SlideShare a Scribd company logo
9/19/2016
1
Jack van Wijk
Big Data Expo 2016, Utrecht
21-22 September, 2016
InformationVisualization
Exploring the limits of what you can see in data
JADS
• Education, Research, Business
• Three locations
Mariënburg Convent, Den Bosch JADS
www.jads.nl
InformationVisualization
• Overview
• Trends
• Examples
InformationVisualization
• The use of computer-supported,
interactive, visual representations of
abstract data to amplify cognition
(Card et al., 1999)
Data Visualization User
9/19/2016
2
Why is my hard disk full?
?
SequoiaView
VanWijk andVan deWetering, 1999
Generalized treemaps
• Idea: combine treemaps and business graphics
• Many options
Vliegen,VanWijk, andVan der Linden, 2006
Visualization high school data
Cum Laude by MagnaView
BIG DATA EXPO:
STAND 01A
BIG DATA EXPO:
STAND 01A
SequoiaView
VanWijk andVan deWetering, 1999
9/19/2016
3
Botanically inspired treevis
What happens if we map abstract trees to
botanical trees?
Kleiberg et al., 2001
TreeViewBotanically inspired treevis
Kleiberg,Van de Wetering, vanWijk, 2001
Botanically inspired treevis
Kleiberg,Van de Wetering, vanWijk, 2001
Visualization of vessel traffic
Willems et al., 2009
Visualization of vessel traffic
Willems et al., 2009
9/19/2016
4
InformationVisualization
• The use of computer-supported,
interactive, visual representations of
abstract data to amplify cognition.
(Card et al., 1999)
Data Visualization User
Infographics:
- Static
- Explanation
- Made by data journalist
- Viewed by lay audience
Kentico.com
Infographics vs InfoVis
Infographics:
- Static vs interactive
- Explanation vs
explorative
- Made by data journalist
vs domain expert
- Viewed by lay audience
vs domain expert
Kentico.com
Infographics vs InfoVis Multivariate
Attributes
Detail view Overview
Selections
Van den Elzen &VanWijk, IEEE InfoVis 2014
InformationVisualization
• The use of computer-supported,
interactive, visual representations of
abstract data to amplify cognition
• (Card et al., 1999)
Data Visualization User
The human visual system
http://eofdreams.com
9/19/2016
5
The human visual system
http://vinceantonucci.com
Translating data into pictures
Position, width, height, colors encode six variables…
Perception of symbols
• How many red objects?
Perception of symbols
• How many red objects?
Perception of symbols
• How many circles?
9/19/2016
6
Perception of symbols
• How many circles?
Perception of symbols
• How many blue circles?
Perception of symbols
• How many blue circles?
Limits to perception of symbols
• Combinations of attributes cannot be
perceived pre-attentively
Color for encoding information
• Translate data into colors
• The human as light meter?
www.weerdirect.nl
Adelson checkerboard illusion
9/19/2016
7
Adelson checkerboard illusion Use ColorBrewer for palettes
Cynthia Brewer: http://colorbrewer2.org
InformationVisualization
• The use of computer-supported,
interactive, visual representations of
abstract data to amplify cognition
(Card et al., 1999)
Data Visualization User
Data types
simple hard
multivariate data
time series data hierarchical data
networks
text
images
video
• Vary in complexity
• One data set, many interpretations
• Example
Items with attributes
age
length
sex
name
Multivariate data: tables
26 1.95 M
29 1.72 F
Ivo
Merel
57 1.85 MJack
57 1.68 FSimone
age length sexname
9/19/2016
8
Distribution per attribute
1.60 1.80 2.00 length
2
0
n
1
Events
1950 1960 1970 1980 1990 2000
Multivariate data: Parallel Coordinates Plot
length
2.00
1.50
sex
F
M
50
age
50
10
Multivariate data: scatterplot
1.50 2.00 length
50
10
age
Sets
senior
young
F M
Hierarchy
senior
young
s y
9/19/2016
9
similar age
same sex
Network One data set, many interpretations
Abstract data: main types
Multivariate visualization:
scatterplot
Tree visualization:
tree diagram
Graph visualization:
node link diagram
Abstract data: main types
Multivariate visualization:
scatterplot
Tree visualization:
tree diagram
Graph visualization:
node link diagram
Challenge:
What if we have
thousands of data-
items?
Data size
small (1-10) medium (1000) huge (> 106)
business graphics infovis visual analytics
Try to move to the left:
• Filter, aggregate, statistics, machine learning, …
without loosing essential information
Anscombe’s quartet
Francis Anscombe, 1973
9/19/2016
10
Analysis of time-series data
• Given: 10 minute measurements for one year
• 52,560 measurements
• How to visualize these?
Analysis of time-series data
• Given: 10 minute measurements for one year
• 52,560 measurements
• How to visualize these?
• Cluster similar days
• Use standard visualizations
Analysis of time-series data
Cluster & CalendarView, 1999
BaobabView
Decision tree visualization,Stef van den Elzen, 2011
Big Data: D4D challenge
Telecom data visualization,Stef van den Elzen, 2013
9/19/2016
11
Abstract data: often a mix
Multivariate visualization:
scatterplot
Tree visualization:
tree diagram
Graph visualization:
node link diagram
Hierarchy + network
Holten, 2006
9/19/2016
12
Spin-off: SynerScope
• www.synerscope.com
• Big Data Analytics
• Transaction analysis, fraud detection
BIG DATA EXPO:
STAND 23
BIG DATA EXPO:
STAND 23
InformationVisualization
• The use of computer-supported,
interactive, visual representations of
abstract data to amplify cognition
(Card et al., 1999)
Check out
www.jads.nl
stand 01A
stand 23
Thank you!

