Center for Sustainable Environmental Technologies




           The 
   Thermochemical Option


        Robert C. Brown
        Robert C. Brown
     Center for Sustainable 
   Environmental Technologies
      Iowa State University
      Iowa State University
        CenUSA Webinar
         May 25, 2012
Center for Sustainable Environmental Technologies
What is the Perfect Energy Carrier for Transportation Fuel?
What is the Perfect Energy Carrier for Transportation Fuel?


 •   Liquid at ambient conditions
           d      b         d
 •   Immiscible in water
 •   Low toxicity
 •   High energy density
 •   Cold weather operability
 •   Stable during long‐term storage
 •   Efficient production from a primary energy source
Center for Sustainable Environmental Technologies
                           Drop‐In Fuels
                           Drop‐In Fuels
 • Fully compatible with existing fuel infrastructure
     – Hydrocarbons (alkanes and aromatics)
     – Possibly butanol
 • Are drop in fuels 
   also the “perfect fuel?”
     – Close enough
Center for Sustainable Environmental Technologies
                   Three Kinds of Biomass
                   Three Kinds of Biomass

 • Lipid‐rich biomass
   Lipid‐rich biomass 
 • Lignocellulosic biomass
 • Waste biomass
Center for Sustainable Environmental Technologies
                Lignocellulosic Feedstock

• Lignocellulose a three-
                   three
  dimensional polymeric
  composites formed by plants
  as structural material
• Constituents include:
    – Cellulose: main source of
      glucose (C6 sugar)
    – Lignin: source of xylose (C5
      sugar)
         g )
                                                        Glycosidic
• Simple sugars can be                                    bonds

  liberated from carbohydrate
  either enzymatically or
                                       Cellulose is a polymer of monosaccharides
  thermally                                              (glucose)
Center for Sustainable Environmental Technologies
         Lipid Feedstocks: Nearly hydrocarbons
         Lipid Feedstocks: Nearly hydrocarbons
  • Triglycerides:  Three fatty acids attached to glycerol 
    backbone found in oil seeds and microalgae
    b kb       f     d i il     d    d i      l
  • Readily converted to pure hydrocarbons via 
    hydrogenation
    h d        ti
                  H2        H2        H2        H2        H2        H2         H2        H2 O
       H3C        C         C         C         C         C         C          C         C C O   CH2
             C         C         C         C         C         C          C         C
             H2        H2        H2        H2        H2        H2         H2        H2
                 H2        H2        H2        H2        H2        H2         H2        H2 O
      H3C        C         C         C         C         C         C          C         C C O    CH
            C         C         C         C         C         C          C         C
            H2        H2        H2        H2        H2        H2         H2        H2
                 H2        H2        H2        H2        H2        H2         H2        H2 O
      H3C        C         C         C         C         C         C          C         C C O    CH2
            C         C         C         C         C         C          C         C
            H2        H2        H2        H2        H2        H2         H2        H2
Center for Sustainable Environmental Technologies
                                                    Lipids vs
                                                    Lipids vs Lignocellulose
 Which Kind of Plant Should Deoxygenate Carbohydrate?
           Glucose Unit                Glycosidic Bonds



      OH       CH2OH              OH       CH2OH              OH       CH2OH              OH

                    O    O                      O    O                      O    O
 OH            OH
                             OH            OH                          OH
                                                                                                 Plant No. 2
                                                         OH                          OH
      O    O                      O    O                      O    O                      O
 CH2OH              OH       CH2OH              OH       CH2OH              OH       CH2OH




Plant No. 1                                                                      CO2
                                                                                 H2O
                                                                                               Lipid biosynthesis 
                                                                                                                      Lipid
                                                                                               involves biological 
                                                                                               deoxygenation of 
                                                                                                    yg
                                                                                               carbohydrates, too! 
                                                                                                                  CO2

                                                              Cellulose to hydrocarbons 
                                                              Cellulose to hydrocarbons
                                                              involves deoxygenation of                                          CO2
                                                                                                                      Source: Nature Medicine 
                                                              carbohydrate                                            11, 599 – 600, 2005.
Center for Sustainable Environmental Technologies
             Renewable Fuels Technologies
             Renewable Fuels Technologies
 FEEDSTOCKS                      TECHNOLOGY            BIOFUELS
 OILSEED
  CROPS                         Transesterification
                                                         FAME

  ALGAE
                                     Pyrolysis


                                     Gasification
 AG WASTES      CELLULOSIC
                                      Catalysis
                 BIOMASS                                  FUEL
                                                      HYDROCARBONS

  TREES                               Chemical
 GRASSES                              Catalysis



  GRAINS            STARCH                              ALCOHOLS
                                     Biochemical
                    SUGAR            Conversion
                                     C      i
 SUGARCANE
Center for Sustainable Environmental Technologies
                  Thermochemical Biofuels
                  Thermochemical Biofuels

• The other cellulosic biofuels…
    • Syngas to biofuels 
      (via gasification)
    • Bi il t bi f l
      Bio‐oil to biofuels 
      (via fast pyrolysis)
• Builds upon core competencies at
  Builds upon core competencies at                  ½ tpd oxygen-blown gasifier at ISU’s
                                                        BioCentury Research Farm
  ISU
    •   Gasification and pyrolysis
    •   Catalysis
    •   Novel fermentations
    •   Techno‐economic and life cycle 
        analysis
           l i
                                               1/4 tpd fast pyrolyzer at ISU’s BioCentury
                                                             Research Farm

                                                                                   USDA REE E   S   it
Center for Sustainable Environmental Technologies
          Generalized Thermochemical Process
          Generalized Thermochemical Process

  Feedstock


         Depolymerization/ Decomposition
         Depolymerization/ Decomposition



                                    Thermolytic 
                                    Thermolytic
                                     Substrate

