SlideShare a Scribd company logo
Top 5 Mistakes when writing
Spark applications
Mark Grover | @mark_grover | Software Engineer
Ted Malaska | @TedMalaska | Principal Solutions Architect
tiny.cloudera.com/spark-mistakes
About the book
• @hadooparchbook
• hadooparchitecturebook.com
• github.com/hadooparchitecturebook
• slideshare.com/hadooparchbook
Mistakes people make
when using Spark
Mistakes people we made
when using Spark
Mistake # 1
# Executors, cores, memory !?!
• 6 Nodes
• 16 cores each
• 64 GB of RAM each
Decisions, decisions, decisions
• Number of executors (--num-executors)
• Cores for each executor (--executor-cores)
• Memory for each executor (--executor-
memory)
• 6 nodes
• 16 cores each
• 64 GB of RAM
Spark Architecture recap
Answer #1 – Most granular
• Have smallest sized executors as possible
• 1 core each
• Total of 16 x 6 = 96 cores
• 96 executors
• 64/16 = 4 GB per executor (per node)
Answer #1 – Most granular
• Have smallest sized executors as possible
• 1 core each
• Total of 16 x 6 = 96 cores
• 96 executors
• 64/16 = 4 GB per executor (per node)
Why?
• Not using benefits of running multiple
tasks in same JVM
Answer #2 – Least granular
• 6 executors
• 64 GB memory each
• 16 cores each
Answer #2 – Least granular
• 6 executors
• 64 GB memory each
• 16 cores each
Why?
• Need to leave some memory overhead for
OS/Hadoop daemons
Answer #3 – with overhead
• 6 executors
• 63 GB memory each
• 15 cores each
Answer #3 – with overhead
• 6 executors
• 63 GB memory each
• 15 cores each
Spark on YARN – Memory usage
• --executor-memory controls the heap size
• Need some overhead (controlled by
spark.yarn.executor.memory.overhead)for off heap memory
• Default is max(384MB, .07 * spark.executor.memory)
YARN AM needs a core: Client
mode
YARN AM needs a core: Cluster
mode
HDFS Throughput
• 15 cores per executor can lead to bad
HDFS I/O throughput.
• Best is to keep under 5 cores per executor
Calculations
• 5 cores per executor
– For max HDFS throughput
• Cluster has 6 * 15 = 90 cores in total (after taking out
Hadoop/Yarn daemon cores)
• 90 cores / 5 cores/executor = 18 executors
• 1 executor for AM => 17 executors
• Each node has 3 executors
• 63 GB/3 = 21 GB, 21 x (1-0.07) ~ 19 GB (counting off
heap overhead)
Correct answer
• 17 executors
• 19 GB memory each
• 5 cores each
* Not etched in stone
Read more
• From a great blog post on this topic by
Sandy Ryza:
http://blog.cloudera.com/blog/2015/03/how-
to-tune-your-apache-spark-jobs-part-2/
Mistake # 2
Application failure
15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in
stage 6.0 (TID 120, 10.215.149.47):
java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828) at
org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123) at
org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132) at
org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:51
7) at
org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:432)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:618)
at
org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:146
) at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)
Why?
• No Spark shuffle block can be greater than
2 GB
Ok, what’s a shuffle block again?
• In MapReduce terminology, a Mapper-
Reducer pair – the file from local disk that
the reducers read from local disk in
MapReduce.
In other words
Each yellow arrow
in this diagram
represents a
shuffle block.
Wait! What!?! This is Big Data stuff,
no?
• Yeah! Nope!
• Spark uses ByteBuffer as abstraction
for storing blocks
val buf = ByteBuffer.allocate(length.toInt)
• ByteBuffer is limited by Integer.MAX_SIZE(2 GB)!
Once again
• No Spark shuffle block can be greater than
2 GB
Spark SQL
• Especially problematic for Spark SQL
• Default number of partitions to use when
doing shuffles is 200
– This low number of partitions leads to high
shuffle block size
Umm, ok, so what can I do?
1. Increase the number of partitions
– Thereby, reducing the average partition size
2. Get rid of skew in your data
– More on that later
Umm, how exactly?
• In Spark SQL, increase the value of
spark.sql.shuffle.partitions
• In regular Spark applications, use
rdd.repartition() or
rdd.coalesce()
But, how many partitions should I
have?
• Rule of thumb is around 128 MB per
partition
But!
• Spark uses a different data structure for
bookkeeping during shuffles, when the
number of partitions is less than 2000, vs.
more than 2000.
Don’t believe me?
• In MapStatus.scala
def apply(loc: BlockManagerId, uncompressedSizes:
Array[Long]): MapStatus = {
if (uncompressedSizes.length > 2000) {
HighlyCompressedMapStatus(loc,
uncompressedSizes)
} else {
new CompressedMapStatus(loc, uncompressedSizes)
}
}
Ok, so what are you saying?
• If your number of partitions is less than
2000, but close enough to it, bump that
number up to be slightly higher than 2000.
Can you summarize, please?
• Don’t have too big partitions
