Step 1: Link PredictionStep 1: Link Prediction
UWN's Multilingual GraphUWN's Multilingual Graph
• Goal: Richer, Less Sparse Features
• How: Model Synonymy, Polysemy,
Semantic Relatedness, Taxonomy.
(within and across languages)
UWN: A Large Multilingual
Lexical Knowledge Base
Gerard de Melo and Gerhard Weikum
ICSI Berkeley / Max Planck Institute for Informatics
Better NLP Features using Lexical SemanticsBetter NLP Features using Lexical Semantics
More Information:
www.lexvo.org/gdm/
• Downloadable API
available
• Web User Interface
EntityEntitypor: “entidade”por: “entidade”
cmn: “ 制度”cmn: “ 制度” InstitutionInstitution
Educational
institution
Educational
institution
UniversityUniversity
heb: “‫ישות‬.”heb: “‫ישות‬.”
deu: “Bildungs-
einrichtung”
deu: “Bildungs-
einrichtung”
srp:
“универзитете”
srp:
“универзитете”
...
University of
California, Berkeley
University of
California, Berkeley
eng: “Berkeley ”eng: “Berkeley ”
ara:
“‫كينونة‬ ،‫”وجود‬
ara:
“‫كينونة‬ ،‫”وجود‬
tha: “ สถาบัน”tha: “ สถาบัน”
fin: “oppilaitos”fin: “oppilaitos”
fin: “yliopisto”fin: “yliopisto”
cmn:
“ 柏克萊加州大學”
cmn:
“ 柏克萊加州大學”
Berkeley, CABerkeley, CA
George BerkeleyGeorge Berkeley
deu: “Schulgebäude”deu: “Schulgebäude”
school
(group of fish)
school
(group of fish)
school
(institution)
school
(institution)
school
(building)
school
(building)
deu: “Schulhaus”deu: “Schulhaus”
deu: “Fischschwarm”deu: “Fischschwarm”
ces: “hejno”ces: “hejno”
fra: “banc”fra: “banc”
chv: “шкул”chv: “шкул”
jpn: “ 学校”jpn: “ 学校”
kor: “ 학교”kor: “ 학교”
lao: “ໂຮງຮຽນ”lao: “ໂຮງຮຽນ”
kat: “სკოლა”kat: “სკოლა”
• Over 16 million words
and names in over 200
languages semantically
connected
• Ambiguity and
synonymy captured
eng: “UC Berkeley”eng: “UC Berkeley” eng: “Cal”eng: “Cal”
CityCity
Geopolitical
Entity
Geopolitical
Entity
ChuvashChuvash
GeorgianGeorgian
Lexvo.org
Language
Descriptions:
Languages
Scripts
Characters
Countries
Cyrllic
(Script)
Cyrllic
(Script)
Russia
(Country)
Russia
(Country)
UWN: Meaning Distinctions
Ontological
Taxonomy
Encyclopedic
Knowledge,
Pictures,
Video,
Sounds, Maps
Etymological and
other word
relationships
Millions of
Named Entities
(People, Places,
Proteins,
Asteroids,
Companies, etc.)
200+ languages
Step 2: Entity IntegrationStep 2: Entity Integration
Step 3: Taxonomy InductionStep 3: Taxonomy Induction ExtrasExtras
• Markov Chain to rank taxonomic parents
• 270 Wikipedia taxonomies integrated with
WordNet's hypernym hierarchy
es: Televisores: Televisor
es: Televisiónes: Televisión
ru: Телевизорru: Телевизор
hi: दूरदर्शनhi: दूरदर्शन
ja: テレビja: テレビ
en: Televisionen: Television
en:
Television
set
en:
Television
set
zh: 电视机zh: 电视机
ja: テレビ受像機ja: テレビ受像機
en: TV seten: TV set
en: T.V.en: T.V.
V1 ,u
V1 ,u
V1 ,v
V1 ,v
• LP for constraint-based computation of
equivalence classes of entities
• Region Growing approximation algorithm
• Link multilingual
words to WordNet
• Connect Wikipedia
with WordNet
(equivalence and
taxonomic links)
• FrameNet Linking
• Common-Sense
Knowledge Extraction
• Multilingual Roget's
Thesaurus