                                                    Upgrading


                                                                Biofuel
Center for Sustainable Environmental Technologies
                                       Gasification
 • Gasification is the thermal decomposition of organic matter 
   into flammable gases
                    g
 Heating and Drying        Pyrolysis          Gas-Solid Reactions                Gas-phase Reactions
                        Volatile gases: CO,                                      CO + H2O  CO2 + H2
                        CO2, H2, H2O light
                                    O,
                        hydrocarbons, tar                                        CO + 3H2  CH4 + H2O
      H 2O     Heat
                                                                     CO
                                                   2 CO                   ½ O2
                                                CO2


                                                              char


                                                                           2H2
                        Porosity increases       CO
                                                                          CH4
  Thermal front                                    H2O
                                                         H2
  penetrates particle
                                              Endothermic Exothermic
                                              reactions   reactions

                                                                                                11
Center for Sustainable Environmental Technologies
                  Two Major Gasification Options
                  Two Major Gasification Options
    Low Temperature Gasification           High Temperature Gasification
      (Bubbling Fluidized Bed)               (Entrained Flow Gasifier)
                                                                oxygen

                             Syngas         biomass




       Biomass

                                                        1300 °C
                             Ash
             Fluidized Bed

                                                       Water cooled
                                                      radiation screen




                 Steam/
                 Oxygen
                 O
                                                                  raw syngas and
                                                                    molten slag
Center for Sustainable Environmental Technologies
                                            Syngas
 • Syngas consists mostly of CO, H2, CO2, CH4
  Composition of syngas (volume percent)
  Hydrogen Carbon           Carbon     Methane                       Nitrogen       HHV
            Monoxide        Dioxide                                                 (MJ/m3)
  32        488             15         2                             3              10.4
                                                                                     0

  • Syngas also contains small amounts of tar, alkali metals, sulfur, 
    nitrogen, and chlorine that must be removed before it can be 
    nitrogen and chlorine that m st be remo ed before it can be
    catalytically upgraded to transportation fuels 
                 Raw Syngas


           Gasifier       Particulate 
                           Removal
                                                                                     Biofuel
            Biomass
                                           Tar    Alkali  Sulfur  Nitrogen  Catalytic 
       Oxygen/Steam                      Removal Removal Removal Removal Synthesis
Center for Sustainable Environmental Technologies

                   Gasification Efficiency

   • Thermal efficiency - conversion of chemical energy of
     solid fuel to chemical energy and sensible heat of
     gaseous product
      – High temperature, high-pressure gasifiers: >95%
      – Typical biomass gasifiers: 70 - 90%
   • Cold gas efficiency – conversion of chemical energy
     of solid fuel to chemical energy of gaseous product
      – T i l bi
        Typical biomass gasifiers: 50 75%
                              ifi   50-75%




                                                             14
Center for Sustainable Environmental Technologies
      Gasification Opportunities and Challenges
      Gasification Opportunities and Challenges
• Advantages 
    – Tolerates relatively dirty biomass 
      feedstock
    – Produces uniform intermediate 
      product (syngas)
    – Proven method for “cracking the 
      lignocellulosic nut”  
    – Allows energy integration in 
      biorefinery
• Disadvantages 
            g
    – Gas cleaning technologies still 
      under development
    – Synfuel processing occurs at high
              processing occurs at high         ½ tpd gasification plant at ISU’s
      pressures                                  BioCentury Research Farm
Center for Sustainable Environmental Technologies
                  Syngas Upgrading to Fuels
                  Syngas Upgrading to Fuels
 • Catalytic – performed at moderate 
   temperatures and high pressures 
   temperatures and high pressures
   using metal catalysts
     – Fischer‐Tropsch synthesis to 
       hydrocarbons suitable for fuels
     – Methanol synthesis followed by 
       upgrading to gasoline
       upgrading to gasoline
     – Ethanol synthesis

  • S
    Syngas fermentation – performed 
           f       t ti       f   d
    at ambient temperature and 
    p
    pressure using biocatalysts
                 g         y
Center for Sustainable Environmental Technologies
                              Pyrolysis