– Your job will fail due to 2 GB limit
• Don’t have too few partitions
– Your job will be slow, not making using of
parallelism
• Rule of thumb: ~128 MB per partition
• If #partitions < 2000, but close, bump to just > 2000
Mistake # 3
Slow jobs on Join/Shuffle
• Your dataset takes 20 seconds to run over
with a map job, but take 4 hours when
joined or shuffled. What wrong?
Skew and Cartesian
Mistake - Skew
Single Thread
Single Thread
Single Thread
Single Thread
Single Thread
Single Thread
Single Thread
Normal
Distributed
The Holy Grail of Distributed Systems
Mistake - Skew
Single Thread
Normal
Distributed
What about Skew, because that is a thing
Mistake – Skew : Answers
• Salting
• Isolation Salting
• Isolation Map Joins
Mistake – Skew : Salting
• Normal Key: “Foo”
• Salted Key: “Foo” +
random.nextInt(saltFactor)
Managing Parallelism
Mistake – Skew: Salting
Add Example Slide
Mistake – Skew : Salting
• Two Stage Aggregation
– Stage one to do operations on the salted keys
– Stage two to do operation access unsalted
key results
Data Source Map
Convert to
Salted Key & Value
Tuple
Reduce
By Salted Key
Map Convert
results to
Key & Value
Tuple
Reduce
By Key
Results
Mistake – Skew : Isolated Salting
• Second Stage only required for Isolated
Keys
Data Source Map
Convert to
Key & Value
Isolate Key and
convert to
Salted Key &
Value
Tuple
Reduce
By Key &
Salted Key
Filter Isolated
Keys
From Salted
Keys
Map Convert
results to
Key & Value
Tuple
Reduce
By Key
Union to
Results
Mistake – Skew : Isolated Map Join
• Filter Out Isolated Keys and use Map
Join/Aggregate on those
• And normal reduce on the rest of the data
• This can remove a large amount of data being
shuffled
Data Source Filter Normal
Keys
From Isolated
Keys
Reduce
By Normal Key
Union to
Results
Map Join
For Isolated
Keys
Managing Parallelism
Cartesian Join
Map Task
Shuffle Tmp 1
Shuffle Tmp 2
Shuffle Tmp 3
Shuffle Tmp 4
Map Task
Shuffle Tmp 1
Shuffle Tmp 2
Shuffle Tmp 3
Shuffle Tmp 4
Map Task
Shuffle Tmp 1
Shuffle Tmp 2
Shuffle Tmp 3
Shuffle Tmp 4
ReduceTask
ReduceTask
ReduceTask
ReduceTask
Amount
of Data
Amount of Data
10x
100x
1000x
10000x
100000x
1000000x
Or more
Managing Parallelism
• To fight Cartesian Join
– Nested Structures
– Windowing
– Skip Steps
Mistake # 4
Out of luck?
• Do you every run out of memory?
• Do you every have more then 20 stages?
• Is your driver doing a lot of work?
Mistake – DAG Management
• Shuffles are to be avoided
• ReduceByKey over GroupByKey
• TreeReduce over Reduce
• Use Complex Types
Mistake – DAG Management:
Shuffles
• Map Side Reducing if possible
• Think about partitioning/bucketing ahead of
time
• Do as much as possible with a single
Shuffle
• Only send what you have to send
• Avoid Skew and Cartesians
ReduceByKey over GroupByKey
• ReduceByKey can do almost anything that
GroupByKey can do
• Aggregations
• Windowing
• Use memory
• But you have more control
• ReduceByKey has a fixed limit of Memory
requirements
• GroupByKey is unbound and dependent of the
data
TreeReduce over Reduce
• TreeReduce & Reduce returns a result to the driver
• TreeReduce does more work on the executors
• Where Reduce bring everything back to the driver
Partition
Partition
Partition
Partition
Driver
100%
Partition
Partition
Partition
Partition
Driver
4
25%
25%
25%
25%
Complex Types
• Top N List
• Multiple types of Aggregations
• Windowing operations
• All in one pass
Complex Types
• Think outside of the box use objects to reduce by
• (Make something simple)
Mistake # 5
Ever seen this?
Exception in thread "main" java.lang.NoSuchMethodError:
com.google.common.hash.HashFunction.hashInt(I)Lcom/google/common/hash/HashCode;
at org.apache.spark.util.collection.OpenHashSet.org
$apache$spark$util$collection$OpenHashSet$$hashcode(OpenHashSet.scala:261)
at
org.apache.spark.util.collection.OpenHashSet$mcI$sp.getPos$mcI$sp(OpenHashSet.scala:165)
at
org.apache.spark.util.collection.OpenHashSet$mcI$sp.contains$mcI$sp(OpenHashSet.scala:102)
at
org.apache.spark.util.SizeEstimator$$anonfun$visitArray$2.apply$mcVI$sp(SizeEstimator.scala:214)
at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141)
at
org.apache.spark.util.SizeEstimator$.visitArray(SizeEstimator.scala:210)
at…....
But!
• I already included guava in my app’s
maven dependencies?
Ah!
• My guava version doesn’t match with
Spark’s guava version!
Shading
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.2</version>
...
<relocations>
<relocation>
<pattern>com.google.protobuf</pattern>
<shadedPattern>com.company.my.protobuf</shadedPattern>
</relocation>
</relocations>
Summary
5 Mistakes
• Size up your executors right
• 2 GB limit on Spark shuffle blocks
• Evil thing about skew and cartesians
• Learn to manage your DAG, yo!
• Do shady stuff, don’t let classpath leaks
mess you up
THANK YOU.
tiny.cloudera.com/spark-mistakes
Mark Grover | @mark_grover
Ted Malaska | @TedMalaska