More Related Content

PDF
From Linked Documentary Resources to Linked Computational Resources
PDF
Is data publication the right metaphor?
PPT
Information Architecture & Findability
PPTX
ARLG 2019: Blanchett sewell scholarly coms librarian
PPTX
The Scholarly Communications Librarian: Unicorn, Dodo or Phoenix?
DOCX
JPJ1419 Discovering Emerging Topics in Social Streams via Link-Anomaly Detec...
PDF
Collaborative Multilingual Dictionaries
PPT
Types of machine translation
From Linked Documentary Resources to Linked Computational Resources
Is data publication the right metaphor?
Information Architecture & Findability
ARLG 2019: Blanchett sewell scholarly coms librarian
The Scholarly Communications Librarian: Unicorn, Dodo or Phoenix?
JPJ1419 Discovering Emerging Topics in Social Streams via Link-Anomaly Detec...
Collaborative Multilingual Dictionaries
Types of machine translation

Similar to UWN: A Large Multilingual Lexical Knowledge Base (20)

PPTX
Assessing, Creating and Using Knowledge Graph Restrictions
PDF
(Deep) Neural Networks在 NLP 和 Text Mining 总结
PPTX
EDS for JIBS
PPT
Ontologies for multimedia: the Semantic Culture Web
PDF
20140506 edrene athens_winer
PPTX
Web2.0 lac2013a
PPT
Sausages, coffee, chicken and the web: Establishing new trust metrics for sch...
PPTX
Media literacy search
PPTX
The OU's Digital Humanities seminar series: the Pelagios project
ODP
Text-mining and Automation
PPTX
Future of the article C Mavergames March 2013
PPTX
Archives Hub - Data in :: Data out
PPTX
The Blossoming of the Semantic Web
PPTX
How to Do Things with Triples
PPTX
Europeana Network Association AGM 2016 - 9 November - Speaker Shawn Averkamp
PPT
Structure Function Fsi Wignall
PPT
Creating a PLE
PDF
Medium, Messages, and Mashups: Integrating Learning Exemplars into Curriculu...
PPTX
Phyloinformatics and the Semantic Web
PPTX
Assessing, Creating and Using Knowledge Graph Restrictions
(Deep) Neural Networks在 NLP 和 Text Mining 总结
EDS for JIBS
Ontologies for multimedia: the Semantic Culture Web
20140506 edrene athens_winer
Web2.0 lac2013a
Sausages, coffee, chicken and the web: Establishing new trust metrics for sch...
Media literacy search
The OU's Digital Humanities seminar series: the Pelagios project
Text-mining and Automation
Future of the article C Mavergames March 2013
Archives Hub - Data in :: Data out
The Blossoming of the Semantic Web
How to Do Things with Triples
Europeana Network Association AGM 2016 - 9 November - Speaker Shawn Averkamp
Structure Function Fsi Wignall
Creating a PLE
Medium, Messages, and Mashups: Integrating Learning Exemplars into Curriculu...
Phyloinformatics and the Semantic Web
Ad

More from Gerard de Melo (15)