More Related Content

PPTX
Centennium antoine stelma
BigDataExpo
 
PDF
Sophos paul ducklin
BigDataExpo
 
PDF
Itility marianne faro
BigDataExpo
 
PDF
Talend mike hirt
BigDataExpo
 
PDF
Dell jort kollerie
BigDataExpo
 
PDF
Big Data Expo 2015 - R20 Six Big Myths of Big Data
BigDataExpo
 
PDF
Bookerz marcel dumont
BigDataExpo
 
PDF
Big datasurvey walter van der scheer
BigDataExpo
 
Centennium antoine stelma
BigDataExpo
 
Sophos paul ducklin
BigDataExpo
 
Itility marianne faro
BigDataExpo
 
Talend mike hirt
BigDataExpo
 
Dell jort kollerie
BigDataExpo
 
Big Data Expo 2015 - R20 Six Big Myths of Big Data
BigDataExpo
 
Bookerz marcel dumont
BigDataExpo
 
Big datasurvey walter van der scheer
BigDataExpo
 

Viewers also liked (20)

PDF
Microsoft jeroen ter heerdt
BigDataExpo
 
PDF
Cisco niels vd berg
BigDataExpo
 
PDF
Belvilla
BigDataExpo
 
PDF
Presentatie bakkersland big data expo (1)
BigDataExpo
 
PDF
Into dq ed wrazen
BigDataExpo
 
PPTX
Knmi corline koolhaas
BigDataExpo
 
PDF
Npo clever lions
BigDataExpo
 
PPTX
Small bigdatacongress
BigDataExpo
 
PPTX
Kandidaat select jaap nieuwenhuijzen
BigDataExpo
 
PDF
Spil games konrad
BigDataExpo
 
PPTX
Aegon hiek van der scheer
BigDataExpo
 
PPTX
Eneco roy muller
BigDataExpo
 
PPTX
Deloitte johan ten houten
BigDataExpo
 
PPTX
Quby michiel fokke
BigDataExpo
 
PDF
Frans feldberg
BigDataExpo
 
PPTX
Alliander robin hagemans daniel peyron
BigDataExpo
 
PPTX
Intel boubker el mouttahid
BigDataExpo
 
PPTX
Transavia charles verstegen
BigDataExpo
 
PPTX
Gemeente amsterdam rutger rienks
BigDataExpo
 
PDF
Strukton rail big data expo 2016
BigDataExpo
 
Microsoft jeroen ter heerdt
BigDataExpo
 
Cisco niels vd berg
BigDataExpo
 
Belvilla
BigDataExpo
 
Presentatie bakkersland big data expo (1)
BigDataExpo
 
Into dq ed wrazen
BigDataExpo
 
Knmi corline koolhaas
BigDataExpo
 
Npo clever lions
BigDataExpo
 
Small bigdatacongress
BigDataExpo
 
Kandidaat select jaap nieuwenhuijzen
BigDataExpo
 
Spil games konrad
BigDataExpo
 
Aegon hiek van der scheer
BigDataExpo
 
Eneco roy muller
BigDataExpo
 
Deloitte johan ten houten
BigDataExpo
 
Quby michiel fokke
BigDataExpo
 
Frans feldberg
BigDataExpo
 
Alliander robin hagemans daniel peyron
BigDataExpo
 
Intel boubker el mouttahid
BigDataExpo
 
Transavia charles verstegen
BigDataExpo
 
Gemeente amsterdam rutger rienks
BigDataExpo
 
Strukton rail big data expo 2016
BigDataExpo
 
Ad

Similar to Tue jack van wijk (20)

PPTX
CSUN 2024 Simplifying Accessible Data Visualizations - 5 April 2024.pptx
Ted Gies
 
PPTX
Beyond the Black Box: Data Visualisation