More Related Content

What's hot (20)

PDF
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
PDF
Apache Spark Core – Practical Optimization
Databricks
 
PDF
Tuning Apache Spark for Large-Scale Workloads Gaoxiang Liu and Sital Kedia
Databricks
 
PDF
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
PDF
Top 5 Mistakes When Writing Spark Applications
Spark Summit
 
PDF
Efficient Data Storage for Analytics with Apache Parquet 2.0
Cloudera, Inc.
 
PDF
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
PDF
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
PDF
Spark Performance Tuning .pdf
Amit Raj
 
PDF
Apache Flink internals
Kostas Tzoumas
 
PDF
The Parquet Format and Performance Optimization Opportunities
Databricks
 
PDF
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
PDF
Dynamic Partition Pruning in Apache Spark
Databricks
 
PDF
Spark shuffle introduction
colorant
 
PPTX
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
PPTX
Apache Spark Architecture
Alexey Grishchenko
 
PDF
Parquet performance tuning: the missing guide
Ryan Blue
 
PPTX
Apache spark 소개 및 실습
동현 강
 
PDF
Introduction to apache spark
Aakashdata
 
PDF
Physical Plans in Spark SQL
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Apache Spark Core – Practical Optimization
Databricks
 
Tuning Apache Spark for Large-Scale Workloads Gaoxiang Liu and Sital Kedia
Databricks
 
Fine Tuning and Enhancing Performance of Apache Spark Jobs
Databricks
 
Top 5 Mistakes When Writing Spark Applications
Spark Summit
 
Efficient Data Storage for Analytics with Apache Parquet 2.0
Cloudera, Inc.
 
