SlideShare a Scribd company logo
https://www.2ndQuadrant.com
Event / Conference name
Location, Date
The State of (Full) Text
Search in PostgreSQL 12
FOSDEM 2020
Jimmy Angelakos
Senior PostgreSQL Architect
Twitter: @vyruss 🏴󠁧󠁢󠁳󠁣󠁴󠁿 🇪🇺 🇬🇷
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Contents
●
(Full) Text Search
●
Operators
●
Functions
●
Dictionaries
●
Examples
●
Indexing
●
Non-natural text
●
Collation
●
Other “text” types
●
Maintenance
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Your attention please
● This presentation contains linguistics, NLP,
Markov chains, Levenshtein distances, and
various other confounding terms.
● These have been known to induce drowsiness
and inappropriate sleep onset in lecture theatres.
Allergy advice
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
What is Text?
(Baby don’t hurt me)
●
PostgreSQL character types
– CHAR(n)
– VARCHAR(n)
– VARCHAR, TEXT
●
Trailing spaces: significant (e.g. for LIKE / regex)
●
Storage
– Character Set (e.g. UTF-8)
– 1+126 bytes 4+→ n bytes
– Compression, TOAST
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
What is Text Search?
●
Information retrieval Text retrieval→
●
Search on metadata
– Descriptive, bibliographic, tags, etc.
– Discovery & identification
●
Search on parts of the text
– Matching
– Substring search
– Data extraction, cleaning, mining
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Text search operators in PostgreSQL
●
LIKE, ILIKE (~~, ~~*)
●
~, ~* (POSIX regex)
●
regexp_match(string text, pattern text)
●
But are SQL/regular expressions enough?
– No ranking of results
– No concept of language
– Cannot be indexed
●
Okay okay, can be somewhat indexed*
●
SIMILAR TO best forget about this one→
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
What is Full Text Search (FTS)?
●
Information retrieval Text retrieval Document retrieval→ →
●
Search on words (on tokens) in a database (all documents)
●
No index Serial search (e.g.→ grep)
●
Indexing Avoid scanning whole documents→
●
Techniques for criteria-based matching
– Natural Language Processing (NLP)
●
Precision vs Recall
– Stop words
– Stemming
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Documents? Tokens?
●
Document: a chunk of text (a field in a row)
●
Parsing of documents into classes of tokens
– PostgreSQL parser (or write your own… in C)
●
Conversion of tokens into lexemes
– Normalisation of strings
●
Lexeme: an abstract lexical unit representing related
words (i.e. word root)
– SEARCH searched, searcher→
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Stop words
●
Very common and have no value for our search
●
Filtering them out increases precision of search
●
Removal based on dictionaries
– Some check stoplist first
●
But: phrase search?
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Stemming
●
Reducing words to their roots (lexemes)
●
Increases number of results (recall)
●
Algorithms
– Normalisation using dictionaries
– Prefix/suffix stripping
– Automatic production rules
– Lemmatisation rules
– n-gram models
●
Multilingual stemming?
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS representation in PostgreSQL
●
tsvector
– A document!
– Preprocessed
●
tsquery
– Our search query!
– Normalized into lexemes
●
Utility functions
– to_tsvector(), plainto_tsquery(),
ts_debug(), etc.
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS operators in PostgreSQL
@@ tsvector matches tsquery
|| tsvector concatenation
&&, ||, !! tsquery AND, OR, NOT
<-> tsquery followed by tsquery
@> tsquery contains
<@ tsquery is contained in
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Dictionaries in PostgreSQL
●
Programs!
●
Accept tokens as input
●
Improve search quality
– Eliminate stop words
– Normalise words into lexemes
●
Reduce size of tsvector
●
CREATE TEXT SEARCH DICTIONARY name
(TEMPLATE = simple, STOPWORDS = english);
●
Can be chained: most specific more general→
ALTER TEXT SEARCH CONFIGURATION name
ADD MAPPING FOR word WITH english_ispell, simple;
●
ispell, myspell, hunspell, etc.
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Text matching example (1)
fts=# SELECT to_tsvector('A nice day for a car ride')
fts-# @@ plainto_tsquery('I am riding');
?column?
----------
t
(1 row)
fts=# SELECT to_tsvector('A nice day for a car ride');
to_tsvector
-----------------------------------
'car':6 'day':3 'nice':2 'ride':7
(1 row)
fts=# SELECT plainto_tsquery('I am riding');