Mia
 
PPT
introduction to data minining and unit iii
GayathriRHICETCSESTA
 
PPTX
Lecture: Digital Storytelling and New Media Design
Susan Rauch, PhD
 
PDF
Joy Mountford at BayCHI: Visualizations of Our Collective Lives
BayCHI
 
PDF
Situating Data Inquiries In Algorithmic Culture Karin Es Editor Nanna Verhoef...
sangjeceirin90
 
PDF
Data as a Creative Material
Audree Lapierre
 
PDF
Introduction to Data Visualization
Ana Jofre
 
PDF
The Inquisitive Data Scientist: Facilitating Well-Informed Data Science throu...
Cagatay Turkay
 
PDF
Carpenter "The Future of the Scholarly Record"
National Information Standards Organization (NISO)
 
PPT
unit 1 DATA MINING.ppt
BREENAHICETSTAFFCSE
 
PDF
BigData Visualization and Usecase@TDGA-Stelligence-11july2019-share
stelligence
 
PDF
Introduction to Data Mining
AbcdDcba12
 
PPTX
Knowledge Architecture: Graphing Your Knowledge
Neo4j
 
DOCX
TED Wiley Visualizing .docx
ssuserf9c51d
 
PPTX
Towards Knowledge-Enabled Society
National Institute of Informatics (NII)
 
PDF
Cs501 dm intro
Kamal Singh Lodhi
 
PPTX
Module 1 - Data Around Us .pptx
esta2310819
 
PPT
Doing data in the social sciences and humanities: links to and from published...
EDINA, University of Edinburgh
 
CSUN 2024 Simplifying Accessible Data Visualizations - 5 April 2024.pptx
Ted Gies
 
Beyond the Black Box: Data Visualisation
Mia
 
introduction to data minining and unit iii
GayathriRHICETCSESTA
 
Lecture: Digital Storytelling and New Media Design
Susan Rauch, PhD
 
Joy Mountford at BayCHI: Visualizations of Our Collective Lives
BayCHI
 
Situating Data Inquiries In Algorithmic Culture Karin Es Editor Nanna Verhoef...
sangjeceirin90
 
Data as a Creative Material
Audree Lapierre
 
Introduction to Data Visualization
Ana Jofre
 
The Inquisitive Data Scientist: Facilitating Well-Informed Data Science throu...
Cagatay Turkay
 
Carpenter "The Future of the Scholarly Record"
National Information Standards Organization (NISO)
 
unit 1 DATA MINING.ppt
BREENAHICETSTAFFCSE
 
BigData Visualization and Usecase@TDGA-Stelligence-11july2019-share
stelligence
 
Introduction to Data Mining
AbcdDcba12
 
Knowledge Architecture: Graphing Your Knowledge
Neo4j
 
TED Wiley Visualizing .docx
ssuserf9c51d
 
Towards Knowledge-Enabled Society
National Institute of Informatics (NII)
 
Cs501 dm intro
Kamal Singh Lodhi
 
Module 1 - Data Around Us .pptx
esta2310819
 
Doing data in the social sciences and humanities: links to and from published...
EDINA, University of Edinburgh
 
Ad

More from BigDataExpo (20)