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Spark Performance Tuning .pdf
Amit Raj
 
Apache Flink internals
Kostas Tzoumas
 
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Dynamic Partition Pruning in Apache Spark
Databricks
 
Spark shuffle introduction
colorant
 
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Apache Spark Architecture
Alexey Grishchenko
 
Parquet performance tuning: the missing guide
Ryan Blue
 
Apache spark 소개 및 실습
동현 강
 
Introduction to apache spark
Aakashdata
 
Physical Plans in Spark SQL
Databricks
 

Similar to Top 5 Mistakes to Avoid When Writing Apache Spark Applications (20)

PDF
Top 5 mistakes when writing Spark applications
markgrover
 
PDF
Top 5 mistakes when writing Spark applications
markgrover
 
PDF
Top 5 mistakes when writing Spark applications
hadooparchbook
 
PDF
Top 5 mistakes when writing Spark applications
hadooparchbook
 
PPTX
Spark Tips & Tricks
Jason Hubbard
 
PDF
Colvin exadata mistakes_ioug_2014
marvin herrera
 
PDF
Apache Spark At Scale in the Cloud
Databricks
 
PDF
Apache Spark At Scale in the Cloud
Rose Toomey
 
PDF
Hadoop - Disk Fail In Place (DFIP)
mundlapudi
 
PDF
Redis trouble shooting_eng
DaeMyung Kang
 
PDF
Migrating ETL Workflow to Apache Spark at Scale in Pinterest
Databricks
 
PPTX
Chicago spark meetup-april2017-public
Guru Dharmateja Medasani
 
PDF
What every developer should know about database scalability, PyCon 2010
jbellis
 
KEY
Writing Scalable Software in Java
Ruben Badaró
 
PPTX
Spark architechure.pptx
SaiSriMadhuriYatam
 
PDF
Tuning Linux for your database FLOSSUK 2016
Colin Charles
 
PDF
Scaling with sync_replication using Galera and EC2
Marco Tusa
 
PDF
Cassandra Core Concepts - Cassandra Day Toronto
Jon Haddad
 
PDF
Dongwon Kim – A Comparative Performance Evaluation of Flink
Flink Forward
 
PPTX
A Comparative Performance Evaluation of Apache Flink
Dongwon Kim
 
Top 5 mistakes when writing Spark applications
markgrover
 
Top 5 mistakes when writing Spark applications
markgrover
 
Top 5 mistakes when writing Spark applications
hadooparchbook
 
Top 5 mistakes when writing Spark applications
hadooparchbook
 
Spark Tips & Tricks
Jason Hubbard
 
Colvin exadata mistakes_ioug_2014
marvin herrera
 
Apache Spark At Scale in the Cloud
Databricks
 
Apache Spark At Scale in the Cloud
Rose Toomey
 
Hadoop - Disk Fail In Place (DFIP)
mundlapudi
 
Redis trouble shooting_eng
DaeMyung Kang
 
Migrating ETL Workflow to Apache Spark at Scale in Pinterest
Databricks
 
Chicago spark meetup-april2017-public
Guru Dharmateja Medasani
 
What every developer should know about database scalability, PyCon 2010
jbellis
 
Writing Scalable Software in Java
Ruben Badaró
 
Spark architechure.pptx
SaiSriMadhuriYatam
 
Tuning Linux for your database FLOSSUK 2016
Colin Charles
 
Scaling with sync_replication using Galera and EC2
Marco Tusa
 
Cassandra Core Concepts - Cassandra Day Toronto
Jon Haddad
 
Dongwon Kim – A Comparative Performance Evaluation of Flink
Flink Forward
 
A Comparative Performance Evaluation of Apache Flink
Dongwon Kim
 
Ad

More from Cloudera, Inc. (20)

PPTX
Partner Briefing_January 25 (FINAL).pptx
Cloudera, Inc.
 
PPTX
Cloudera Data Impact Awards 2021 - Finalists
Cloudera, Inc.
 
PPTX
2020 Cloudera Data Impact Awards Finalists
Cloudera, Inc.
 
PPTX
Edc event vienna presentation 1 oct 2019
Cloudera, Inc.
 
PPTX
Machine Learning with Limited Labeled Data 4/3/19
Cloudera, Inc.
 
PPTX
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Cloudera, Inc.
 