plainto_tsquery
-----------------
'ride'
(1 row)
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Text matching example (2)
fts=# SELECT to_tsvector('A nice day for a car ride')
fts-# @@ plainto_tsquery('I am riding a bike');
?column?
----------
f
(1 row)
fts=# SELECT to_tsvector('A nice day for a car ride');
to_tsvector
-----------------------------------
'car':6 'day':3 'nice':2 'ride':7
(1 row)
fts=# SELECT plainto_tsquery('I am riding a bike');
plainto_tsquery
-----------------
'ride' & 'bike'
(1 row)
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Text matching example (3)
fts=# SELECT 'Starman' @@ 'star';
?column?
----------
f
(1 row)
fts=# SELECT 'Starman' @@ to_tsquery('star:*');
?column?
----------
t
(1 row)
fts=# SELECT websearch_to_tsquery('"The Stray Cats" -"cat shelter"');
websearch_to_tsquery
----------------------------------------------
'stray' <-> 'cat' & !( 'cat' <-> 'shelter' )
(1 row)
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
An example table
●
pgsql-hackers mailing list archive subset
fts=# d mail_messages
Table "public.mail_messages"
Column | Type | Collation | Nullable |
------------+-----------------------------+-----------+----------+-------------
id | integer | | not null | nextval('mai
parent_id | integer | | |
sent | timestamp without time zone | | |
subject | text | | |
author | text | | |
body_plain | text | | |
fts=# dt+ mail_messages
List of relations
Schema | Name | Type | Owner | Size | Description
--------+---------------+-------+----------+--------+-------------
public | mail_messages | table | postgres | 478 MB |
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Ranking results
ts_rank (and Cover Density variant ts_rank_cd)
fts=# SELECT subject, ts_rank(to_tsvector(coalesce(body_plain,'')),
fts(# to_tsquery('aggregate'), 32) AS rank
fts-# FROM mail_messages ORDER BY rank DESC LIMIT 5;
subject | rank
--------------------------------------------------------------+-------------
Re: Window functions patch v04 for the September commit fest | 0.08969686
Re: Window functions patch v04 for the September commit fest | 0.08940695
Re: [HACKERS] PoC: Grouped base relation | 0.08936066
Re: [HACKERS] PoC: Grouped base relation | 0.08931142
Re: [PERFORM] not using index for select min(...) | 0.08925897
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS Stats
ts_stat for verifying your TS configuration, identifying stop words
fts=# SELECT * FROM ts_stat(
fts(# 'SELECT to_tsvector(body_plain)
fts'# FROM mail_messages')
fts-# ORDER BY nentry DESC, ndoc DESC, word
fts-# LIMIT 5;
word | ndoc | nentry
-------+--------+--------
use | 173833 | 380951
wrote | 231174 | 350905
would | 157169 | 316416
think | 149858 | 256661
patch | 100991 | 226099
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Text indexing
Normal default:
●
B-Tree
– with B-Tree text_pattern_ops for left, right anchored text
– CREATE INDEX name ON table (column varchar_pattern_ops);
For FTS we have:
●
GIN
– Inverted index: one entry per lexeme
– Larger, slower to update Better on less dynamic data→
– On tsvector columns
●
GiST
– Lossy index, smaller but slower (to eliminate false positives)
– Better on fewer unique items
– On tsvector or tsquery columns
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS, unindexed
fts=# EXPLAIN ANALYZE SELECT count(*) FROM mail_messages
fts-# WHERE to_tsvector('english',body_plain) @@ to_tsquery('aggregate');
QUERY PLAN
-------------------------------------------------------------------------------
Finalize Aggregate (cost=122708.56..122708.57 rows=1 width=8) (actual time=26
-> Gather (cost=122708.34..122708.55 rows=2 width=8) (actual time=26981.64
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=121708.34..121708.35 rows=1 width=8) (act
-> Parallel Seq Scan on mail_messages (cost=0.00..121706.49 ro
Filter: (to_tsvector('english'::regconfig, body_plain) @@
Rows Removed by Filter: 116770
Planning Time: 0.258 ms
JIT:
Functions: 14
Options: Inlining false, Optimization false, Expressions true, Deforming tru
Timing: Generation 3.243 ms, Inlining 0.000 ms, Optimization 1.534 ms, Emiss
Execution Time: 26991.805 ms
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS indexing
CREATE INDEX ON mail_messages USING GIN
(to_tsvector('english',
subject ||' '|| body_plain));
●
New in PG12: Generated columns (stored):
ALTER TABLE mail_messages
ADD COLUMN fts_col tsvector
