SlideShare a Scribd company logo
Mark D. Drake, Marco Gralike
Manager, Product Management
• ServerTechnology, OracleCorporation
• Oracle 25+ years experience
• XML Infrastructure products in Oracle's
ServerTechnology division
ManagementConsultant
• Ordina,The Netherlands
• Oracle 20+ years experience
• OracleACE Director (www.xmldb.nl)
Basic constructs
(recursive)
 Base values
number, string,
boolean, …
 Objects { }
sets of label-value
pairs
 Arrays [ ]
lists of values
UKOUG Tech14 - Getting Started With JSON in the Database
 New in Oracle Database 12.1.0.2.0
 Store and manage JSON documents in Database
▪ JSON documents stored as text
▪ JSON documents can be indexed
 Access JSON documents via developer-friendly
‘Document-Store’ API’s
 SQL query capabilities over JSON documents for
reporting and analysis
 Allows Oracle RDBMS to be used as a JSON
Document Store
 Enables storing, indexing and querying of JSON
documents
 No new JSON data type
 IS JSON constraint used to ensure a column
contains valid JSON documents
 Apply to CLOB, VARCHAR2, RAW and BLOB data
 Enables use of .dotted notation to navigate JSON
document structure and access content
 Flexible Schema development
 JSON data can also be
 Partitioned
 Used with Flashback
 Recovered (when proper backup is in place)
 Used with Securefile storage
▪ Smaller storage
▪ Encryption, Deduplication, Compressed
 Multiple index options
 Caching advantages, etc., etc.,…
UKOUG Tech14 - Getting Started With JSON in the Database
 JSON content is accessible from SQL via
new operators
 JSON operators use JSON Path
language to navigate JSON objects
 Proposed extention to SQL standards
 The JSON Path language makes it possible to
address the contents of a JSON document
 A JSON path expression can address 1 of 4 items
▪ The entire object, a scalar value, an array, a specific object
 JSON Path expressions are similar to XPath
Expressions
▪ The entire document is referenced by $
▪ All JSON path expressions start with a $ symbol
▪ Key names are separated by a ’.’ (period)
 JSON Path expressions are case sensitive
JSON Path Expression Type Contents
$.Reference String "ABULL-20120421"
$.ShippingInstructions.Address.zipcode Number 99236
$.ShippingInstructions.Address Object
{ "street": "200 SportingGreen",
"city": "South San Francisco",
"state": "CA",
"zipCode": 99236,
"country": “USA"
}
$LineItems Array
[ { "ItemNumber" : 1,
"Part" : {
"Description" : “Christmas”
"UPCCode" : 13131092899 }
},
{ "ItemNumber" : 2,
"Part" : {
"Description" : “Easter”
"UPCCode" : 13131092899 }
]
 Compatible with Java Script
 $.phone[0]
 Wildcards, Multi-Selects, Ranges
 $.phone[*], $.phone[0,1 5 to 9]
 Predicates
 .address?(.zip > $zip)
 SQL conversion functions usable in
predicates
 .?(to_date(.date) > $date)
UKOUG Tech14 - Getting Started With JSON in the Database
 JSON_VALUE
 Return a single scalar value from a JSON Document
 JSON_QUERY
 Return a JSON Object or JSON Array from a JSON
Document
 JSON_EXISTS
 Filter rows based on JSON-PATH expressions
 JSON_TABLE
 Project in-line, nested relational views from JSON
Documents
 JSON_TEXTCONTAINS
 JSON aware full-text searching of JSON Documents
Proposed extension to SQL standards
 Using .dotted notation
SQL> select j.PO_DOCUMENT
2 from J_PURCHASEORDER j
3 where j.PO_DOCUMENT.PONumber = 1600
4 /
SQL> select j.PO_DOCUMENT.ShippingInstructions.Address
2 from J_PURCHASEORDER j
3 where j.PO_DOCUMENT.PONumber = 1600
4 /
 Can only return a SCALAR value
SQL> select JSON_VALUE(PO_DOCUMENT,
2 '$.LineItems[0].Part.UnitPrice'
3 returning NUMBER(5,3))
4 from J_PURCHASEORDER p
5 where JSON_VALUE(PO_DOCUMENT,
6 '$.PONumber' returning NUMBER(10)) = 1600 ;
 Can only returns an ARRAY or OBJECT