PPTX
Introducing Cloudera DataFlow (CDF) 2.13.19
Cloudera, Inc.
 
PPTX
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
PPTX
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Cloudera, Inc.
 
PPTX
Leveraging the cloud for analytics and machine learning 1.29.19
Cloudera, Inc.
 
PPTX
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Cloudera, Inc.
 
PPTX
Leveraging the Cloud for Big Data Analytics 12.11.18
Cloudera, Inc.
 
PPTX
Modern Data Warehouse Fundamentals Part 3
Cloudera, Inc.
 
PPTX
Modern Data Warehouse Fundamentals Part 2
Cloudera, Inc.
 
PPTX
Modern Data Warehouse Fundamentals Part 1
Cloudera, Inc.
 
PPTX
Extending Cloudera SDX beyond the Platform
Cloudera, Inc.
 
PPTX
Federated Learning: ML with Privacy on the Edge 11.15.18
Cloudera, Inc.
 
PPTX
Analyst Webinar: Doing a 180 on Customer 360
Cloudera, Inc.
 
PPTX
Build a modern platform for anti-money laundering 9.19.18
Cloudera, Inc.
 
PPTX
Introducing the data science sandbox as a service 8.30.18
Cloudera, Inc.
 
Partner Briefing_January 25 (FINAL).pptx
Cloudera, Inc.
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera, Inc.
 
2020 Cloudera Data Impact Awards Finalists
Cloudera, Inc.
 
Edc event vienna presentation 1 oct 2019
Cloudera, Inc.
 
Machine Learning with Limited Labeled Data 4/3/19
Cloudera, Inc.
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Cloudera, Inc.
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Cloudera, Inc.
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Cloudera, Inc.
 
Leveraging the cloud for analytics and machine learning 1.29.19
Cloudera, Inc.
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Cloudera, Inc.
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 3
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 2
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 1
Cloudera, Inc.
 
Extending Cloudera SDX beyond the Platform
Cloudera, Inc.
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Cloudera, Inc.
 
Analyst Webinar: Doing a 180 on Customer 360
Cloudera, Inc.
 
Build a modern platform for anti-money laundering 9.19.18
Cloudera, Inc.
 
Introducing the data science sandbox as a service 8.30.18
Cloudera, Inc.
 
Ad

Recently uploaded (20)

PPTX
How Apagen Empowered an EPC Company with Engineering ERP Software
SatishKumar2651
 
PPTX
3uTools Full Crack Free Version Download [Latest] 2025
muhammadgurbazkhan
 
PDF
Laboratory Workflows Digitalized and live in 90 days with Scifeon´s SAPPA P...
info969686
 
PPTX
PowerISO Crack 2025 – Free Download Full Version with Serial Key [Latest](1)....
HyperPc soft
 
PPTX
Java Native Memory Leaks: The Hidden Villain Behind JVM Performance Issues
Tier1 app
 
PPTX
Human Resources Information System (HRIS)
Amity University, Patna
 
PPTX
MailsDaddy Outlook OST to PST converter.pptx
abhishekdutt366
 
PDF
interacting-with-ai-2023---module-2---session-3---handout.pdf
cniclsh1
 
PPTX
Writing Better Code - Helping Developers make Decisions.pptx
Lorraine Steyn
 
PPTX
Feb 2021 Cohesity first pitch presentation.pptx
enginsayin1
 
PPTX
Equipment Management Software BIS Safety UK.pptx
BIS Safety Software
 
PDF
>Nitro Pro Crack 14.36.1.0 + Keygen Free Download [Latest]
utfefguu
 
PDF
Transform Retail with Smart Technology: Power Your Growth with Ginesys
Ginesys
 
PPTX
CONCEPT OF PROGRAMMING in language .pptx
tamim41
 
PDF
Streamline Contractor Lifecycle- TECH EHS Solution
TECH EHS Solution
 
PDF
Thread In Android-Mastering Concurrency for Responsive Apps.pdf
Nabin Dhakal
 
PDF
Linux Certificate of Completion - LabEx Certificate
VICTOR MAESTRE RAMIREZ
 
PDF
Alarm in Android-Scheduling Timed Tasks Using AlarmManager in Android.pdf
Nabin Dhakal
 