       Definition – thermal decomposition of 
       Definition thermal decomposition of
       carbonaceous material in the absence 
       of oxygen
       of oxygen
Center for Sustainable Environmental Technologies
                            Py Products
• Gas – non‐condensable gases like carbon dioxide, 
   carbon monoxide, hydrogen
• Solid – mixture of inorganic compounds (ash) and 
   carbonaceous materials (charcoal)
 • Liquid – mixture of 
   water and organic                 Bio-
                                     Bio-oil
   compounds known as 
   bio‐oil recovered from 
   bio oil recovered from
   pyrolysis vapors and 
   aerosols (smoke)
   aerosols (smoke)
Center for Sustainable Environmental Technologies
                     The many faces of pyrolysis
                     The many faces of pyrolysis
    Technology         Residence      Heating Rate      Temperature            Predominate 
                         Time                               (C)                  Products
carbonization         days           very low         400                charcoal
conventional          5‐30 min       low              600                oil, gas, char
gasification          0.5‐5 min      moderate         >700               gas
Fast pyrolysis        0.5‐5 s        very high        650                oil
flash‐liquid          <1 s           high             <650               oil
flash‐gas             <1 s           high             <650               chemicals, gas
ultra                 <0.5 s         very high        1000               chemicals, gas
vacuum                2‐30s
                      2 30s          high             <500               oil
hydro‐pyrolysis       <10s           high             <500               oil
methano‐pyrolysis     <10s           high             <700               chemicals
Mohan D., Pittman C. U. Jr., and Steele P. H. “Pyrolysis of Wood/Biomass for Bio‐oil: A 
Critical Review” Energy & Fuels, 20, 848‐889 (2006)
Center for Sustainable Environmental Technologies
                    Carbonization (slow pyrolysis)
                    Carbonization (slow pyrolysis)
•   Charcoal is the carbonaceous 
    residue obtained from heating 
    biomass under oxygen‐starved 
    bi            d                 d
    conditions.
•   Charcoal word origin ‐ “the making 
    of coal.
    of coal ”
•   Geological processes that make coal 
    are quite different from those that 
    produce charcoal and properties are              Charcoal yields (dry weight basis) 
                                                                y     ( y     g          )
    quite different.                                  for different kinds of batch kilns
•   Charcoal contains 65% to 90%                Kiln Type                       Charcoal Yield
    carbon with the balance being               Pit                                 12.5‐30
    volatile matter and mineral matter 
       l til     tt     d i       l tt          Mound  
                                                Mound                                 2‐42
                                                                                      2 42
    (ash).                                      Brick                               12.5‐33
•   Antal, Jr., M. J. and Gronli, M. (2003)     Portable Steel (TPI)              18.9‐31.4
    The Art, Science, and Technology of 
    The Art, Science, and Technology of         Concrete (Missouri)                    33
                                               Kammen, D. M., and Lew, D. J. (2005) Review of technologies for the production and use 
    Charcoal Production, Ind. Eng.             of charcoal, Renewable and Appropriate Energy Laboratory, Berkeley University, March 
                                               1, http://rael.berkeley.edu/files/2005/Kammen‐Lew‐Charcoal‐2005.pdf, accessed 
    Chem. Res. 42, 1619‐1640                   November 17, 2007.
Center for Sustainable Environmental Technologies
                     The many faces of pyrolysis
                     The many faces of pyrolysis
    Technology         Residence      Heating Rate      Temperature            Predominate 
                         Time                               (C)                  Products
carbonization         days           very low         400                charcoal
conventional          5‐30 min       low              600                oil, gas, char
gasification          0.5‐5 min      moderate         >700               gas
fast pyrolysis        0.5‐5 s        very high        650                oil
flash‐liquid          <1 s           high             <650               oil
flash‐gas             <1 s           high             <650               chemicals, gas
ultra                 <0.5 s         very high        1000               chemicals, gas
vacuum                2‐30s
                      2 30s          high             <500               oil
hydro‐pyrolysis       <10s           high             <500               oil
methano‐pyrolysis     <10s           high             <700               chemicals
Mohan D., Pittman C. U. Jr., and Steele P. H. “Pyrolysis of Wood/Biomass for Bio‐oil: A 
Critical Review” Energy & Fuels, 20, 848‐889 (2006)
Center for Sustainable Environmental Technologies
       Fast Pyrolysis
             y y

 Fast pyrolysis - rapid
 thermal decomposition
 of organic compounds
 in the absence of
 oxygen to produce
 predominately liquid
 product
                                                    Biochar
Center for Sustainable Environmental Technologies
                           Fast Pyrolysis
                           Fast Pyrolysis
    •   Dry feedstock: <10%
    •   Small particles: <3 mm
    •   Moderate temperatures (400‐500 oC)
    •   Short residence times: 0.5 ‐ 2 s
    •   Rapid quenching at the end of the process
    •   Typical yields
            Oil:     60 ‐ 70%
            Char:  12 ‐15%
            Gas:   13 ‐ 25%
Center for Sustainable Environmental Technologies

                                     Bio‐Oil
                                     Bio Oil
                              Source: Piskorz, J., et al. (1988)   White    Poplar
Pyrolysis liquid (bio‐oil)                                         Spruce
from flash pyrolysis is a 
from flash pyrolysis is a     Moisture content, wt%                 7.0      3.3
low viscosity, dark‐          Particle size, m (max)              1000      590
brown fluid with up to        Temperature                           500      497

15 to 20% ater
15 to 20% water               Apparent residence time
                              Apparent residence time               0 65
                                                                    0.65     0 48
                                                                             0.48
                              Bio‐oil composition, wt %, m.f.
                               Saccharides                          3.3      2.4
                               Anhydrosugars                        6.5      6.8
                               Aldehydes                            10.1     14.0
                               Furans                               0.35      ‐‐
                               Ketones                              1.24     1.4
                               Alcohols                             2.0      1.2
                               Carboxylic acids                     11.0     8.5
                               Water‐Soluble – Total Above          34.5     34.3
                               Pyrolytic Lignin                     20.6     16.2
                               Unaccounted fraction                 11.4     15.2
Center for Sustainable Environmental Technologies
                        Energy Efficiency
                        Energy Efficiency


 • Conversion to 75 wt‐% bio‐oil translates to energy 
   efficiency of 70%
     ffi i     f 70%
 • If carbon used for energy source (process heat or 
   slurried with liquid) then efficiency approaches 94%
   slurried with liquid) then efficiency approaches 94%




           Source: http://www.ensyn.com/info/23102000.htm
Center for Sustainable Environmental Technologies
     Fast Pyrolysis Opportunities and Challenges
     Fast Pyrolysis Opportunities and Challenges

  • Advantages of bio oil:
    Advantages of bio‐oil:
      – Can be upgraded to drop‐in 
        ( y
        (hydrocarbon) fuels
                    )
      – Opportunities for distributed 
        processing
                                            ¼ ton per day fast pyrolysis pilot plant at 
 • Disadvantages of bio‐oil                      ISU BioCentury Research Farm

     – High oxygen and water content makes bio‐oil inferior to
       High oxygen and water content makes bio oil inferior to 
       petroleum‐derived fuels 
     – Phase‐separation and polymerization and corrosiveness 
       make long‐term storage difficult
Center for Sustainable Environmental Technologies
                     Applications of Bio‐Oil
                     Applications of Bio‐Oil

 • Stationary Power
   Stationary Power
 • Commodity Chemicals
 • Transportation Fuels
               i     l
Center for Sustainable Environmental Technologies
                    And Sugar and Bioasphalt!
                    And Sugar and Bioasphalt!
                Heavy Ends




Sugar solution (>20 wt%)



                           Water
                           Wash



                                        Raffinate (mostly phenolic
                                        oligomers derived from lignin)
Center for Sustainable Environmental Technologies

                               Biochar
 • Carbonaceous residue from 
   pyrolysis of biomass
   pyrolysis of biomass
 • Yields range from 5‐40% of 
   biomass depending upon process 
   biomass depending upon process
   conditions
 • Fine, porous structure
        ,p
 • Several potential applications, 
   the most intriguing being dual 
                  g g       g
   use as soil amendment and 
   carbon sequestration agent
Center for Sustainable Environmental Technologies