SELECT JSON_QUERY('{a:100, b:200, c:300}', '$.*' WITH WRAPPER)
AS value
FROM DUAL;
VALUE
--------------------------------------------------------------------------------
[100,200,300]
 Used in theWHERE clause
SQL> select count(*)
2 from J_PURCHASEORDER
3 where JSON_EXISTS( PO_DOCUMENT
4 , '$.ShippingInstructions.Address.state')
5 /
 Used in the FROM clause
 Creation of an inline relational view of JSON
SQL> SELECT m.*
2 FROM J_PURCHASEORDER p
3 , JSON_TABLE
4 ( p.PO_DOCUMENT, '$'
5 columns
6 po_rno FOR ORDINALITY,
7 po_number NUMBER(10) path '$.PONumber'
8 ) m
9 WHERE po_number > 1600 and PO_Number < 1605;
SQL> SELECT m.*
2 FROM J_PURCHASEORDER p
3 , JSON_TABLE
4 ( p.PO_DOCUMENT, '$'
5 columns
6 po_number NUMBER(10) path '$.PONumber',
7 reference VARCHAR2(30) path '$.Reference',
8 requestor VARCHAR2(32) path '$.Requestor',
9 userid VARCHAR2(10) path '$.User',
10 center VARCHAR2(16) path '$.CostCenter'
11 ) m
12 WHERE po_number > 1600 and PO_Number < 1605;
 1 row output for each row in table
PO_NUMBER REFERENCE REQUSTOR USERID CENTER
1600 ABULL-20140421 Alexis Bull ABULL A50
1601 ABULL-20140423 Alexis Bull ABULL A50
1602 ABULL-20140430 Alexis Bull ABULL A50
1603 KCHUNG-20141022 Kelly Chung KCHUNG A50
1604 LBISSOT-20141009 Laura Bissot LBISSOT A50
create or replace view J_PURCHASEORDER_DETAIL_VIEW as
select d.*
from J_PURCHASEORDER p,
JSON_TABLE
(p.PO_DOCUMENT, '$'
columns (
PO_NUMBER NUMBER(10) path '$.PONumber',
USERID VARCHAR2(10) path '$.User',
COSTCENTER VARCHAR2(16) path '$.CostCenter',
NESTED PATH '$.LineItems[*]'
columns
( ITEMNO NUMBER(38) path '$.ItemNumber',
UNITPRICE NUMBER(14,2) path '$.Part.UnitPrice'
) ) ) d;
 Full-text search of JSON data that is stored in
aVARCHAR2, BLOB, or CLOB column
 Must be used in conjunction with special
JSON OracleText Index
 Use CTXSYS.JSON_SECTION_GROUP
SQL> SELECT po_document
2 FROM j_purchaseorder
3 WHERE JSON_TEXTCONTAINS
4 ( po_document
5 , '$.LineItems.Part.Description'
6 , 'Magic' );
Execution path
|* | DOMAIN INDEX | PO_SEARCH_IDX | | | 4 (0)
UKOUG Tech14 - Getting Started With JSON in the Database
 Check constraint guarantees that values are
valid JSON documents
 IS [NOT] JSON predicate
 ReturnsTRUE if column value is JSON, FALSE
otherwise
 Full parse of the data while validating syntax
 Tolerant and strict modes
 Use to ensure that the documents stored in a
column are valid JSON
 LAX
 Default
 STRICT
 Among others:
▪ JSON property (key) name and each string value must be enclosed
in double quotation marks (")
▪ Fractional numerals must have leading zero ( 0.14 | .14)
▪ XML DB Developers Guide or JSON Standards (ECMA-404 / 262)
 More performance intensive than Lax
create table J_PURCHASEORDER
( ID RAW(16) NOT NULL,
DATE_LOADED TIMESTAMP(6) WITHTIME ZONE,
PO_DOCUMENT CLOB
CHECK (PO_DOCUMENT IS JSON) )
insert into J_PURCHASEORDER values(‘0x1’,‘{Invalid JSONText}');
ERROR at line 1:
ORA-02290: check constraint (DEMO.IS_VALID_JSON) violated
 ALL_JSON_COLUMNS
 DBA_JSON_COLUMNS
 USER_JSON_COLUMNS
 Will not show up when
 Check constraint combines condition IS JSON
with another condition using logical condition OR
 “jcol is json OR length(jcol) < 1000” ???
-- Default (lax)
SQL> SELECT json_column
2 FROM t
3 WHERE ( json_column IS JSON);
-- Explicit
SQL> SELECT json_column
2 FROM t
3 WHERE ( json_column IS JSON (STRICT));
SQL> insert into J_PURCHASEORDER
2 select SYS_GUID(),
3 SYSTIMESTAMP,
4 JSON_DOCUMENT
5 from STAGING_TABLE
6 where JSON_DOCUMENT IS JSON;
SQL> delete from STAGING_TABLE
2 where DOCUMENT IS NOT JSON;
UKOUG Tech14 - Getting Started With JSON in the Database
UKOUG Tech14 - Getting Started With JSON in the Database
 NULL on ERROR
 The Default