PDF
Centric - Jaap huisprijzen, GTST, The Bold, IKEA en IENS. Zomaar wat toepassi...
BigDataExpo
 
PDF
Google Cloud - Google's vision on AI
BigDataExpo
 
PDF
Pacmed - Machine Learning in health care: opportunities and challanges in pra...
BigDataExpo
 
PDF
PGGM - The Future Explore
BigDataExpo
 
PDF
Universiteit Utrecht & gghdc - Wat zijn de gezondheidseffecten van omgeving e...
BigDataExpo
 
PPTX
Rob van Kranenburg - Kunnen we ons een sociaal krediet systeem zoals in het o...
BigDataExpo
 
PDF
OrangeNXT - High accuracy mapping from videos for efficient fiber optic cable...
BigDataExpo
 
PDF
Dynniq & GoDataDriven - Shaping the future of traffic with IoT and AI
BigDataExpo
 
PDF
Teleperformance - Smart personalized service door het gebruik van Data Science
BigDataExpo
 
PDF
FunXtion - Interactive Digital Fitness with Data Analytics
BigDataExpo
 
PDF
fashionTrade - Vroeger noemde we dat Big Data
BigDataExpo
 
PDF
BigData Republic - Industrializing data science: a view from the trenches
BigDataExpo
 
PDF
Bicos - Hear how a top sportswear company produced cutting-edge data infrastr...
BigDataExpo
 
PDF
Endrse - Next level online samenwerkingen tussen personalities en merken met ...
BigDataExpo
 
PDF
Bovag - Refine-IT - Proces optimalisatie in de automotive sector
BigDataExpo
 
PDF
Schiphol - Optimale doorstroom van passagiers op Schiphol dankzij slimme data...
BigDataExpo
 
PDF
Veco - Big Data in de Supply Chain: Hoe Process Mining kan helpen kosten te r...
BigDataExpo
 
PPTX
Rabobank - There is something about Data
BigDataExpo
 
PDF
VU Amsterdam - Big data en datagedreven waardecreatie: valt er nog iets te ki...
BigDataExpo
 
PDF
Booking.com - Data science and experimentation at Booking.com: a data-driven ...
BigDataExpo
 
Centric - Jaap huisprijzen, GTST, The Bold, IKEA en IENS. Zomaar wat toepassi...
BigDataExpo
 
Google Cloud - Google's vision on AI
BigDataExpo
 
Pacmed - Machine Learning in health care: opportunities and challanges in pra...
BigDataExpo
 
PGGM - The Future Explore
BigDataExpo
 
Universiteit Utrecht & gghdc - Wat zijn de gezondheidseffecten van omgeving e...
BigDataExpo
 
Rob van Kranenburg - Kunnen we ons een sociaal krediet systeem zoals in het o...
BigDataExpo
 
OrangeNXT - High accuracy mapping from videos for efficient fiber optic cable...
BigDataExpo
 
Dynniq & GoDataDriven - Shaping the future of traffic with IoT and AI
BigDataExpo
 
Teleperformance - Smart personalized service door het gebruik van Data Science
BigDataExpo
 
FunXtion - Interactive Digital Fitness with Data Analytics
BigDataExpo
 
fashionTrade - Vroeger noemde we dat Big Data
BigDataExpo
 
BigData Republic - Industrializing data science: a view from the trenches
BigDataExpo
 
Bicos - Hear how a top sportswear company produced cutting-edge data infrastr...
BigDataExpo
 
Endrse - Next level online samenwerkingen tussen personalities en merken met ...
BigDataExpo
 
Bovag - Refine-IT - Proces optimalisatie in de automotive sector
BigDataExpo
 
Schiphol - Optimale doorstroom van passagiers op Schiphol dankzij slimme data...
BigDataExpo
 
Veco - Big Data in de Supply Chain: Hoe Process Mining kan helpen kosten te r...
BigDataExpo
 
Rabobank - There is something about Data
BigDataExpo
 
VU Amsterdam - Big data en datagedreven waardecreatie: valt er nog iets te ki...
BigDataExpo
 
Booking.com - Data science and experimentation at Booking.com: a data-driven ...
BigDataExpo
 

Recently uploaded (20)

PPTX
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
PPTX
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
PPTX
World-population.pptx fire bunberbpeople
umutunsalnsl4402
 