    Terra Preta: Anthropogenic Soils from Biochar
    Terra Preta: Anthropogenic Soils from Biochar

• Created hundreds of years 
                        y                Terra Preta                   Oxisol
  ago by pre‐Colombian 
  inhabitants  of Amazon 
  Basin
• Result of slash and char 
  agriculture
• Much higher levels of soil 
  organic carbon
• F
  Far more productive than 
                d i      h          Applied to the land, biochar serves as
  undisturbed                       both soil amendment and carbon
  oxisol soils                      sequestration agent


                             Glaser et al. 2001. Naturwissenschaften (2001) 88:37–41
Center for Sustainable Environmental Technologies
                              Biochar s
                              Biochar’s Impact
•   Biochar increases soil cation exchange                                   Increases:
    capacity (CEC), holding ammonium ions 
    capacity (CEC), holding ammonium ions                                                 g
                                                                             Cation Exchange 
    (NH4+) and other cations in the soil                                     Capacity
                                                                             Soil Organic Matter
•   Biochar adsorbs soil organic matter which                                      g
                                                                             Drainage
    contains plant‐available organic nitrogen1
                                                                             Aeration
•   Biochar’s low bulk density increases soil 
    aeration and water drainage, lessening the 
                                g ,        g
                                                                                   Decreases:
                                                                                   D
    likelihood of denitrification (NO3‐  N2O 
    N2) and associated N2O emissions2                                             Soil Bulk Density
                                                                                   Denitrification
•   Addition of biochar has been shown to 
    Addition of biochar has been shown to
                                                                                   N2O Emissions
    decrease nutrient leaching (nitrate, 
    phosphate, cations) from manure                                                Nutrient Leaching
    amendments3
                                1.   Laird, D. A., Agron J 2008, 100, (1), 178-181.
                                2.   Rogovska, et al. North American Biochar Conference, Boulder, CO, Aug 2009.
                                3.   Laird, et al. 2008 GSA-SSSA-ASA-CSA Joint Meeting, Houston, TX, Oct 2008.
Center for Sustainable Environmental Technologies

        GHG Impacts of Soil Application of Biochar
        GHG Impacts of Soil Application of Biochar
         Increased CO2    Competition
         emissions due    between food
         to enhanced      and biomass
         soil microbial   crops may
         respiration      increase land
                          under cultivation.

    +


    0


    _

         Increase C       Increased       Reduce CO2       Reduce N2O      Increase C      Reduce CO2
         input to soil    yields may      emissions        emissions       sequestration   emissions due
         due to           decrease the    due to bio-oil   from soils      in soils        to decreased
         enhanced         amount of       displacing       due to better   (Biochar C is   use of lime
         plant growth     land needed     fossil fuel      soil aeration   very stable)    and fertilizer
                          to grow food.
Center for Sustainable Environmental Technologies
         Proof‐of‐Concept:  Terra Preta in Brazil
         Proof‐of‐Concept: Terra Preta in Brazil




                 Terra Preta                        Oxisol
Center for Sustainable Environmental Technologies
                      Lovelock on Biochar
                      Lovelock on Biochar

   “There is one way we could 
   save ourselves and that is 
   through the massive burial of 
   through the massive burial of
   charcoal. It would mean 
   farmers turning all their 
   farmers turning all their
   agricultural waste…into non‐              James Lovelock in an 
   biodegradable charcoal, and               otherwise pessimistic 
   burying it in the soil.”                  interview with New 
                                             Scientist Magazine 
                                             (January 2009) on our 
                                             prospects for halting global 
                                                     t f h lti      l b l
                                             climate change
Center for Sustainable Environmental Technologies
 ISU Facilities to Support Thermochemical Research
                                                                 Lab-scale pyrolyzers
                                 Micropyrolyzers &                                            Batch and fixed bed
                                                                 and gasifiers
                                 bio-oil analysis                                             catalytic upgrading reactors




ISU Biorenewables Laboratory


                               Quarter-ton/day pilot plant fast pyrolyzer
                                                                              Half-ton/day p
                                                                                         y pilot p
                                                                                                 plant
                                                                              oxygen-blown gasifier




 ISU BioCentury
 Research Farm

More Related Content

PPT
Presentation - Coal and Biomass Combustion
PDF
Biofuels Issues, Trends and Challenges
PPTX
Biomass Pyrolysis
PPT
22. BIOMASS GASIFICATION.ppt
PPTX
Waste heat recovery
PPT
ENVIRONMENTAL IMPACT OF EMISSION OF POWER PLANTS
PPTX
Manufacture of pyrolysis oil
Presentation - Coal and Biomass Combustion
Biofuels Issues, Trends and Challenges
Biomass Pyrolysis
22. BIOMASS GASIFICATION.ppt
Waste heat recovery
ENVIRONMENTAL IMPACT OF EMISSION OF POWER PLANTS
Manufacture of pyrolysis oil

What's hot (20)

PDF
Renewable energy economics
PPTX
Air pollution in thermal power plants
PDF
20131008 Biomass Conversion Technologies
DOCX
Bio-gasifier Coupled Engine
PPTX
Environmental impact of thermal power plant
PPTX
ELECTROSTATIC PRECIPITATOR
PPT
Improving Furnace Efficiency
PPTX
Alcohol as analternative fuel
PPT
Impact of thermal power plant on environment and its management
ODP
Biomass energy
PPTX
Waste to fuel
PDF
Theory and Operation of Methanation Catalyst
PPTX
Biomass energy
PPTX
ESP (Electrostatic precipitator)
PPT
21. COFIRING BIOMASS WITH COAL FOR POWER GENERATION.ppt
PPTX
Fluidized bed combustor
PPT
biogas
PPTX
How to Start Biogas Production, Biogas – An Intense Opportunity (Landfill Gas...
PPT
28. WASTE HEAT RECOVERY.ppt
Renewable energy economics
Air pollution in thermal power plants
20131008 Biomass Conversion Technologies
Bio-gasifier Coupled Engine
Environmental impact of thermal power plant
ELECTROSTATIC PRECIPITATOR
Improving Furnace Efficiency
Alcohol as analternative fuel
Impact of thermal power plant on environment and its management
Biomass energy
Waste to fuel
Theory and Operation of Methanation Catalyst
Biomass energy
ESP (Electrostatic precipitator)
21. COFIRING BIOMASS WITH COAL FOR POWER GENERATION.ppt
Fluidized bed combustor
biogas
How to Start Biogas Production, Biogas – An Intense Opportunity (Landfill Gas...
28. WASTE HEAT RECOVERY.ppt
Ad