 Return NULL instead of raising the error
 ERROR on ERROR
 Raise the error (no special handling)
 TRUE ON ERROR
 In JSON_EXISTS
 ReturnTRUE instead of raising the error
 FALSE ON ERROR
 In JSON_EXISTS
 Return FALSE instead of raising the error
 EMPTY ON ERROR
 In JSON_QUERY
 Return an empty array ([]) instead of raising the error
 DEFAULT 'literal_value' ON ERROR
 Return the specified value instead of raising the error
UKOUG Tech14 - Getting Started With JSON in the Database
UKOUG Tech14 - Getting Started With JSON in the Database
UKOUG Tech14 - Getting Started With JSON in the Database
UKOUG Tech14 - Getting Started With JSON in the Database
 RETURNING clause
 PRETTY
▪ Can only be used in JSON_QUERY
▪ Pretty-print the returned data
 ASCII
▪ Can only be used in JSON_VALUE, JSON_QUERY
▪ Automatically escape all non-ASCII Unicode characters
in the returned data, using standard ASCII Unicode
 JSON_TABLE, JSON_QUERY
 WITHOUT WRAPPER
▪ Default, no change
▪ Raise error, if scalar/multiple values in non JSON result
 WITH WRAPPER
▪ Wrap result as a JSON ARRAY [ ]
 WITH CONDITIONAL WRAPPER
▪ Wrap result as a JSON ARRAY [ ]
▪ Don’t wrap result if scalar/multiple values in JSON result
JSON
Example
WITH WRAPPER WITHOUT
WRAPPER
WITH CONDITIONAL
WRAPPER
{"id": 38327}
(single object)
[{"id": 38327}] {"id": 38327} {"id": 38327}
[42, "a", true]
(single array)
[[42, "a", true]] [42, "a", true] [42, "a", true]
42 [42] Error
(scalar)
[42]
42, "a", true [42, "a", true] Error
(multiple values)
[42, "a", true]
none [] Error
(no values)
[]
For a single JSON object or array value, it is the same as WITHOUT WRAPPER.
 JSON_TABLE
 FORMAT JSON
▪ Forces JSON_QUERY behavior
▪ Therefore can have an explicit wrapper clause
 Default
▪ Projection like JSON_VALUE
UKOUG Tech14 - Getting Started With JSON in the Database
filelist.dat
./data/www.json-generator.com.01.json
./data/www.json-generator.com.02.json
./data/www.json-generator.com.03.json
./data/www.json-generator.com.04.json
./data/www.json-generator.com.05.json
./data/www.json-generator.com.06.json
./data/www.json-generator.com.07.json
./data/www.json-generator.com.08.json
./data/www.json-generator.com.09.json
./data/www.json-generator.com.10.json
sqlldr.sh
sqlldr userid=json/json control=sqlldr.ctl log=sqlldr.log bad=sqlldr.bad
sqlldr.ctl
LOAD DATA
INFILE 'filelist.dat'
truncate
INTO table JSON_DATA
FIELDSTERMINATED BY ',‘
( clob_filename filler char(120)
, clob_content LOBFILE(clob_filename) TERMINATED BY EOF
, nclob_filename filler char(120)
, nclob_content LOBFILE(nclob_filename)TERMINATED BY EOF
, bfile_filename filler char(120)
, bfile_content BFILE(CONSTANT "JSON_LOAD", bfile_filename))
UKOUG Tech14 - Getting Started With JSON in the Database
UKOUG Tech14 - Getting Started With JSON in the Database
create unique index PO_NUMBER_IDX
on J_PURCHASEORDER
(JSON_VALUE ( PO_DOCUMENT, '$.PONumber'
returning NUMBER(10)
ERROR ON ERROR));
create bitmap index COSTCENTER_IDX
on J_PURCHASEORDER
(JSON_VALUE (PO_DOCUMENT, '$.CostCenter'));
UKOUG Tech14 - Getting Started With JSON in the Database
 Path Expressions
 Operators
 Functions
 Conditions
 Error Handling
 Returning results
 Loading JSON data
 Indexing JSON data
 Oracle Database SQL
Language Reference
 JSON Functions
▪ JSON_QUERY
▪ JSON_TABLE
▪ JSON_VALUE
 JSON Conditions
▪ IS JSON
▪ JSON_EXISTS
▪ JSON_TEXTCONTAINS
 Oracle XMLDB
Developers Guide
 JSON in DB 12.1.0.2
 JSON Path Expressions
▪ Syntax
 Indexing JSON
▪ Syntax
 Loading JSON
▪ A Method
 JSON on xmldb.nl
 Stanford - Introduction to Databases (JSON)
 Eclipse JSON Editor Plugin
 JSONView addon (Firefox/Chrome)
 JSON Schema
 Get StartedWith JSON
 www.json-generator.com
 JSON Datasets: www.data.gov