GENERATED ALWAYS AS (to_tsvector('english',
coalesce(subject, '') ||' '||
coalesce(body_plain, ''))) STORED;
CREATE INDEX ON mail_messages USING GIN (fts_col);
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS, GiST indexed
fts=# EXPLAIN ANALYZE SELECT count(*) FROM mail_messages
fts-# WHERE to_tsvector('english',body_plain) @@ to_tsquery('aggregate');
QUERY PLAN
-------------------------------------------------------------------------------
Aggregate (cost=7210.61..7210.62 rows=1 width=8) (actual time=5630.167..5630.
-> Bitmap Heap Scan on mail_messages (cost=330.46..7206.16 rows=1781 width
Recheck Cond: (to_tsvector('english'::regconfig, body_plain) @@ to_tsq
Rows Removed by Index Recheck: 4267
Heap Blocks: exact=7883
-> Bitmap Index Scan on mail_messages_to_tsvector_idx (cost=0.00..33
Index Cond: (to_tsvector('english'::regconfig, body_plain) @@ to
Planning Time: 0.620 ms
Execution Time: 5630.249 ms
●
26.99 seconds 5.63 seconds! ~4.8x faster→ →
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
FTS, GIN indexed
fts=# EXPLAIN ANALYZE SELECT count(*) FROM mail_messages
fts-# WHERE to_tsvector('english',body_plain) @@ to_tsquery('aggregate');
QUERY PLAN
-------------------------------------------------------------------------------
Aggregate (cost=6873.60..6873.61 rows=1 width=8) (actual time=6.133..6.134 ro
-> Bitmap Heap Scan on mail_messages (cost=33.96..6869.18 rows=1769 width=
Recheck Cond: (to_tsvector('english'::regconfig, body_plain) @@ to_tsq
Heap Blocks: exact=4630
-> Bitmap Index Scan on mail_messages_to_tsvector_idx (cost=0.00..33
Index Cond: (to_tsvector('english'::regconfig, body_plain) @@ to
Planning Time: 0.433 ms
Execution Time: 5.684 ms
●
26.99 seconds 5.684→ milliseconds! → ~4700x faster
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
GIN, GiST indexed operations
●
GIN
– tsvector: @@
– jsonb: ? ?& ?| @> @? @@
●
GIST
– tsvector: @@
– tsquery: <@ @>
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Super useful modules
●
pg_trgm
– Trigram indexing operations
●
unaccent
– Dictionary: removes accents / diacritics
●
fuzzystrmatch
– String similarity: Levenshtein distances
(also Soundex, Metaphone, Double Metaphone)
– SELECT name FROM users WHERE
levenshtein('Stephen', name) <= 2;
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Other index types
●
VODKA =)
●
RUM
– https://github.com/postgrespro/rum
– Lexeme positional information stored
– Faster ranking
– Faster phrase search
– <=> Distance between timestamps, floats, money
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Free text but not natural?
●
One use case: identifying arbitrary strings
– e.g. keywords in device logs
●
Dictionaries not very helpful here
●
Arbitrary example: 10M * ~100 char “IoT device” log entries
– Some contain strings that are significant to user
(but we don’t know these keywords)
– Populate table with random hex codes but 1% of log entries
contains a keyword from /etc/dictionaries-common/words:
c4f2cede5da57f0ace6e669b51186cbaexcruciating9635d8a26a
efb2b4ee8b9845e89718577b3266f68dffa5ae12ebfebf1a508b21
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Free text but not natural?
fts=# SELECT message FROM logentries LIMIT 5 OFFSET 495;
message
--------------------------------------------------------------------------------------------------
da40c1006cd75105c1eb8ea70705828d195b264565f047c6d449e51cf99d01e901cf532f03018e793a394fdac9bb5d2a
aa88a5c43ec8b2a8578d44f924053e842584c0e6b8295b72230f7d19aa3ba2f2b9e1a4bffcf0f82e4d29344645b714ca
fe9731c39108a74714cad9fc8570b115howlingb9904fa4ad86544fb778ef5edfe362e02a94c66851c3c8d7fe47b26e5
b68430decf30085cc2e7810585c5d681source2b638d61c5972f25aa3fa5c35aa2be282f04843cfca007689cc6ecdbe3
5b7ba17108e416d04788dc9ac15121fad7625fa7c216666bf54c1b0ca21ab618829262dfd67a5cd40aefd66235cf9c7f
(5 rows)
fts=# dt+ logentries
List of relations
Schema | Name | Type | Owner | Size | Description
--------+------------+-------+----------+---------+-------------
public | logentries | table | postgres | 1421 MB |
(1 row)
fts=# SELECT * FROM logentries WHERE message LIKE '%source%';
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
How long?
fts=# EXPLAIN ANALYZE SELECT * FROM logentries WHERE message LIKE '%source%';
QUERY PLAN
---------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..235029.95 rows=1000 width=109) (actual time=143.010..9654.769 rows=16 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Seq Scan on logentries (cost=0.00..233929.95 rows=417 width=109) (actual time=1017.442..