Viewers also liked (6)

PPT
Bioenergy X1an China B
PPTX
Bioenergy conversion lecture notes
PDF
Lignin ionic liquid-depolymerization-liqueafaction-monomer-acid-mechanism-nmr...
DOCX
Biomass conversion technologies
PDF
Biotechnological Routes to Biomass Conversion
PDF
Biomass conversion for energy
Bioenergy X1an China B
Bioenergy conversion lecture notes
Lignin ionic liquid-depolymerization-liqueafaction-monomer-acid-mechanism-nmr...
Biomass conversion technologies
Biotechnological Routes to Biomass Conversion
Biomass conversion for energy
Ad

Similar to Thermochemical Conversion of Biomass to Fuel.cenusa brown 5-25-12 (20)

PPT
BIOLOGICAL MOLECULES
PPTX
Chemistry 3
PDF
2009 Fuel Ethanol Workshop Presentation
PDF
Sugarcane As A Biofectory
PPT
Biodegradation
PPT
Carbohydrate 1
PPT
The Chemistry of Life
PPTX
Photorespiration
PPTX
CARBON COMPOUNDS
PPT
Carbs
PDF
Article Chemnews Chinthapalli
PDF
12.11.08: Folate Metabolism
PDF
12.11.08: Folate Metabolism
PDF
123.202 Lecture 7 - alkenes
PDF
IPC presentation
PPT
Bio f4 chap_4_chemical_composition_of_the_cell
PPT
Biochar root growth_and_rhizosphere_communities[linkedi]
PPTX
Carbohydrates and Lipids
PPT
Soil:Organic Interactions
PPT
46 ch10photosynthesis2008print
BIOLOGICAL MOLECULES
Chemistry 3
2009 Fuel Ethanol Workshop Presentation
Sugarcane As A Biofectory
Biodegradation
Carbohydrate 1
The Chemistry of Life
Photorespiration
CARBON COMPOUNDS
Carbs
Article Chemnews Chinthapalli
12.11.08: Folate Metabolism
12.11.08: Folate Metabolism
123.202 Lecture 7 - alkenes
IPC presentation
Bio f4 chap_4_chemical_composition_of_the_cell
Biochar root growth_and_rhizosphere_communities[linkedi]
Carbohydrates and Lipids
Soil:Organic Interactions
46 ch10photosynthesis2008print

Recently uploaded (20)

PPTX
Presentation - Principles of Instructional Design.pptx
PDF
Altius execution marketplace concept.pdf
PDF
EGCB_Solar_Project_Presentation_and Finalcial Analysis.pdf
PPTX
Blending method and technology for hydrogen.pptx
PDF
Advancements in abstractive text summarization: a deep learning approach
PDF
ELLIE29.pdfWETWETAWTAWETAETAETERTRTERTER
PDF
Streamline Vulnerability Management From Minimal Images to SBOMs
PDF
CCUS-as-the-Missing-Link-to-Net-Zero_AksCurious.pdf
PDF
Technical Debt in the AI Coding Era - By Antonio Bianco
PDF
Addressing the challenges of harmonizing law and artificial intelligence tech...
PPT
Storage Area Network Best Practices from HP
PDF
Ericsson 5G Feature,KPIs Analysis_ Overview, Dependencies & Recommendations (...
PPTX
maintenance powerrpoint for adaprive and preventive
PDF
Chapter 1: computer maintenance and troubleshooting
PDF
Introduction to c language from lecture slides
PDF
Data Virtualization in Action: Scaling APIs and Apps with FME
PDF
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
PDF
Intravenous drug administration application for pediatric patients via augmen...
PDF
EIS-Webinar-Regulated-Industries-2025-08.pdf
PDF
Internet of Things (IoT) – Definition, Types, and Uses
Presentation - Principles of Instructional Design.pptx
Altius execution marketplace concept.pdf
EGCB_Solar_Project_Presentation_and Finalcial Analysis.pdf
Blending method and technology for hydrogen.pptx
Advancements in abstractive text summarization: a deep learning approach
ELLIE29.pdfWETWETAWTAWETAETAETERTRTERTER
Streamline Vulnerability Management From Minimal Images to SBOMs
CCUS-as-the-Missing-Link-to-Net-Zero_AksCurious.pdf
Technical Debt in the AI Coding Era - By Antonio Bianco
Addressing the challenges of harmonizing law and artificial intelligence tech...
Storage Area Network Best Practices from HP
Ericsson 5G Feature,KPIs Analysis_ Overview, Dependencies & Recommendations (...
maintenance powerrpoint for adaprive and preventive
Chapter 1: computer maintenance and troubleshooting
Introduction to c language from lecture slides
Data Virtualization in Action: Scaling APIs and Apps with FME
ment.tech-Siri Delay Opens AI Startup Opportunity in 2025.pdf
Intravenous drug administration application for pediatric patients via augmen...
EIS-Webinar-Regulated-Industries-2025-08.pdf
Internet of Things (IoT) – Definition, Types, and Uses