PDF
The_Future_of_Data_Analytics_by_CA_Suvidha_Chaplot_UPDATED.pdf
CA Suvidha Chaplot
 
PPTX
Presentation (1) (1).pptx k8hhfftuiiigff
karthikjagath2005
 
PPTX
Probability systematic sampling methods.pptx
PrakashRajput19
 
PPTX
Introduction to Data Analytics and Data Science
KavithaCIT
 
PDF
Key_Statistical_Techniques_in_Analytics_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPTX
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
PPT
Real Life Application of Set theory, Relations and Functions
manavparmar205
 
PPTX
lecture 13 mind test academy it skills.pptx
ggesjmrasoolpark
 
PPTX
Fuzzy_Membership_Functions_Presentation.pptx
pythoncrazy2024
 
PPTX
Databricks-DE-Associate Certification Questions-june-2024.pptx
pedelli41
 
PDF
D9110.pdfdsfvsdfvsdfvsdfvfvfsvfsvffsdfvsdfvsd
minhn6673
 
PDF
Company Presentation pada Perusahaan ADB.pdf
didikfahmi
 
PPTX
Introduction to computer chapter one 2017.pptx
mensunmarley
 
PDF
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
PDF
Technical Writing Module-I Complete Notes.pdf
VedprakashArya13
 
PDF
Blue Futuristic Cyber Security Presentation.pdf
tanvikhunt1003
 
PDF
blockchain123456789012345678901234567890
tanvikhunt1003
 
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
Future_of_AI_Presentation for everyone.pptx
boranamanju07
 
World-population.pptx fire bunberbpeople
umutunsalnsl4402
 
The_Future_of_Data_Analytics_by_CA_Suvidha_Chaplot_UPDATED.pdf
CA Suvidha Chaplot
 
Presentation (1) (1).pptx k8hhfftuiiigff
karthikjagath2005
 
Probability systematic sampling methods.pptx
PrakashRajput19
 
Introduction to Data Analytics and Data Science
KavithaCIT
 
Key_Statistical_Techniques_in_Analytics_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
The whitetiger novel review for collegeassignment.pptx
DhruvPatel754154
 