Filter: (message ~~ '%source%'::text)
Rows Removed by Filter: 3333594
Planning Time: 0.220 ms
JIT:
Functions: 6
Options: Inlining false, Optimization false, Expressions true, Deforming true
Timing: Generation 18.918 ms, Inlining 0.000 ms, Optimization 41.736 ms, Emission 121.955 ms, Total 18
Execution Time: 9673.582 ms
(12 rows)
●
9.6 seconds!
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Trigrams
●
n-gram model: probabilistic language model (Markov Chains)
●
3 characters trigrams→
●
Similarity of alphanumeric text number of shared trigrams→
●
CREATE EXTENSION pg_trgm;
●
fts=# SELECT show_trgm('source');
show_trgm
-------------------------------------
{" s"," so","ce ",our,rce,sou,urc}
●
fts=# CREATE INDEX ON logentries
fts-# USING GIN (message gin_trgm_ops);
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Did trigrams help?
fts=# EXPLAIN ANALYZE SELECT * FROM logentries WHERE message LIKE '%source%';
QUERY PLAN
---------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on logentries (cost=87.75..3870.45 rows=1000 width=109) (actual time=0.152..0.206 rows
Recheck Cond: (message ~~ '%source%'::text)
Rows Removed by Index Recheck: 2
Heap Blocks: exact=18
-> Bitmap Index Scan on logentries_message_idx (cost=0.00..87.50 rows=1000 width=0) (actual time=0.1
Index Cond: (message ~~ '%source%'::text)
Planning Time: 0.222 ms
Execution Time: 0.258 ms
(8 rows)
●
0.258 milliseconds! → ~37000x faster
●
Also work with regex
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
This comes at a cost
fts=# di+ logentries_message_idx
List of relations
Schema | Name | Type | Owner | Table | Size | Description
--------+------------------------+-------+----------+------------+---------+-------------
public | logentries_message_idx | index | postgres | logentries | 1601 MB |
(1 row)
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Other neat trigram tricks
●
similarity(text, text) real→
●
text <-> text → Distance (1-similarity)
●
text % text true→ if over similarity_threshold
●
Supported by indexes:
– GIN
– GiST is efficient: k-nearest neighbour (k-NN)
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Character set support
●
pg_client_encoding()
●
convert(string bytea, src_encoding name,
dest_encoding name)
●
convert_from, convert_to
●
Automatic character set conversion
SET CLIENT_ENCODING TO 'value';
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Collation in PostgreSQL
●
Sort order and character classification
– Per-column: CREATE TABLE test1 (a text
COLLATE "de_DE" …
– Per-operation: SELECT a < b COLLATE "de_DE"
FROM test1;
– Not restricted by DB LC_COLLATE, LC_CTYPE
●
New in PG12: Nondeterministic collations (case-
insensitive, ignore accents)
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Other types of documents JSON→
●
Also a real world use case
●
JSONB supports indexing
(article ->> 'title' ||''||
article ->> 'author')::tsvector
●
jsonb_to_tsvector()
SELECT jsonb_to_tsvector('english', column,
'["numeric","key","string","boolean"]') FROM table;
●
New in PG12: SQL/JSON (SQL:2016) jsonpath expressions→
●
JsQuery: JSONB query language with GIN support
– Equivalent to tsquery, JSON query as a single value
– https://github.com/postgrespro/jsquery
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Finally, maintenance
●
VACUUM ANALYZE
– Keep your table statistics up-to-date
– Pending GIN entries
●
ALTER TABLE SET STATISTICS
– Keep your table statistics accurate
●
Number of distinct values
●
Correlated columns
●
EXPLAIN ANALYZE from time to time
– Your query works now – but a year from now?
●
maintenance_work_mem
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
The curious case of TEXT NAME 🤪
CREATE TABLE user (id serial, text name)
Type NAME
●
Sleepy developer 😴
●
Internal type for object names, 64 bytes
https://www.2ndQuadrant.com
FOSDEM
Brussels, 2020-02-02
Thanks! More info:
●
Dictionaries:
https://www.postgresql.org/docs/current/textsearch-dictionaries.html
●
Parsers:
https://www.postgresql.org/docs/current/textsearch-parsers.html
●
Ranking/Weights:
https://www.postgresql.org/docs/current/textsearch-controls.html
●
FTS functions:
https://www.postgresql.org/docs/current/functions-textsearch.html
●
Trigrams: https://www.postgresql.org/docs/current/pgtrgm.html
●
Collations: https://www.postgresql.org/docs/current/collation.html