More Related Content

What's hot (19)

PPTX
UKOUG 2011 - Drag, Drop and other Stuff. Using your Database as a File Server
Marco Gralike
 
PPTX
ODTUG Webcast - Thinking Clearly about XML
Marco Gralike
 
PPTX
OPP2010 (Brussels) - Programming with XML in PL/SQL - Part 1
Marco Gralike
 
PPTX
BGOUG 2012 - XML Index Strategies
Marco Gralike
 
PPTX
Hotsos 2013 - Creating Structure in Unstructured Data
Marco Gralike
 
PDF
JSON Data Parsing in Snowflake (By Faysal Shaarani)
Faysal Shaarani (MBA)
 
PPTX
Mindmap: Oracle to Couchbase for developers
Keshav Murthy
 
PPT
XML Amsterdam - Creating structure in unstructured data
Marco Gralike
 
PPTX
Xml
Yoga Raja
 
PPTX
OPP2010 (Brussels) - Programming with XML in PL/SQL - Part 2
Marco Gralike
 
PDF
Polyglot Persistence
Scott Leberknight
 
PPT
Micro-ORM Introduction - Don't overcomplicate
Kiev ALT.NET
 
PPTX
XFILES, The APEX 4 version - The truth is in there
Marco Gralike
 
PPTX
Slick: Bringing Scala’s Powerful Features to Your Database Access
Rebecca Grenier
 
PDF
Cloudera Impala, updated for v1.0
Scott Leberknight
 
PPTX
Mongo Nosql CRUD Operations
anujaggarwal49
 
PDF
Full metal mongo
Israel Gutiérrez
 
PDF
Erlang for data ops
mnacos
 
PPTX
BGOUG 2012 - Design concepts for xml applications that will perform
Marco Gralike
 
UKOUG 2011 - Drag, Drop and other Stuff. Using your Database as a File Server
Marco Gralike
 
ODTUG Webcast - Thinking Clearly about XML
Marco Gralike
 
OPP2010 (Brussels) - Programming with XML in PL/SQL - Part 1
Marco Gralike
 
BGOUG 2012 - XML Index Strategies
Marco Gralike
 
Hotsos 2013 - Creating Structure in Unstructured Data
Marco Gralike
 
JSON Data Parsing in Snowflake (By Faysal Shaarani)
Faysal Shaarani (MBA)
 
Mindmap: Oracle to Couchbase for developers
Keshav Murthy
 
XML Amsterdam - Creating structure in unstructured data
Marco Gralike
 
OPP2010 (Brussels) - Programming with XML in PL/SQL - Part 2
Marco Gralike
 
Polyglot Persistence
Scott Leberknight
 
Micro-ORM Introduction - Don't overcomplicate
Kiev ALT.NET
 
XFILES, The APEX 4 version - The truth is in there
Marco Gralike
 
Slick: Bringing Scala’s Powerful Features to Your Database Access
Rebecca Grenier
 
Cloudera Impala, updated for v1.0
Scott Leberknight
 
Mongo Nosql CRUD Operations
anujaggarwal49
 
Full metal mongo
Israel Gutiérrez
 
Erlang for data ops
mnacos
 
BGOUG 2012 - Design concepts for xml applications that will perform
Marco Gralike
 

Similar to UKOUG Tech14 - Getting Started With JSON in the Database (20)

PDF
JSON Support in DB2 for z/OS
Jane Man
 
PPTX
BGOUG15: JSON support in MySQL 5.7
Georgi Kodinov
 
PDF
9.4json
Andrew Dunstan
 
PDF
JSON Processing in the Database using PostgreSQL 9.4 :: Data Wranglers DC :: ...
Ryan B Harvey, CSDP, CSM
 
PDF
JSON Support in MariaDB: News, non-news and the bigger picture
Sergey Petrunya
 
