Palma de Mallorca (Spain), November 5-8 2007, pp. 235-246 )()()()()(_ 543210 EIFBILFBEQBEOBEIBBEffortNW  Use more independent variables • when using FSM methods, e.g. use combinations of 2+ BFC types  IFPUG BFC (EI, EO, EQ, ILF, EIF)  COSMIC BFC (E, X, R, W) • Results: increased R2 using the same dataset Preconditions • Historicize project data at the proper level of granularity. E.g.  FSU at the BFC type level (by frequencies and – eventually – weigthed values)  Effort at the SLC phase and/or by ReqType and/or…  Defects by severity/priority class and/or resolution time by phase, and/or… • Skill people – not only estimators – a bit more on Statistics • Use something more than averages! Related Works Analysis on the use of single BFC types
  • 14. www.eng.it14 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Related Works Study/Year Obs Source FSMM Filters R2 w/CFP R2 w/BFC Diff. % Buglione- Gencel (2008) 34 ISBSG r10 COSMIC v2+ DQR/NewDev 0.7639 0.8919 +16.7 30 ISBSG r10 COSMIC v2+ DQR/Enh 0.7086 0.8755 +23.6 Bajwa- Gencel (2009) 24 ISBSG r10 COSMIC v2+ DQR/ApplType (2) 0.29 0.78 +64.1 24 ISBSG r10 COSMIC v2+ DQR/ApplType (3) 0.29 0.86 +66.3 Ferrucci- Gravino- Buglione (2010) 15 Company’s data COSMIC v2.2 Web-based portals (all) 0.824 0.875 +5.82 8 Company’s data COSMIC v2.2 Web-based portals (subset 1) 0.910 0.966 +5.79 7 Company’s data COSMIC v2.2 Web-based Inf. Utilities (subset 2) 0.792 0.831 +4.69 Analysis on the use of single BFC types
  • 15. www.eng.it15 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Data Collection (ISBSG r11, 2009) FSMM No. Projects % of the projects IFPUG 3.799 75% FISMA 496 10% COSMIC 345 7% Others (LOC, Dreger, etc.) 221 4% NESMA 155 3% Mark-II 36 1% Total 5.052 100%
  • 16. www.eng.it16 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Data Collection (ISBSG r11, 2009) Entity Attribute Definition Product Count Approach The description of the technique that was used to size the project (e.g. IFPUG, COSMIC, etc.) Product Functional Size The count of unadjusted FP. The unit is based on the measurement method that is used to measure the functional size. Product Application Type The type of the application (e.g. MIS). Project Normalized Work Effort The effort used during the full life cycle. For those projects that have covered less than a complete life cycle effort, this value is an estimate. For those projects covering the full life cycle and those projects whose development life cycle coverage is not known, this value and value of summary work effort is same. Project Development Type This field tells that whether the development is new, enhanced or re-developed Project Business Area Type This identifies the subset within the organisation being addressed by the project. It may be different to the organisation type or the same. (e.g.: Manufacturing, Personnel, Finance). Project Programming Language Type The primary language used for the development: JAVA, C++, PL/1, Natural, Cobol etc.