Thermochemical Conversion of Biomass to Fuel.cenusa brown 5-25-12

  • 1. Center for Sustainable Environmental Technologies The  Thermochemical Option Robert C. Brown Robert C. Brown Center for Sustainable  Environmental Technologies Iowa State University Iowa State University CenUSA Webinar May 25, 2012
  • 2. Center for Sustainable Environmental Technologies What is the Perfect Energy Carrier for Transportation Fuel? What is the Perfect Energy Carrier for Transportation Fuel? • Liquid at ambient conditions d b d • Immiscible in water • Low toxicity • High energy density • Cold weather operability • Stable during long‐term storage • Efficient production from a primary energy source
  • 3. Center for Sustainable Environmental Technologies Drop‐In Fuels Drop‐In Fuels • Fully compatible with existing fuel infrastructure – Hydrocarbons (alkanes and aromatics) – Possibly butanol • Are drop in fuels  also the “perfect fuel?” – Close enough
  • 4. Center for Sustainable Environmental Technologies Three Kinds of Biomass Three Kinds of Biomass • Lipid‐rich biomass Lipid‐rich biomass  • Lignocellulosic biomass • Waste biomass
  • 5. Center for Sustainable Environmental Technologies Lignocellulosic Feedstock • Lignocellulose a three- three dimensional polymeric composites formed by plants as structural material • Constituents include: – Cellulose: main source of glucose (C6 sugar) – Lignin: source of xylose (C5 sugar) g ) Glycosidic • Simple sugars can be bonds liberated from carbohydrate either enzymatically or Cellulose is a polymer of monosaccharides thermally (glucose)
  • 6. Center for Sustainable Environmental Technologies Lipid Feedstocks: Nearly hydrocarbons Lipid Feedstocks: Nearly hydrocarbons • Triglycerides:  Three fatty acids attached to glycerol  backbone found in oil seeds and microalgae b kb f d i il d d i l • Readily converted to pure hydrocarbons via  hydrogenation h d ti H2 H2 H2 H2 H2 H2 H2 H2 O H3C C C C C C C C C C O CH2 C C C C C C C C H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 O H3C C C C C C C C C C O CH C C C C C C C C H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 O H3C C C C C C C C C C O CH2 C C C C C C C C H2 H2 H2 H2 H2 H2 H2 H2
  • 7. Center for Sustainable Environmental Technologies Lipids vs Lipids vs Lignocellulose Which Kind of Plant Should Deoxygenate Carbohydrate? Glucose Unit Glycosidic Bonds OH CH2OH OH CH2OH OH CH2OH OH O O O O O O OH OH OH OH OH Plant No. 2 OH OH O O O O O O O CH2OH OH CH2OH OH CH2OH OH CH2OH Plant No. 1 CO2 H2O Lipid biosynthesis  Lipid involves biological  deoxygenation of  yg carbohydrates, too!  CO2 Cellulose to hydrocarbons  Cellulose to hydrocarbons involves deoxygenation of  CO2 Source: Nature Medicine  carbohydrate 11, 599 – 600, 2005.
  • 8. Center for Sustainable Environmental Technologies Renewable Fuels Technologies Renewable Fuels Technologies FEEDSTOCKS TECHNOLOGY BIOFUELS OILSEED CROPS Transesterification FAME ALGAE Pyrolysis Gasification AG WASTES CELLULOSIC Catalysis BIOMASS FUEL HYDROCARBONS TREES Chemical GRASSES Catalysis GRAINS STARCH ALCOHOLS Biochemical SUGAR Conversion C i SUGARCANE
  • 9. Center for Sustainable Environmental Technologies Thermochemical Biofuels Thermochemical Biofuels • The other cellulosic biofuels… • Syngas to biofuels  (via gasification) • Bi il t bi f l Bio‐oil to biofuels  (via fast pyrolysis) • Builds upon core competencies at Builds upon core competencies at  ½ tpd oxygen-blown gasifier at ISU’s BioCentury Research Farm ISU • Gasification and pyrolysis • Catalysis • Novel fermentations • Techno‐economic and life cycle  analysis l i 1/4 tpd fast pyrolyzer at ISU’s BioCentury Research Farm USDA REE E S it
  • 10. Center for Sustainable Environmental Technologies Generalized Thermochemical Process Generalized Thermochemical Process Feedstock Depolymerization/ Decomposition Depolymerization/ Decomposition Thermolytic  Thermolytic Substrate Upgrading Biofuel
  • 11. Center for Sustainable Environmental Technologies Gasification • Gasification is the thermal decomposition of organic matter  into flammable gases g Heating and Drying Pyrolysis Gas-Solid Reactions Gas-phase Reactions Volatile gases: CO, CO + H2O  CO2 + H2 CO2, H2, H2O light O, hydrocarbons, tar CO + 3H2  CH4 + H2O H 2O Heat CO 2 CO ½ O2 CO2 char 2H2 Porosity increases CO CH4 Thermal front H2O H2 penetrates particle Endothermic Exothermic reactions reactions 11
  • 12. Center for Sustainable Environmental Technologies Two Major Gasification Options Two Major Gasification Options Low Temperature Gasification High Temperature Gasification (Bubbling Fluidized Bed) (Entrained Flow Gasifier) oxygen Syngas biomass Biomass 1300 °C Ash Fluidized Bed Water cooled radiation screen Steam/ Oxygen O raw syngas and molten slag
  • 13. Center for Sustainable Environmental Technologies Syngas • Syngas consists mostly of CO, H2, CO2, CH4 Composition of syngas (volume percent) Hydrogen Carbon  Carbon  Methane Nitrogen HHV Monoxide Dioxide (MJ/m3) 32 488 15 2 3 10.4 0 • Syngas also contains small amounts of tar, alkali metals, sulfur,  nitrogen, and chlorine that must be removed before it can be  nitrogen and chlorine that m st be remo ed before it can be catalytically upgraded to transportation fuels  Raw Syngas Gasifier Particulate  Removal Biofuel Biomass Tar  Alkali  Sulfur  Nitrogen  Catalytic  Oxygen/Steam Removal Removal Removal Removal Synthesis