PDF
PostgreSQL 9.3 and JSON - talk at PgOpen 2013
Andrew Dunstan
 
PDF
Andrew Dunstan 9.3 JSON Presentation @ Postgres Open 2013
PostgresOpen
 
PDF
No sql way_in_pg
Vibhor Kumar
 
PPTX
Power JSON with PostgreSQL
EDB
 
PDF
Json in Postgres - the Roadmap
EDB
 
PDF
Store non-structured data in JSON column types and enhancements of JSON
Alireza Kamrani
 
PDF
Webscale PostgreSQL - JSONB and Horizontal Scaling Strategies
Jonathan Katz
 
PPT
The NoSQL Way in Postgres
EDB
 
PPTX
PostgreSQL 9.4 JSON Types and Operators
Nicholas Kiraly
 
PPTX
Singpore Oracle Sessions III - What is truly useful in Oracle Database 12c fo...
Lucas Jellema
 
PPTX
IBM Db2 JSON 11.5
Phil Downey
 
PDF
Oh, that ubiquitous JSON !
Alexander Korotkov
 
PPTX
Validating JSON -- Percona Live 2021 presentation
Dave Stokes
 
PPTX
MySQL Rises with JSON Support
Okcan Yasin Saygılı
 
PPTX
Sql Server 2016 and JSON
Greg McMurray
 
JSON Support in DB2 for z/OS
Jane Man
 
BGOUG15: JSON support in MySQL 5.7
Georgi Kodinov
 
JSON Processing in the Database using PostgreSQL 9.4 :: Data Wranglers DC :: ...
Ryan B Harvey, CSDP, CSM
 
JSON Support in MariaDB: News, non-news and the bigger picture
Sergey Petrunya
 
PostgreSQL 9.3 and JSON - talk at PgOpen 2013
Andrew Dunstan
 
Andrew Dunstan 9.3 JSON Presentation @ Postgres Open 2013
PostgresOpen
 
No sql way_in_pg
Vibhor Kumar
 
Power JSON with PostgreSQL
EDB
 
Json in Postgres - the Roadmap
EDB
 
Store non-structured data in JSON column types and enhancements of JSON
Alireza Kamrani
 
Webscale PostgreSQL - JSONB and Horizontal Scaling Strategies
Jonathan Katz
 
The NoSQL Way in Postgres
EDB
 
PostgreSQL 9.4 JSON Types and Operators
Nicholas Kiraly
 
Singpore Oracle Sessions III - What is truly useful in Oracle Database 12c fo...
Lucas Jellema
 
IBM Db2 JSON 11.5
Phil Downey
 
Oh, that ubiquitous JSON !
Alexander Korotkov
 
Validating JSON -- Percona Live 2021 presentation
Dave Stokes
 
MySQL Rises with JSON Support
Okcan Yasin Saygılı
 
Sql Server 2016 and JSON
Greg McMurray
 
Ad

More from Marco Gralike (14)

PPTX
UKOUG2018 - I Know what you did Last Summer [in my Database].pptx
Marco Gralike
 
PPTX
eProseed Oracle Open World 2016 debrief - Oracle Management Cloud
Marco Gralike
 
PPTX
eProseed Oracle Open World 2016 debrief - Oracle 12.2.0.1 Database
Marco Gralike
 
PPTX
UKOUG Tech15 - Going Full Circle - Building a native JSON Database API
Marco Gralike
 
PPTX
Ordina Oracle Open World
Marco Gralike
 
PDF
An introduction into Oracle VM V3.x
Marco Gralike
 
PDF
An introduction into Oracle Enterprise Manager Cloud Control 12c Release 3
Marco Gralike
 
PPTX
An AMIS Overview of Oracle database 12c (12.1)
Marco Gralike
 
PPTX
Flexibiliteit & Snel Schakelen
Marco Gralike
 
PPTX
Expertezed 2012 Webcast - XML DB Use Cases
Marco Gralike
 
PPTX
BGOUG 2012 - Drag & drop and other stuff - Using your database as a file server
Marco Gralike
 
PPT
Amis ACE
Marco Gralike
 
PPT
XML In The Real World - Use Cases For Oracle XMLDB
Marco Gralike
 
PPTX
Design Concepts For Xml Applications That Will Perform
Marco Gralike
 
UKOUG2018 - I Know what you did Last Summer [in my Database].pptx
Marco Gralike
 
eProseed Oracle Open World 2016 debrief - Oracle Management Cloud
Marco Gralike
 
eProseed Oracle Open World 2016 debrief - Oracle 12.2.0.1 Database
Marco Gralike
 
UKOUG Tech15 - Going Full Circle - Building a native JSON Database API
Marco Gralike
 