More Related Content

Similar to The State of (Full) Text Search in PostgreSQL 12 (20)

PDF
Полнотекстовый поиск в PostgreSQL за миллисекунды (Олег Бартунов, Александр К...
Ontico
 
PDF
fts.pdf
AltairFonseca3
 
PDF
Postgresql search demystified
javier ramirez
 
PDF
PGConf APAC 2018 - Where's Waldo - Text Search and Pattern in PostgreSQL
PGConf APAC
 
KEY
PostgreSQL
Reuven Lerner
 
PPTX
Full Text search in Django with Postgres
syerram
 
PDF
PostgreSQL FTS Solutions FOSDEM 2013 - PGDAY
Emanuel Calvo
 
PDF
10 Reasons to Start Your Analytics Project with PostgreSQL
Satoshi Nagayasu
 
PDF
Indexing Complex PostgreSQL Data Types
Jonathan Katz
 
PDF
How elephants survive in big data environments
Mary Prokhorova
 
PDF
Full Text Search In PostgreSQL
Karwin Software Solutions LLC
 
PDF
PyCon Russian 2015 - Dive into full text search with python.
Andrii Soldatenko
 
PDF
JDD 2016 - Tomasz Borek - DB for next project? Why, Postgres, of course
PROIDEA
 
PPTX
Migrating To PostgreSQL
Grant Fritchey
 
PDF
Postgres for MySQL (and other database) people
Command Prompt., Inc
 
PDF
PostgreSQL: Advanced features in practice
Jano Suchal
 
PDF
Postgresql 9.3 overview
Aveic
 
PDF
Manipulating Data in Style with SQL
Ryan B Harvey, CSDP, CSM
 
PDF
SQLite
Kirill Zotin
 
PDF
12 in 12 – A closer look at twelve or so new things in Postgres 12
BasilBourque1
 
Полнотекстовый поиск в PostgreSQL за миллисекунды (Олег Бартунов, Александр К...
Ontico
 
Postgresql search demystified
javier ramirez
 
PGConf APAC 2018 - Where's Waldo - Text Search and Pattern in PostgreSQL
PGConf APAC
 
PostgreSQL
Reuven Lerner
 
Full Text search in Django with Postgres
syerram
 
PostgreSQL FTS Solutions FOSDEM 2013 - PGDAY
Emanuel Calvo
 
10 Reasons to Start Your Analytics Project with PostgreSQL
Satoshi Nagayasu
 
Indexing Complex PostgreSQL Data Types
Jonathan Katz
 
How elephants survive in big data environments
Mary Prokhorova
 
Full Text Search In PostgreSQL
Karwin Software Solutions LLC
 
PyCon Russian 2015 - Dive into full text search with python.
Andrii Soldatenko
 
JDD 2016 - Tomasz Borek - DB for next project? Why, Postgres, of course
PROIDEA
 
Migrating To PostgreSQL
Grant Fritchey
 
Postgres for MySQL (and other database) people
Command Prompt., Inc
 
PostgreSQL: Advanced features in practice
Jano Suchal
 
Postgresql 9.3 overview
Aveic
 
Manipulating Data in Style with SQL
Ryan B Harvey, CSDP, CSM
 
SQLite
Kirill Zotin
 
12 in 12 – A closer look at twelve or so new things in Postgres 12
BasilBourque1
 

More from Jimmy Angelakos (9)

PDF
Don't Do This [FOSDEM 2023]
Jimmy Angelakos
 
PDF
Slow things down to make them go faster [FOSDEM 2022]
Jimmy Angelakos
 
PDF
Practical Partitioning in Production with Postgres
Jimmy Angelakos
 
PDF
Changing your huge table's data types in production
Jimmy Angelakos
 
PDF
Deploying PostgreSQL on Kubernetes
Jimmy Angelakos
 
PDF
Bringing the Semantic Web closer to reality: PostgreSQL as RDF Graph Database
Jimmy Angelakos
 