  • 14. Center for Sustainable Environmental Technologies Gasification Efficiency • Thermal efficiency - conversion of chemical energy of solid fuel to chemical energy and sensible heat of gaseous product – High temperature, high-pressure gasifiers: >95% – Typical biomass gasifiers: 70 - 90% • Cold gas efficiency – conversion of chemical energy of solid fuel to chemical energy of gaseous product – T i l bi Typical biomass gasifiers: 50 75% ifi 50-75% 14
  • 15. Center for Sustainable Environmental Technologies Gasification Opportunities and Challenges Gasification Opportunities and Challenges • Advantages  – Tolerates relatively dirty biomass  feedstock – Produces uniform intermediate  product (syngas) – Proven method for “cracking the  lignocellulosic nut”   – Allows energy integration in  biorefinery • Disadvantages  g – Gas cleaning technologies still  under development – Synfuel processing occurs at high processing occurs at high  ½ tpd gasification plant at ISU’s pressures BioCentury Research Farm
  • 16. Center for Sustainable Environmental Technologies Syngas Upgrading to Fuels Syngas Upgrading to Fuels • Catalytic – performed at moderate  temperatures and high pressures  temperatures and high pressures using metal catalysts – Fischer‐Tropsch synthesis to  hydrocarbons suitable for fuels – Methanol synthesis followed by  upgrading to gasoline upgrading to gasoline – Ethanol synthesis • S Syngas fermentation – performed  f t ti f d at ambient temperature and  p pressure using biocatalysts g y
  • 17. Center for Sustainable Environmental Technologies Pyrolysis Definition – thermal decomposition of  Definition thermal decomposition of carbonaceous material in the absence  of oxygen of oxygen
  • 18. Center for Sustainable Environmental Technologies Py Products • Gas – non‐condensable gases like carbon dioxide,  carbon monoxide, hydrogen • Solid – mixture of inorganic compounds (ash) and  carbonaceous materials (charcoal) • Liquid – mixture of  water and organic  Bio- Bio-oil compounds known as  bio‐oil recovered from  bio oil recovered from pyrolysis vapors and  aerosols (smoke) aerosols (smoke)
  • 19. Center for Sustainable Environmental Technologies The many faces of pyrolysis The many faces of pyrolysis Technology Residence Heating Rate Temperature Predominate  Time (C) Products carbonization days very low 400 charcoal conventional 5‐30 min low 600 oil, gas, char gasification 0.5‐5 min moderate >700 gas Fast pyrolysis 0.5‐5 s very high 650 oil flash‐liquid <1 s high <650 oil flash‐gas <1 s high <650 chemicals, gas ultra <0.5 s very high 1000 chemicals, gas vacuum 2‐30s 2 30s high <500 oil hydro‐pyrolysis <10s high <500 oil methano‐pyrolysis <10s high <700 chemicals Mohan D., Pittman C. U. Jr., and Steele P. H. “Pyrolysis of Wood/Biomass for Bio‐oil: A  Critical Review” Energy & Fuels, 20, 848‐889 (2006)
  • 20. Center for Sustainable Environmental Technologies Carbonization (slow pyrolysis) Carbonization (slow pyrolysis) • Charcoal is the carbonaceous  residue obtained from heating  biomass under oxygen‐starved  bi d d conditions. • Charcoal word origin ‐ “the making  of coal. of coal ” • Geological processes that make coal  are quite different from those that  produce charcoal and properties are  Charcoal yields (dry weight basis)  y ( y g ) quite different. for different kinds of batch kilns • Charcoal contains 65% to 90%  Kiln Type Charcoal Yield carbon with the balance being  Pit  12.5‐30 volatile matter and mineral matter  l til tt d i l tt Mound   Mound 2‐42 2 42 (ash). Brick  12.5‐33 • Antal, Jr., M. J. and Gronli, M. (2003)  Portable Steel (TPI) 18.9‐31.4 The Art, Science, and Technology of  The Art, Science, and Technology of Concrete (Missouri) 33 Kammen, D. M., and Lew, D. J. (2005) Review of technologies for the production and use  Charcoal Production, Ind. Eng.  of charcoal, Renewable and Appropriate Energy Laboratory, Berkeley University, March  1, http://rael.berkeley.edu/files/2005/Kammen‐Lew‐Charcoal‐2005.pdf, accessed  Chem. Res. 42, 1619‐1640 November 17, 2007.
  • 21. Center for Sustainable Environmental Technologies The many faces of pyrolysis The many faces of pyrolysis Technology Residence Heating Rate Temperature Predominate  Time (C) Products carbonization days very low 400 charcoal conventional 5‐30 min low 600 oil, gas, char gasification 0.5‐5 min moderate >700 gas fast pyrolysis 0.5‐5 s very high 650 oil flash‐liquid <1 s high <650 oil flash‐gas <1 s high <650 chemicals, gas ultra <0.5 s very high 1000 chemicals, gas vacuum 2‐30s 2 30s high <500 oil hydro‐pyrolysis <10s high <500 oil methano‐pyrolysis <10s high <700 chemicals Mohan D., Pittman C. U. Jr., and Steele P. H. “Pyrolysis of Wood/Biomass for Bio‐oil: A  Critical Review” Energy & Fuels, 20, 848‐889 (2006)
  • 22. Center for Sustainable Environmental Technologies Fast Pyrolysis y y Fast pyrolysis - rapid thermal decomposition of organic compounds in the absence of oxygen to produce predominately liquid product Biochar
  • 23. Center for Sustainable Environmental Technologies Fast Pyrolysis Fast Pyrolysis • Dry feedstock: <10% • Small particles: <3 mm • Moderate temperatures (400‐500 oC) • Short residence times: 0.5 ‐ 2 s • Rapid quenching at the end of the process • Typical yields Oil:     60 ‐ 70% Char:  12 ‐15% Gas:   13 ‐ 25%