Ordina Oracle Open World
Marco Gralike
 
An introduction into Oracle VM V3.x
Marco Gralike
 
An introduction into Oracle Enterprise Manager Cloud Control 12c Release 3
Marco Gralike
 
An AMIS Overview of Oracle database 12c (12.1)
Marco Gralike
 
Flexibiliteit & Snel Schakelen
Marco Gralike
 
Expertezed 2012 Webcast - XML DB Use Cases
Marco Gralike
 
BGOUG 2012 - Drag & drop and other stuff - Using your database as a file server
Marco Gralike
 
Amis ACE
Marco Gralike
 
XML In The Real World - Use Cases For Oracle XMLDB
Marco Gralike
 
Design Concepts For Xml Applications That Will Perform
Marco Gralike
 
Ad

Recently uploaded (20)

PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
HCIP-Data Center Facility Deployment V2.0 Training Material (Without Remarks ...
mcastillo49
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 

UKOUG Tech14 - Getting Started With JSON in the Database

  • 1. Mark D. Drake, Marco Gralike
  • 2. Manager, Product Management • ServerTechnology, OracleCorporation • Oracle 25+ years experience • XML Infrastructure products in Oracle's ServerTechnology division
  • 3. ManagementConsultant • Ordina,The Netherlands • Oracle 20+ years experience • OracleACE Director (www.xmldb.nl)
  • 4. Basic constructs (recursive)  Base values number, string, boolean, …  Objects { } sets of label-value pairs  Arrays [ ] lists of values
  • 6.  New in Oracle Database 12.1.0.2.0  Store and manage JSON documents in Database ▪ JSON documents stored as text ▪ JSON documents can be indexed  Access JSON documents via developer-friendly ‘Document-Store’ API’s  SQL query capabilities over JSON documents for reporting and analysis
  • 7.  Allows Oracle RDBMS to be used as a JSON Document Store  Enables storing, indexing and querying of JSON documents  No new JSON data type  IS JSON constraint used to ensure a column contains valid JSON documents  Apply to CLOB, VARCHAR2, RAW and BLOB data  Enables use of .dotted notation to navigate JSON document structure and access content
  • 8.  Flexible Schema development
  • 9.  JSON data can also be  Partitioned  Used with Flashback  Recovered (when proper backup is in place)  Used with Securefile storage ▪ Smaller storage ▪ Encryption, Deduplication, Compressed  Multiple index options  Caching advantages, etc., etc.,…
  • 11.  JSON content is accessible from SQL via new operators  JSON operators use JSON Path language to navigate JSON objects  Proposed extention to SQL standards
  • 12.  The JSON Path language makes it possible to address the contents of a JSON document  A JSON path expression can address 1 of 4 items ▪ The entire object, a scalar value, an array, a specific object  JSON Path expressions are similar to XPath Expressions ▪ The entire document is referenced by $ ▪ All JSON path expressions start with a $ symbol ▪ Key names are separated by a ’.’ (period)  JSON Path expressions are case sensitive
  • 13. JSON Path Expression Type Contents $.Reference String "ABULL-20120421" $.ShippingInstructions.Address.zipcode Number 99236 $.ShippingInstructions.Address Object { "street": "200 SportingGreen", "city": "South San Francisco", "state": "CA", "zipCode": 99236, "country": “USA" } $LineItems Array [ { "ItemNumber" : 1, "Part" : { "Description" : “Christmas” "UPCCode" : 13131092899 } }, { "ItemNumber" : 2, "Part" : { "Description" : “Easter” "UPCCode" : 13131092899 } ]
  • 14.  Compatible with Java Script  $.phone[0]  Wildcards, Multi-Selects, Ranges  $.phone[*], $.phone[0,1 5 to 9]  Predicates  .address?(.zip > $zip)  SQL conversion functions usable in predicates  .?(to_date(.date) > $date)