PDF
SEMAC Graph Node Embeddings for Link Prediction
PDF
How to Manage your Research
PDF
Knowlywood: Mining Activity Knowledge from Hollywood Narratives
PDF
Learning Multilingual Semantics from Big Data on the Web
PDF
From Big Data to Valuable Knowledge
PDF
Scalable Learning Technologies for Big Data Mining
PDF
Searching the Web of Data (Tutorial)
PDF
From Linked Data to Tightly Integrated Data
PDF
Information Extraction from Web-Scale N-Gram Data
PDF
Multilingual Text Classification using Ontologies
PDF
Extracting Sense-Disambiguated Example Sentences From Parallel Corpora
PDF
Towards a Universal Wordnet by Learning from Combined Evidence
PDF
Not Quite the Same: Identity Constraints for the Web of Linked Data
PDF
Good, Great, Excellent: Global Inference of Semantic Intensities
PDF
YAGO-SUMO: Integrating YAGO into the Suggested Upper Merged Ontology
SEMAC Graph Node Embeddings for Link Prediction
How to Manage your Research
Knowlywood: Mining Activity Knowledge from Hollywood Narratives
Learning Multilingual Semantics from Big Data on the Web
From Big Data to Valuable Knowledge
Scalable Learning Technologies for Big Data Mining
Searching the Web of Data (Tutorial)
From Linked Data to Tightly Integrated Data
Information Extraction from Web-Scale N-Gram Data
Multilingual Text Classification using Ontologies
Extracting Sense-Disambiguated Example Sentences From Parallel Corpora
Towards a Universal Wordnet by Learning from Combined Evidence
Not Quite the Same: Identity Constraints for the Web of Linked Data
Good, Great, Excellent: Global Inference of Semantic Intensities
YAGO-SUMO: Integrating YAGO into the Suggested Upper Merged Ontology
Ad

Recently uploaded (20)

PPTX
Introduction to Fundamentals of Data Security
PPT
expt-design-lecture-12 hghhgfggjhjd (1).ppt
PPTX
DATA MODELING, data model concepts, types of data concepts
PPTX
MBA JAPAN: 2025 the University of Waseda
PPTX
chuitkarjhanbijunsdivndsijvndiucbhsaxnmzsicvjsd
PDF
Grey Minimalist Professional Project Presentation (1).pdf
PPTX
9 Bioterrorism.pptxnsbhsjdgdhdvkdbebrkndbd
PDF
A biomechanical Functional analysis of the masitary muscles in man
PPTX
PPT for Diseases (1)-2, types of diseases.pptx
PPTX
AI AND ML PROPOSAL PRESENTATION MUST.pptx
PPTX
inbound2857676998455010149.pptxmmmmmmmmm
PPTX
865628565-Pertemuan-2-chapter-03-NUMERICAL-MEASURES.pptx
PPTX
indiraparyavaranbhavan-240418134200-31d840b3.pptx
PPTX
Sheep Seg. Marketing Plan_C2 2025 (1).pptx
PPTX
machinelearningoverview-250809184828-927201d2.pptx
PPT
PROJECT CYCLE MANAGEMENT FRAMEWORK (PCM).ppt
PPTX
transformers as a tool for understanding advance algorithms in deep learning
PPTX
langchainpptforbeginners_easy_explanation.pptx
PPT
Classification methods in data analytics.ppt
PDF
REPORT CARD OF GRADE 2 2025-2026 MATATAG
Introduction to Fundamentals of Data Security
expt-design-lecture-12 hghhgfggjhjd (1).ppt
DATA MODELING, data model concepts, types of data concepts
MBA JAPAN: 2025 the University of Waseda
chuitkarjhanbijunsdivndsijvndiucbhsaxnmzsicvjsd
Grey Minimalist Professional Project Presentation (1).pdf
9 Bioterrorism.pptxnsbhsjdgdhdvkdbebrkndbd
A biomechanical Functional analysis of the masitary muscles in man
PPT for Diseases (1)-2, types of diseases.pptx
AI AND ML PROPOSAL PRESENTATION MUST.pptx
inbound2857676998455010149.pptxmmmmmmmmm
865628565-Pertemuan-2-chapter-03-NUMERICAL-MEASURES.pptx
indiraparyavaranbhavan-240418134200-31d840b3.pptx
Sheep Seg. Marketing Plan_C2 2025 (1).pptx
machinelearningoverview-250809184828-927201d2.pptx
PROJECT CYCLE MANAGEMENT FRAMEWORK (PCM).ppt
transformers as a tool for understanding advance algorithms in deep learning
langchainpptforbeginners_easy_explanation.pptx
Classification methods in data analytics.ppt
REPORT CARD OF GRADE 2 2025-2026 MATATAG