  • 24. Center for Sustainable Environmental Technologies Bio‐Oil Bio Oil Source: Piskorz, J., et al. (1988) White  Poplar Pyrolysis liquid (bio‐oil)  Spruce from flash pyrolysis is a  from flash pyrolysis is a Moisture content, wt% 7.0 3.3 low viscosity, dark‐ Particle size, m (max) 1000 590 brown fluid with up to  Temperature 500 497 15 to 20% ater 15 to 20% water Apparent residence time Apparent residence time 0 65 0.65 0 48 0.48 Bio‐oil composition, wt %, m.f. Saccharides 3.3 2.4 Anhydrosugars 6.5 6.8 Aldehydes 10.1 14.0 Furans 0.35 ‐‐ Ketones 1.24 1.4 Alcohols 2.0 1.2 Carboxylic acids 11.0 8.5 Water‐Soluble – Total Above 34.5 34.3 Pyrolytic Lignin 20.6 16.2 Unaccounted fraction 11.4 15.2
  • 25. Center for Sustainable Environmental Technologies Energy Efficiency Energy Efficiency • Conversion to 75 wt‐% bio‐oil translates to energy  efficiency of 70% ffi i f 70% • If carbon used for energy source (process heat or  slurried with liquid) then efficiency approaches 94% slurried with liquid) then efficiency approaches 94% Source: http://www.ensyn.com/info/23102000.htm
  • 26. Center for Sustainable Environmental Technologies Fast Pyrolysis Opportunities and Challenges Fast Pyrolysis Opportunities and Challenges • Advantages of bio oil: Advantages of bio‐oil: – Can be upgraded to drop‐in  ( y (hydrocarbon) fuels ) – Opportunities for distributed  processing ¼ ton per day fast pyrolysis pilot plant at  • Disadvantages of bio‐oil ISU BioCentury Research Farm – High oxygen and water content makes bio‐oil inferior to High oxygen and water content makes bio oil inferior to  petroleum‐derived fuels  – Phase‐separation and polymerization and corrosiveness  make long‐term storage difficult
  • 27. Center for Sustainable Environmental Technologies Applications of Bio‐Oil Applications of Bio‐Oil • Stationary Power Stationary Power • Commodity Chemicals • Transportation Fuels i l
  • 28. Center for Sustainable Environmental Technologies And Sugar and Bioasphalt! And Sugar and Bioasphalt! Heavy Ends Sugar solution (>20 wt%) Water Wash Raffinate (mostly phenolic oligomers derived from lignin)
  • 29. Center for Sustainable Environmental Technologies Biochar • Carbonaceous residue from  pyrolysis of biomass pyrolysis of biomass • Yields range from 5‐40% of  biomass depending upon process  biomass depending upon process conditions • Fine, porous structure ,p • Several potential applications,  the most intriguing being dual  g g g use as soil amendment and  carbon sequestration agent
  • 30. Center for Sustainable Environmental Technologies Terra Preta: Anthropogenic Soils from Biochar Terra Preta: Anthropogenic Soils from Biochar • Created hundreds of years  y Terra Preta Oxisol ago by pre‐Colombian  inhabitants  of Amazon  Basin • Result of slash and char  agriculture • Much higher levels of soil  organic carbon • F Far more productive than  d i h Applied to the land, biochar serves as undisturbed  both soil amendment and carbon oxisol soils sequestration agent Glaser et al. 2001. Naturwissenschaften (2001) 88:37–41
  • 31. Center for Sustainable Environmental Technologies Biochar s Biochar’s Impact • Biochar increases soil cation exchange  Increases: capacity (CEC), holding ammonium ions  capacity (CEC), holding ammonium ions g Cation Exchange  (NH4+) and other cations in the soil Capacity Soil Organic Matter • Biochar adsorbs soil organic matter which  g Drainage contains plant‐available organic nitrogen1 Aeration • Biochar’s low bulk density increases soil  aeration and water drainage, lessening the  g , g Decreases: D likelihood of denitrification (NO3‐  N2O  N2) and associated N2O emissions2 Soil Bulk Density Denitrification • Addition of biochar has been shown to  Addition of biochar has been shown to N2O Emissions decrease nutrient leaching (nitrate,  phosphate, cations) from manure  Nutrient Leaching amendments3 1. Laird, D. A., Agron J 2008, 100, (1), 178-181. 2. Rogovska, et al. North American Biochar Conference, Boulder, CO, Aug 2009. 3. Laird, et al. 2008 GSA-SSSA-ASA-CSA Joint Meeting, Houston, TX, Oct 2008.
  • 32. Center for Sustainable Environmental Technologies GHG Impacts of Soil Application of Biochar GHG Impacts of Soil Application of Biochar Increased CO2 Competition emissions due between food to enhanced and biomass soil microbial crops may respiration increase land under cultivation. + 0 _ Increase C Increased Reduce CO2 Reduce N2O Increase C Reduce CO2 input to soil yields may emissions emissions sequestration emissions due due to decrease the due to bio-oil from soils in soils to decreased enhanced amount of displacing due to better (Biochar C is use of lime plant growth land needed fossil fuel soil aeration very stable) and fertilizer to grow food.
  • 33. Center for Sustainable Environmental Technologies Proof‐of‐Concept:  Terra Preta in Brazil Proof‐of‐Concept: Terra Preta in Brazil Terra Preta Oxisol
  • 34. Center for Sustainable Environmental Technologies Lovelock on Biochar Lovelock on Biochar “There is one way we could  save ourselves and that is  through the massive burial of  through the massive burial of charcoal. It would mean  farmers turning all their  farmers turning all their agricultural waste…into non‐ James Lovelock in an  biodegradable charcoal, and  otherwise pessimistic  burying it in the soil.” interview with New  Scientist Magazine  (January 2009) on our  prospects for halting global  t f h lti l b l climate change
  • 35. Center for Sustainable Environmental Technologies ISU Facilities to Support Thermochemical Research Lab-scale pyrolyzers Micropyrolyzers & Batch and fixed bed and gasifiers bio-oil analysis catalytic upgrading reactors ISU Biorenewables Laboratory Quarter-ton/day pilot plant fast pyrolyzer Half-ton/day p y pilot p plant oxygen-blown gasifier ISU BioCentury Research Farm