Real Life Application of Set theory, Relations and Functions
manavparmar205
 
lecture 13 mind test academy it skills.pptx
ggesjmrasoolpark
 
Fuzzy_Membership_Functions_Presentation.pptx
pythoncrazy2024
 
Databricks-DE-Associate Certification Questions-june-2024.pptx
pedelli41
 
D9110.pdfdsfvsdfvsdfvsdfvfvfsvfsvffsdfvsdfvsd
minhn6673
 
Company Presentation pada Perusahaan ADB.pdf
didikfahmi
 
Introduction to computer chapter one 2017.pptx
mensunmarley
 
202501214233242351219 QASS Session 2.pdf
lauramejiamillan
 
Technical Writing Module-I Complete Notes.pdf
VedprakashArya13
 
Blue Futuristic Cyber Security Presentation.pdf
tanvikhunt1003
 
blockchain123456789012345678901234567890
tanvikhunt1003
 

Tue jack van wijk

  • 1. 9/19/2016 1 Jack van Wijk Big Data Expo 2016, Utrecht 21-22 September, 2016 InformationVisualization Exploring the limits of what you can see in data JADS • Education, Research, Business • Three locations Mariënburg Convent, Den Bosch JADS www.jads.nl InformationVisualization • Overview • Trends • Examples InformationVisualization • The use of computer-supported, interactive, visual representations of abstract data to amplify cognition (Card et al., 1999) Data Visualization User
  • 2. 9/19/2016 2 Why is my hard disk full? ? SequoiaView VanWijk andVan deWetering, 1999 Generalized treemaps • Idea: combine treemaps and business graphics • Many options Vliegen,VanWijk, andVan der Linden, 2006 Visualization high school data Cum Laude by MagnaView BIG DATA EXPO: STAND 01A BIG DATA EXPO: STAND 01A SequoiaView VanWijk andVan deWetering, 1999
  • 3. 9/19/2016 3 Botanically inspired treevis What happens if we map abstract trees to botanical trees? Kleiberg et al., 2001 TreeViewBotanically inspired treevis Kleiberg,Van de Wetering, vanWijk, 2001 Botanically inspired treevis Kleiberg,Van de Wetering, vanWijk, 2001 Visualization of vessel traffic Willems et al., 2009 Visualization of vessel traffic Willems et al., 2009
  • 4. 9/19/2016 4 InformationVisualization • The use of computer-supported, interactive, visual representations of abstract data to amplify cognition. (Card et al., 1999) Data Visualization User Infographics: - Static - Explanation - Made by data journalist - Viewed by lay audience Kentico.com Infographics vs InfoVis Infographics: - Static vs interactive - Explanation vs explorative - Made by data journalist vs domain expert - Viewed by lay audience vs domain expert Kentico.com Infographics vs InfoVis Multivariate Attributes Detail view Overview Selections Van den Elzen &VanWijk, IEEE InfoVis 2014 InformationVisualization • The use of computer-supported, interactive, visual representations of abstract data to amplify cognition • (Card et al., 1999) Data Visualization User The human visual system http://eofdreams.com
  • 5. 9/19/2016 5 The human visual system http://vinceantonucci.com Translating data into pictures Position, width, height, colors encode six variables… Perception of symbols • How many red objects? Perception of symbols • How many red objects? Perception of symbols • How many circles?
  • 6. 9/19/2016 6 Perception of symbols • How many circles? Perception of symbols • How many blue circles? Perception of symbols • How many blue circles? Limits to perception of symbols • Combinations of attributes cannot be perceived pre-attentively Color for encoding information • Translate data into colors • The human as light meter? www.weerdirect.nl Adelson checkerboard illusion
  • 7. 9/19/2016 7 Adelson checkerboard illusion Use ColorBrewer for palettes Cynthia Brewer: http://colorbrewer2.org InformationVisualization • The use of computer-supported, interactive, visual representations of abstract data to amplify cognition (Card et al., 1999) Data Visualization User Data types simple hard multivariate data time series data hierarchical data networks text images video • Vary in complexity • One data set, many interpretations • Example Items with attributes age length sex name Multivariate data: tables 26 1.95 M 29 1.72 F Ivo Merel 57 1.85 MJack 57 1.68 FSimone age length sexname
  • 8. 9/19/2016 8 Distribution per attribute 1.60 1.80 2.00 length 2 0 n 1 Events 1950 1960 1970 1980 1990 2000 Multivariate data: Parallel Coordinates Plot length 2.00 1.50 sex F M 50 age 50 10 Multivariate data: scatterplot 1.50 2.00 length 50 10 age Sets senior young F M Hierarchy senior young s y
  • 9. 9/19/2016 9 similar age same sex Network One data set, many interpretations Abstract data: main types Multivariate visualization: scatterplot Tree visualization: tree diagram Graph visualization: node link diagram Abstract data: main types Multivariate visualization: scatterplot Tree visualization: tree diagram Graph visualization: node link diagram Challenge: What if we have thousands of data- items? Data size small (1-10) medium (1000) huge (> 106) business graphics infovis visual analytics Try to move to the left: • Filter, aggregate, statistics, machine learning, … without loosing essential information Anscombe’s quartet Francis Anscombe, 1973
  • 10. 9/19/2016 10 Analysis of time-series data • Given: 10 minute measurements for one year • 52,560 measurements • How to visualize these? Analysis of time-series data • Given: 10 minute measurements for one year • 52,560 measurements • How to visualize these? • Cluster similar days • Use standard visualizations Analysis of time-series data Cluster & CalendarView, 1999 BaobabView Decision tree visualization,Stef van den Elzen, 2011 Big Data: D4D challenge Telecom data visualization,Stef van den Elzen, 2013
  • 11. 9/19/2016 11 Abstract data: often a mix Multivariate visualization: scatterplot Tree visualization: tree diagram Graph visualization: node link diagram Hierarchy + network Holten, 2006
  • 12. 9/19/2016 12 Spin-off: SynerScope • www.synerscope.com • Big Data Analytics • Transaction analysis, fraud detection BIG DATA EXPO: STAND 23 BIG DATA EXPO: STAND 23 InformationVisualization • The use of computer-supported, interactive, visual representations of abstract data to amplify cognition (Card et al., 1999) Check out www.jads.nl stand 01A stand 23 Thank you!