  • 16.  JSON_VALUE  Return a single scalar value from a JSON Document  JSON_QUERY  Return a JSON Object or JSON Array from a JSON Document  JSON_EXISTS  Filter rows based on JSON-PATH expressions  JSON_TABLE  Project in-line, nested relational views from JSON Documents  JSON_TEXTCONTAINS  JSON aware full-text searching of JSON Documents Proposed extension to SQL standards
  • 17.  Using .dotted notation SQL> select j.PO_DOCUMENT 2 from J_PURCHASEORDER j 3 where j.PO_DOCUMENT.PONumber = 1600 4 / SQL> select j.PO_DOCUMENT.ShippingInstructions.Address 2 from J_PURCHASEORDER j 3 where j.PO_DOCUMENT.PONumber = 1600 4 /
  • 18.  Can only return a SCALAR value SQL> select JSON_VALUE(PO_DOCUMENT, 2 '$.LineItems[0].Part.UnitPrice' 3 returning NUMBER(5,3)) 4 from J_PURCHASEORDER p 5 where JSON_VALUE(PO_DOCUMENT, 6 '$.PONumber' returning NUMBER(10)) = 1600 ;
  • 19.  Can only returns an ARRAY or OBJECT SELECT JSON_QUERY('{a:100, b:200, c:300}', '$.*' WITH WRAPPER) AS value FROM DUAL; VALUE -------------------------------------------------------------------------------- [100,200,300]
  • 20.  Used in theWHERE clause SQL> select count(*) 2 from J_PURCHASEORDER 3 where JSON_EXISTS( PO_DOCUMENT 4 , '$.ShippingInstructions.Address.state') 5 /
  • 21.  Used in the FROM clause  Creation of an inline relational view of JSON SQL> SELECT m.* 2 FROM J_PURCHASEORDER p 3 , JSON_TABLE 4 ( p.PO_DOCUMENT, '$' 5 columns 6 po_rno FOR ORDINALITY, 7 po_number NUMBER(10) path '$.PONumber' 8 ) m 9 WHERE po_number > 1600 and PO_Number < 1605;
  • 22. SQL> SELECT m.* 2 FROM J_PURCHASEORDER p 3 , JSON_TABLE 4 ( p.PO_DOCUMENT, '$' 5 columns 6 po_number NUMBER(10) path '$.PONumber', 7 reference VARCHAR2(30) path '$.Reference', 8 requestor VARCHAR2(32) path '$.Requestor', 9 userid VARCHAR2(10) path '$.User', 10 center VARCHAR2(16) path '$.CostCenter' 11 ) m 12 WHERE po_number > 1600 and PO_Number < 1605;
  • 23.  1 row output for each row in table PO_NUMBER REFERENCE REQUSTOR USERID CENTER 1600 ABULL-20140421 Alexis Bull ABULL A50 1601 ABULL-20140423 Alexis Bull ABULL A50 1602 ABULL-20140430 Alexis Bull ABULL A50 1603 KCHUNG-20141022 Kelly Chung KCHUNG A50 1604 LBISSOT-20141009 Laura Bissot LBISSOT A50
  • 24. create or replace view J_PURCHASEORDER_DETAIL_VIEW as select d.* from J_PURCHASEORDER p, JSON_TABLE (p.PO_DOCUMENT, '$' columns ( PO_NUMBER NUMBER(10) path '$.PONumber', USERID VARCHAR2(10) path '$.User', COSTCENTER VARCHAR2(16) path '$.CostCenter', NESTED PATH '$.LineItems[*]' columns ( ITEMNO NUMBER(38) path '$.ItemNumber', UNITPRICE NUMBER(14,2) path '$.Part.UnitPrice' ) ) ) d;
  • 25.  Full-text search of JSON data that is stored in aVARCHAR2, BLOB, or CLOB column  Must be used in conjunction with special JSON OracleText Index  Use CTXSYS.JSON_SECTION_GROUP
  • 26. SQL> SELECT po_document 2 FROM j_purchaseorder 3 WHERE JSON_TEXTCONTAINS 4 ( po_document 5 , '$.LineItems.Part.Description' 6 , 'Magic' ); Execution path |* | DOMAIN INDEX | PO_SEARCH_IDX | | | 4 (0)
  • 28.  Check constraint guarantees that values are valid JSON documents  IS [NOT] JSON predicate  ReturnsTRUE if column value is JSON, FALSE otherwise  Full parse of the data while validating syntax  Tolerant and strict modes  Use to ensure that the documents stored in a column are valid JSON
  • 29.  LAX  Default  STRICT  Among others: ▪ JSON property (key) name and each string value must be enclosed in double quotation marks (") ▪ Fractional numerals must have leading zero ( 0.14 | .14) ▪ XML DB Developers Guide or JSON Standards (ECMA-404 / 262)  More performance intensive than Lax