UWN: A Large Multilingual Lexical Knowledge Base

  • 1. Step 1: Link PredictionStep 1: Link Prediction UWN's Multilingual GraphUWN's Multilingual Graph • Goal: Richer, Less Sparse Features • How: Model Synonymy, Polysemy, Semantic Relatedness, Taxonomy. (within and across languages) UWN: A Large Multilingual Lexical Knowledge Base Gerard de Melo and Gerhard Weikum ICSI Berkeley / Max Planck Institute for Informatics Better NLP Features using Lexical SemanticsBetter NLP Features using Lexical Semantics More Information: www.lexvo.org/gdm/ • Downloadable API available • Web User Interface EntityEntitypor: “entidade”por: “entidade” cmn: “ 制度”cmn: “ 制度” InstitutionInstitution Educational institution Educational institution UniversityUniversity heb: “‫ישות‬.”heb: “‫ישות‬.” deu: “Bildungs- einrichtung” deu: “Bildungs- einrichtung” srp: “универзитете” srp: “универзитете” ... University of California, Berkeley University of California, Berkeley eng: “Berkeley ”eng: “Berkeley ” ara: “‫كينونة‬ ،‫”وجود‬ ara: “‫كينونة‬ ،‫”وجود‬ tha: “ สถาบัน”tha: “ สถาบัน” fin: “oppilaitos”fin: “oppilaitos” fin: “yliopisto”fin: “yliopisto” cmn: “ 柏克萊加州大學” cmn: “ 柏克萊加州大學” Berkeley, CABerkeley, CA George BerkeleyGeorge Berkeley deu: “Schulgebäude”deu: “Schulgebäude” school (group of fish) school (group of fish) school (institution) school (institution) school (building) school (building) deu: “Schulhaus”deu: “Schulhaus” deu: “Fischschwarm”deu: “Fischschwarm” ces: “hejno”ces: “hejno” fra: “banc”fra: “banc” chv: “шкул”chv: “шкул” jpn: “ 学校”jpn: “ 学校” kor: “ 학교”kor: “ 학교” lao: “ໂຮງຮຽນ”lao: “ໂຮງຮຽນ” kat: “სკოლა”kat: “სკოლა” • Over 16 million words and names in over 200 languages semantically connected • Ambiguity and synonymy captured eng: “UC Berkeley”eng: “UC Berkeley” eng: “Cal”eng: “Cal” CityCity Geopolitical Entity Geopolitical Entity ChuvashChuvash GeorgianGeorgian Lexvo.org Language Descriptions: Languages Scripts Characters Countries Cyrllic (Script) Cyrllic (Script) Russia (Country) Russia (Country) UWN: Meaning Distinctions Ontological Taxonomy Encyclopedic Knowledge, Pictures, Video, Sounds, Maps Etymological and other word relationships Millions of Named Entities (People, Places, Proteins, Asteroids, Companies, etc.) 200+ languages Step 2: Entity IntegrationStep 2: Entity Integration Step 3: Taxonomy InductionStep 3: Taxonomy Induction ExtrasExtras • Markov Chain to rank taxonomic parents • 270 Wikipedia taxonomies integrated with WordNet's hypernym hierarchy es: Televisores: Televisor es: Televisiónes: Televisión ru: Телевизорru: Телевизор hi: दूरदर्शनhi: दूरदर्शन ja: テレビja: テレビ en: Televisionen: Television en: Television set en: Television set zh: 电视机zh: 电视机 ja: テレビ受像機ja: テレビ受像機 en: TV seten: TV set en: T.V.en: T.V. V1 ,u V1 ,u V1 ,v V1 ,v • LP for constraint-based computation of equivalence classes of entities • Region Growing approximation algorithm • Link multilingual words to WordNet • Connect Wikipedia with WordNet (equivalence and taxonomic links) • FrameNet Linking • Common-Sense Knowledge Extraction • Multilingual Roget's Thesaurus