PDF
2025年 Linux 核心專題: 探討 sched_ext 及機器學習.pdf
Eric Chou
 
PDF
Powering GIS with FME and VertiGIS - Peak of Data & AI 2025
Safe Software
 
How Apagen Empowered an EPC Company with Engineering ERP Software
SatishKumar2651
 
3uTools Full Crack Free Version Download [Latest] 2025
muhammadgurbazkhan
 
Laboratory Workflows Digitalized and live in 90 days with Scifeon´s SAPPA P...
info969686
 
PowerISO Crack 2025 – Free Download Full Version with Serial Key [Latest](1)....
HyperPc soft
 
Java Native Memory Leaks: The Hidden Villain Behind JVM Performance Issues
Tier1 app
 
Human Resources Information System (HRIS)
Amity University, Patna
 
MailsDaddy Outlook OST to PST converter.pptx
abhishekdutt366
 
interacting-with-ai-2023---module-2---session-3---handout.pdf
cniclsh1
 
Writing Better Code - Helping Developers make Decisions.pptx
Lorraine Steyn
 
Feb 2021 Cohesity first pitch presentation.pptx
enginsayin1
 
Equipment Management Software BIS Safety UK.pptx
BIS Safety Software
 
>Nitro Pro Crack 14.36.1.0 + Keygen Free Download [Latest]
utfefguu
 
Transform Retail with Smart Technology: Power Your Growth with Ginesys
Ginesys
 
CONCEPT OF PROGRAMMING in language .pptx
tamim41
 
Streamline Contractor Lifecycle- TECH EHS Solution
TECH EHS Solution
 
Thread In Android-Mastering Concurrency for Responsive Apps.pdf
Nabin Dhakal
 
Linux Certificate of Completion - LabEx Certificate
VICTOR MAESTRE RAMIREZ
 
Alarm in Android-Scheduling Timed Tasks Using AlarmManager in Android.pdf
Nabin Dhakal
 