  • 17. www.eng.it17 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Data Preparation Step Attribute Filter Projects Excluded Remaining Projects 0 --- --- --- 5052 1 Count Approach = IFPUG 1,253 3,799 2 Data Quality Rating (DQR) = {A | B} 3,799 3,614 3 Quality Rating for Unadjusted Function Points (UFP) = {A | B} 3,614 2,879 4 BFC Types = {Not Empty} 1,482 1,397 Four subsets derived: ID # projects Dev Type Application Type Bus. Type Prog.Lang. 1 37 NewDev Fin trans. Process/accounting Insurance All 2 14 NewDev Fin trans. Process/accounting Insurance COBOL 3 15 NewDev Fin trans. Process/accounting Insurance Visual Basic 4 16 NewDev Fin trans. Process/accounting Banking COBOL
  • 18. www.eng.it18 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Statistical Analysis & Results - UFP A typical elaboration (subset #3) only with UFP… Linear Regression Statistics R 0.817 R Square 0.667 Stand. Error 2911.091 Total Number Of Cases 15 ANOVA d.f. SS MS F p-level Regression 1. 220,988,529.59 220988529.59 26.08 0.00 Residual 13. 110,167,824.81 8474448.06 Total 14. 331,156,354.40 Coeff. Std Err LCL UCL t Stat p- level H0 (2%) rejected? Intercept 2149.62 849.57 -102.01 4401.26 2.53 0.03 No Total (IFPUG FP) 3.97 0.78 1.91 6.03 5.11 0.00 Yes T (2%) 2.65
  • 19. www.eng.it19 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Statistical Analysis & Results – BFC+ ..and applying more BFCs Linear Regression Statistics R 0.932 R Square 0.868 Stand. Error 2205.569 Total Number Of Cases 15 ANOVA d.f. SS MS F p-level Regression 5. 287375530.43 57475106.09 11.82 0.00 Residual 9. 43780823.97 4864536.00 Total 14. 331156354.40
  • 20. www.eng.it20 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Statistical Analysis & Results – BFC+ ..and applying more BFCs (…next) Coeff. Std Error LCL UCL t Stat p-level H0 (2%) rejected? Intercept 2076.14 878.79 -403.31 4555.59 2.36 0.04 No EI -14.74 39.13 -125.16 95.67 -0.38 0.72 No EO 4.67 36.98 -99.67 109.01 0.13 0.90 No EQ 26.25 9.81 -1.44 53.93 2.67 0.03 Yes ILF -24.26 12.58 -59.76 11.23 -1.93 0.09 No EIF 34.85 14.23 -5.29 74.99 2.45 0.04 Yes T (2%) 2.90
  • 21. www.eng.it21 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Empirical Study Statistical Analysis & Results Subset # prj R2 w/Total FP Is Total FP significant? R2 w/FP for each BFC Type Diff% (R2) Which BFC Types are significant? #1 37 0.290 Yes 0.369 +21% No #2 14 0.057 No 0.838 +93% Yes (ILF) #3 15 0.667 Yes 0.868 +23% Yes (EQ, EIF) #4 16 0.720 Yes 0.893 +19% Yes (EO) Data set # points EI EO EQ ILF EIF Subset1 37 16.9% 24.6% 19.3% 21.7% 17.6% Subset2 14 19.8% 39.0% 6.3% 14.4% 20.6% Subset3 15 17.0% 21.6% 22.8% 23.4% 15.3% Subset4 16 18.7% 31.0% 11.4% 27.7% 11.2% % distribution of BFC types by value Summary Data
  • 22. www.eng.it22 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel BFC Types Conclusions & Perspectives • FSM Methods  Born with the goal to provide more objectivity in sizing FUR for a software system  The IFPUG method has the heritage of the Albrecht’s FPA and evolves it from 1986  Current version is v4.3.1 (Jan 2010) and is also an ISO standard (20926:2009)  Several methods have arisen and share common principles and background (ISO 14143-x) • BFC Types  Each FSM method has a series of basic countable elements contributing to the final fsu value, generically called by ISO “BFC”  IFPUG FPA has 5 BFC: EI, EO, EQ, ILF, EIF  Regression analysis with ANOVA  Sizing & Estimation issues  R2 values increased in 3 out of 4 cases (from +19% till +93%)  Programming language (no set in subset #1) can impact in absolute terms on predictability  Some lessons learned  Positive Effects: using that approach yet at lower maturity levels (e.g. ML2) can improve significantly estimates, helping in saving resources to be reinvested in other project activities, anticipating also the achievement of ML3 concepts (e.g. PAL)  functional profiles  Precondition: gather historical FSM data at that level of granularity  …let’s remember when estimating anyway that any fsu is a product size for software FURs (and not a project size)  deal with NFR and their impact on the overall project effort within the defined project scope  New issues  ISBSG D&E r13 increased the number of projects to 6670, more fields (also for Agile projects)  Same analysis (and profiles) can be investigated for nfsu (e.g. using non-functional models/techniques) for depicting non-functional profiles
  • 23. www.eng.it23 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Lessons Learned...BFC Types URL:www.dilbert.com
  • 24. www.eng.it24 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Q & A Dziękuję za uwagę! Thanks for your attention! BFC Types
  • 25. www.eng.it25 PifPro’15– Krakow, Oct 5 2015 – © 2015 L.Buglione, C.Gencel Our Contact Data Cigdem Gencel Deiser [email protected] Luigi Buglione Engineering Ingegneria Informatica/ETS [email protected] BFC Types