PDF
Using PostgreSQL with Bibliographic Data
Jimmy Angelakos
 
PDF
Eισαγωγή στην PostgreSQL - Χρήση σε επιχειρησιακό περιβάλλον
Jimmy Angelakos
 
PDF
PostgreSQL: Mέθοδοι για Data Replication
Jimmy Angelakos
 
Don't Do This [FOSDEM 2023]
Jimmy Angelakos
 
Slow things down to make them go faster [FOSDEM 2022]
Jimmy Angelakos
 
Practical Partitioning in Production with Postgres
Jimmy Angelakos
 
Changing your huge table's data types in production
Jimmy Angelakos
 
Deploying PostgreSQL on Kubernetes
Jimmy Angelakos
 
Bringing the Semantic Web closer to reality: PostgreSQL as RDF Graph Database
Jimmy Angelakos
 
Using PostgreSQL with Bibliographic Data
Jimmy Angelakos
 
Eισαγωγή στην PostgreSQL - Χρήση σε επιχειρησιακό περιβάλλον
Jimmy Angelakos
 
PostgreSQL: Mέθοδοι για Data Replication
Jimmy Angelakos
 
Ad

Recently uploaded (20)

PPTX
Finding Your License Details in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
PDF
Empower Your Tech Vision- Why Businesses Prefer to Hire Remote Developers fro...
logixshapers59
 
PPTX
Help for Correlations in IBM SPSS Statistics.pptx
Version 1 Analytics
 
PPTX
Agentic Automation Journey Series Day 2 – Prompt Engineering for UiPath Agents
klpathrudu
 
PDF
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
PDF
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
PPTX
Agentic Automation: Build & Deploy Your First UiPath Agent
klpathrudu
 
PDF
4K Video Downloader Plus Pro Crack for MacOS New Download 2025
bashirkhan333g
 
PDF
IDM Crack with Internet Download Manager 6.42 Build 43 with Patch Latest 2025
bashirkhan333g
 
PDF
NEW-Viral>Wondershare Filmora 14.5.18.12900 Crack Free
sherryg1122g
 
PDF
Adobe Premiere Pro Crack / Full Version / Free Download
hashhshs786
 
PPTX
OpenChain @ OSS NA - In From the Cold: Open Source as Part of Mainstream Soft...
Shane Coughlan
 
PDF
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
PDF
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
PPTX
Coefficient of Variance in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PPTX
Empowering Asian Contributions: The Rise of Regional User Groups in Open Sour...
Shane Coughlan
 
PDF
MiniTool Power Data Recovery 8.8 With Crack New Latest 2025
bashirkhan333g
 
PDF
Automate Cybersecurity Tasks with Python
VICTOR MAESTRE RAMIREZ
 
PDF
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
Finding Your License Details in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
Empower Your Tech Vision- Why Businesses Prefer to Hire Remote Developers fro...
logixshapers59
 
Help for Correlations in IBM SPSS Statistics.pptx
Version 1 Analytics
 
Agentic Automation Journey Series Day 2 – Prompt Engineering for UiPath Agents
klpathrudu
 
iTop VPN With Crack Lifetime Activation Key-CODE
utfefguu
 
[Solution] Why Choose the VeryPDF DRM Protector Custom-Built Solution for You...
Lingwen1998
 
Agentic Automation: Build & Deploy Your First UiPath Agent
klpathrudu
 
4K Video Downloader Plus Pro Crack for MacOS New Download 2025
bashirkhan333g
 
IDM Crack with Internet Download Manager 6.42 Build 43 with Patch Latest 2025
bashirkhan333g
 
NEW-Viral>Wondershare Filmora 14.5.18.12900 Crack Free
sherryg1122g
 
Adobe Premiere Pro Crack / Full Version / Free Download
hashhshs786
 
OpenChain @ OSS NA - In From the Cold: Open Source as Part of Mainstream Soft...
Shane Coughlan
 
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
SciPy 2025 - Packaging a Scientific Python Project
Henry Schreiner
 
Coefficient of Variance in IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
Empowering Asian Contributions: The Rise of Regional User Groups in Open Sour...
Shane Coughlan
 
MiniTool Power Data Recovery 8.8 With Crack New Latest 2025
bashirkhan333g
 
Automate Cybersecurity Tasks with Python
VICTOR MAESTRE RAMIREZ
 
Build It, Buy It, or Already Got It? Make Smarter Martech Decisions
bbedford2
 
Ad

The State of (Full) Text Search in PostgreSQL 12