2025年 Linux 核心專題: 探討 sched_ext 及機器學習.pdf
Eric Chou
 
Powering GIS with FME and VertiGIS - Peak of Data & AI 2025
Safe Software
 

Top 5 Mistakes to Avoid When Writing Apache Spark Applications

  • 1. Top 5 Mistakes when writing Spark applications Mark Grover | @mark_grover | Software Engineer Ted Malaska | @TedMalaska | Principal Solutions Architect tiny.cloudera.com/spark-mistakes
  • 2. About the book • @hadooparchbook • hadooparchitecturebook.com • github.com/hadooparchitecturebook • slideshare.com/hadooparchbook
  • 4. Mistakes people we made when using Spark
  • 6. # Executors, cores, memory !?! • 6 Nodes • 16 cores each • 64 GB of RAM each
  • 7. Decisions, decisions, decisions • Number of executors (--num-executors) • Cores for each executor (--executor-cores) • Memory for each executor (--executor- memory) • 6 nodes • 16 cores each • 64 GB of RAM
  • 9. Answer #1 – Most granular • Have smallest sized executors as possible • 1 core each • Total of 16 x 6 = 96 cores • 96 executors • 64/16 = 4 GB per executor (per node)
  • 10. Answer #1 – Most granular • Have smallest sized executors as possible • 1 core each • Total of 16 x 6 = 96 cores • 96 executors • 64/16 = 4 GB per executor (per node)
  • 11. Why? • Not using benefits of running multiple tasks in same JVM
  • 12. Answer #2 – Least granular • 6 executors • 64 GB memory each • 16 cores each
  • 13. Answer #2 – Least granular • 6 executors • 64 GB memory each • 16 cores each
  • 14. Why? • Need to leave some memory overhead for OS/Hadoop daemons
  • 15. Answer #3 – with overhead • 6 executors • 63 GB memory each • 15 cores each
  • 16. Answer #3 – with overhead • 6 executors • 63 GB memory each • 15 cores each
  • 17. Spark on YARN – Memory usage • --executor-memory controls the heap size • Need some overhead (controlled by spark.yarn.executor.memory.overhead)for off heap memory • Default is max(384MB, .07 * spark.executor.memory)
  • 18. YARN AM needs a core: Client mode
  • 19. YARN AM needs a core: Cluster mode
  • 20. HDFS Throughput • 15 cores per executor can lead to bad HDFS I/O throughput. • Best is to keep under 5 cores per executor
  • 21. Calculations • 5 cores per executor – For max HDFS throughput • Cluster has 6 * 15 = 90 cores in total (after taking out Hadoop/Yarn daemon cores) • 90 cores / 5 cores/executor = 18 executors • 1 executor for AM => 17 executors • Each node has 3 executors • 63 GB/3 = 21 GB, 21 x (1-0.07) ~ 19 GB (counting off heap overhead)
  • 22. Correct answer • 17 executors • 19 GB memory each • 5 cores each * Not etched in stone
  • 23. Read more • From a great blog post on this topic by Sandy Ryza: http://blog.cloudera.com/blog/2015/03/how- to-tune-your-apache-spark-jobs-part-2/
  • 25. Application failure 15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in stage 6.0 (TID 120, 10.215.149.47): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828) at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123) at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132) at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:51 7) at org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:432) at org.apache.spark.storage.BlockManager.get(BlockManager.scala:618) at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:146 ) at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)
  • 26. Why? • No Spark shuffle block can be greater than 2 GB
  • 27. Ok, what’s a shuffle block again? • In MapReduce terminology, a Mapper- Reducer pair – the file from local disk that the reducers read from local disk in MapReduce.
  • 28. In other words Each yellow arrow in this diagram represents a shuffle block.
  • 29. Wait! What!?! This is Big Data stuff, no? • Yeah! Nope! • Spark uses ByteBuffer as abstraction for storing blocks val buf = ByteBuffer.allocate(length.toInt) • ByteBuffer is limited by Integer.MAX_SIZE(2 GB)!
  • 30. Once again • No Spark shuffle block can be greater than 2 GB
  • 31. Spark SQL • Especially problematic for Spark SQL • Default number of partitions to use when doing shuffles is 200 – This low number of partitions leads to high shuffle block size
  • 32. Umm, ok, so what can I do? 1. Increase the number of partitions – Thereby, reducing the average partition size 2. Get rid of skew in your data – More on that later
  • 33. Umm, how exactly? • In Spark SQL, increase the value of spark.sql.shuffle.partitions • In regular Spark applications, use rdd.repartition() or rdd.coalesce()
  • 34. But, how many partitions should I have? • Rule of thumb is around 128 MB per partition
  • 35. But! • Spark uses a different data structure for bookkeeping during shuffles, when the number of partitions is less than 2000, vs. more than 2000.
  • 36. Don’t believe me? • In MapStatus.scala def apply(loc: BlockManagerId, uncompressedSizes: Array[Long]): MapStatus = { if (uncompressedSizes.length > 2000) { HighlyCompressedMapStatus(loc, uncompressedSizes) } else { new CompressedMapStatus(loc, uncompressedSizes) } }