  • 30. create table J_PURCHASEORDER ( ID RAW(16) NOT NULL, DATE_LOADED TIMESTAMP(6) WITHTIME ZONE, PO_DOCUMENT CLOB CHECK (PO_DOCUMENT IS JSON) ) insert into J_PURCHASEORDER values(‘0x1’,‘{Invalid JSONText}'); ERROR at line 1: ORA-02290: check constraint (DEMO.IS_VALID_JSON) violated
  • 31.  ALL_JSON_COLUMNS  DBA_JSON_COLUMNS  USER_JSON_COLUMNS  Will not show up when  Check constraint combines condition IS JSON with another condition using logical condition OR  “jcol is json OR length(jcol) < 1000” ???
  • 32. -- Default (lax) SQL> SELECT json_column 2 FROM t 3 WHERE ( json_column IS JSON); -- Explicit SQL> SELECT json_column 2 FROM t 3 WHERE ( json_column IS JSON (STRICT));
  • 33. SQL> insert into J_PURCHASEORDER 2 select SYS_GUID(), 3 SYSTIMESTAMP, 4 JSON_DOCUMENT 5 from STAGING_TABLE 6 where JSON_DOCUMENT IS JSON; SQL> delete from STAGING_TABLE 2 where DOCUMENT IS NOT JSON;
  • 36.  NULL on ERROR  The Default  Return NULL instead of raising the error  ERROR on ERROR  Raise the error (no special handling)  TRUE ON ERROR  In JSON_EXISTS  ReturnTRUE instead of raising the error
  • 37.  FALSE ON ERROR  In JSON_EXISTS  Return FALSE instead of raising the error  EMPTY ON ERROR  In JSON_QUERY  Return an empty array ([]) instead of raising the error  DEFAULT 'literal_value' ON ERROR  Return the specified value instead of raising the error
  • 42.  RETURNING clause  PRETTY ▪ Can only be used in JSON_QUERY ▪ Pretty-print the returned data  ASCII ▪ Can only be used in JSON_VALUE, JSON_QUERY ▪ Automatically escape all non-ASCII Unicode characters in the returned data, using standard ASCII Unicode
  • 43.  JSON_TABLE, JSON_QUERY  WITHOUT WRAPPER ▪ Default, no change ▪ Raise error, if scalar/multiple values in non JSON result  WITH WRAPPER ▪ Wrap result as a JSON ARRAY [ ]  WITH CONDITIONAL WRAPPER ▪ Wrap result as a JSON ARRAY [ ] ▪ Don’t wrap result if scalar/multiple values in JSON result
  • 44. JSON Example WITH WRAPPER WITHOUT WRAPPER WITH CONDITIONAL WRAPPER {"id": 38327} (single object) [{"id": 38327}] {"id": 38327} {"id": 38327} [42, "a", true] (single array) [[42, "a", true]] [42, "a", true] [42, "a", true] 42 [42] Error (scalar) [42] 42, "a", true [42, "a", true] Error (multiple values) [42, "a", true] none [] Error (no values) [] For a single JSON object or array value, it is the same as WITHOUT WRAPPER.
  • 45.  JSON_TABLE  FORMAT JSON ▪ Forces JSON_QUERY behavior ▪ Therefore can have an explicit wrapper clause  Default ▪ Projection like JSON_VALUE
  • 48. sqlldr.ctl LOAD DATA INFILE 'filelist.dat' truncate INTO table JSON_DATA FIELDSTERMINATED BY ',‘ ( clob_filename filler char(120) , clob_content LOBFILE(clob_filename) TERMINATED BY EOF , nclob_filename filler char(120) , nclob_content LOBFILE(nclob_filename)TERMINATED BY EOF , bfile_filename filler char(120) , bfile_content BFILE(CONSTANT "JSON_LOAD", bfile_filename))
  • 51. create unique index PO_NUMBER_IDX on J_PURCHASEORDER (JSON_VALUE ( PO_DOCUMENT, '$.PONumber' returning NUMBER(10) ERROR ON ERROR)); create bitmap index COSTCENTER_IDX on J_PURCHASEORDER (JSON_VALUE (PO_DOCUMENT, '$.CostCenter'));
  • 53.  Path Expressions  Operators  Functions  Conditions  Error Handling  Returning results  Loading JSON data  Indexing JSON data
  • 54.  Oracle Database SQL Language Reference  JSON Functions ▪ JSON_QUERY ▪ JSON_TABLE ▪ JSON_VALUE  JSON Conditions ▪ IS JSON ▪ JSON_EXISTS ▪ JSON_TEXTCONTAINS  Oracle XMLDB Developers Guide  JSON in DB 12.1.0.2  JSON Path Expressions ▪ Syntax  Indexing JSON ▪ Syntax  Loading JSON ▪ A Method  JSON on xmldb.nl
  • 55.  Stanford - Introduction to Databases (JSON)  Eclipse JSON Editor Plugin  JSONView addon (Firefox/Chrome)  JSON Schema  Get StartedWith JSON  www.json-generator.com  JSON Datasets: www.data.gov