  • 37. Ok, so what are you saying? • If your number of partitions is less than 2000, but close enough to it, bump that number up to be slightly higher than 2000.
  • 38. Can you summarize, please? • Don’t have too big partitions – Your job will fail due to 2 GB limit • Don’t have too few partitions – Your job will be slow, not making using of parallelism • Rule of thumb: ~128 MB per partition • If #partitions < 2000, but close, bump to just > 2000
  • 40. Slow jobs on Join/Shuffle • Your dataset takes 20 seconds to run over with a map job, but take 4 hours when joined or shuffled. What wrong?
  • 42. Mistake - Skew Single Thread Single Thread Single Thread Single Thread Single Thread Single Thread Single Thread Normal Distributed The Holy Grail of Distributed Systems
  • 43. Mistake - Skew Single Thread Normal Distributed What about Skew, because that is a thing
  • 44. Mistake – Skew : Answers • Salting • Isolation Salting • Isolation Map Joins
  • 45. Mistake – Skew : Salting • Normal Key: “Foo” • Salted Key: “Foo” + random.nextInt(saltFactor)
  • 47. Mistake – Skew: Salting
  • 49. Mistake – Skew : Salting • Two Stage Aggregation – Stage one to do operations on the salted keys – Stage two to do operation access unsalted key results Data Source Map Convert to Salted Key & Value Tuple Reduce By Salted Key Map Convert results to Key & Value Tuple Reduce By Key Results
  • 50. Mistake – Skew : Isolated Salting • Second Stage only required for Isolated Keys Data Source Map Convert to Key & Value Isolate Key and convert to Salted Key & Value Tuple Reduce By Key & Salted Key Filter Isolated Keys From Salted Keys Map Convert results to Key & Value Tuple Reduce By Key Union to Results
  • 51. Mistake – Skew : Isolated Map Join • Filter Out Isolated Keys and use Map Join/Aggregate on those • And normal reduce on the rest of the data • This can remove a large amount of data being shuffled Data Source Filter Normal Keys From Isolated Keys Reduce By Normal Key Union to Results Map Join For Isolated Keys
  • 52. Managing Parallelism Cartesian Join Map Task Shuffle Tmp 1 Shuffle Tmp 2 Shuffle Tmp 3 Shuffle Tmp 4 Map Task Shuffle Tmp 1 Shuffle Tmp 2 Shuffle Tmp 3 Shuffle Tmp 4 Map Task Shuffle Tmp 1 Shuffle Tmp 2 Shuffle Tmp 3 Shuffle Tmp 4 ReduceTask ReduceTask ReduceTask ReduceTask Amount of Data Amount of Data 10x 100x 1000x 10000x 100000x 1000000x Or more
  • 53. Managing Parallelism • To fight Cartesian Join – Nested Structures – Windowing – Skip Steps
  • 55. Out of luck? • Do you every run out of memory? • Do you every have more then 20 stages? • Is your driver doing a lot of work?
  • 56. Mistake – DAG Management • Shuffles are to be avoided • ReduceByKey over GroupByKey • TreeReduce over Reduce • Use Complex Types
  • 57. Mistake – DAG Management: Shuffles • Map Side Reducing if possible • Think about partitioning/bucketing ahead of time • Do as much as possible with a single Shuffle • Only send what you have to send • Avoid Skew and Cartesians
  • 58. ReduceByKey over GroupByKey • ReduceByKey can do almost anything that GroupByKey can do • Aggregations • Windowing • Use memory • But you have more control • ReduceByKey has a fixed limit of Memory requirements • GroupByKey is unbound and dependent of the data
  • 59. TreeReduce over Reduce • TreeReduce & Reduce returns a result to the driver • TreeReduce does more work on the executors • Where Reduce bring everything back to the driver Partition Partition Partition Partition Driver 100% Partition Partition Partition Partition Driver 4 25% 25% 25% 25%
  • 60. Complex Types • Top N List • Multiple types of Aggregations • Windowing operations • All in one pass
  • 61. Complex Types • Think outside of the box use objects to reduce by • (Make something simple)
  • 63. Ever seen this? Exception in thread "main" java.lang.NoSuchMethodError: com.google.common.hash.HashFunction.hashInt(I)Lcom/google/common/hash/HashCode; at org.apache.spark.util.collection.OpenHashSet.org $apache$spark$util$collection$OpenHashSet$$hashcode(OpenHashSet.scala:261) at org.apache.spark.util.collection.OpenHashSet$mcI$sp.getPos$mcI$sp(OpenHashSet.scala:165) at org.apache.spark.util.collection.OpenHashSet$mcI$sp.contains$mcI$sp(OpenHashSet.scala:102) at org.apache.spark.util.SizeEstimator$$anonfun$visitArray$2.apply$mcVI$sp(SizeEstimator.scala:214) at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141) at org.apache.spark.util.SizeEstimator$.visitArray(SizeEstimator.scala:210) at…....
  • 64. But! • I already included guava in my app’s maven dependencies?
  • 65. Ah! • My guava version doesn’t match with Spark’s guava version!
  • 68. 5 Mistakes • Size up your executors right • 2 GB limit on Spark shuffle blocks • Evil thing about skew and cartesians • Learn to manage your DAG, yo! • Do shady stuff, don’t let classpath leaks mess you up
  • 69. THANK YOU. tiny.cloudera.com/spark-mistakes Mark Grover | @mark_grover Ted Malaska | @TedMalaska