Chapter 4:
Unsupervised Learning
CS583, Bing Liu, UIC 2
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 3
Supervised learning vs. unsupervised
learning
 Supervised learning: discover patterns in the
data that relate data attributes with a target
(class) attribute.
 These patterns are then utilized to predict the
values of the target attribute in future data
instances.
 Unsupervised learning: The data have no
target attribute.
 We want to explore the data to find some intrinsic
structures in them.
CS583, Bing Liu, UIC 4
Clustering
 Clustering is a technique for finding similarity groups
in data, called clusters. I.e.,
 it groups data instances that are similar to (near) each other
in one cluster and data instances that are very different (far
away) from each other into different clusters.
 Clustering is often called an unsupervised learning
task as no class values denoting an a priori grouping
of the data instances are given, which is the case in
supervised learning.
 Due to historical reasons, clustering is often
considered synonymous with unsupervised learning.
 In fact, association rule mining is also unsupervised
 This chapter focuses on clustering.
CS583, Bing Liu, UIC 5
An illustration
 The data set has three natural groups of data points,
i.e., 3 natural clusters.
CS583, Bing Liu, UIC 6
What is clustering for?
 Let us see some real-life examples
 Example 1: groups people of similar sizes
together to make “small”, “medium” and
“large” T-Shirts.
 Tailor-made for each person: too expensive
 One-size-fits-all: does not fit all.
 Example 2: In marketing, segment customers
according to their similarities
 To do targeted marketing.
CS583, Bing Liu, UIC 7
What is clustering for? (cont…)
 Example 3: Given a collection of text
documents, we want to organize them
according to their content similarities,
 To produce a topic hierarchy
 In fact, clustering is one of the most utilized
data mining techniques.
 It has a long history, and used in almost every
field, e.g., medicine, psychology, botany,
sociology, biology, archeology, marketing,
insurance, libraries, etc.
 In recent years, due to the rapid increase of online
documents, text clustering becomes important.
CS583, Bing Liu, UIC 8
Aspects of clustering
 A clustering algorithm
 Partitional clustering
 Hierarchical clustering
 …
 A distance (similarity, or dissimilarity) function
 Clustering quality
 Inter-clusters distance  maximized
 Intra-clusters distance  minimized
 The quality of a clustering result depends on
the algorithm, the distance function, and the
application.
CS583, Bing Liu, UIC 9
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 10
K-means clustering
 K-means is a partitional clustering algorithm
 Let the set of data points (or instances) D be
{x1, x2, …, xn},
where xi = (xi1, xi2, …, xir) is a vector in a real-valued
space X  Rr
, and r is the number of attributes
(dimensions) in the data.
 The k-means algorithm partitions the given
data into k clusters.
 Each cluster has a cluster center, called centroid.
 k is specified by the user
CS583, Bing Liu, UIC 11
K-means algorithm
 Given k, the k-means algorithm works as
follows:
1) Randomly choose k data points (seeds) to be the
initial centroids, cluster centers
2) Assign each data point to the closest centroid
3) Re-compute the centroids using the current
cluster memberships.
4) If a convergence criterion is not met, go to 2).
CS583, Bing Liu, UIC 12
K-means algorithm – (cont …)
CS583, Bing Liu, UIC 13
Stopping/convergence criterion
1. no (or minimum) re-assignments of data
points to different clusters,
2. no (or minimum) change of centroids, or
3. minimum decrease in the sum of squared
error (SSE),
 Ci is the jth cluster, mj is the centroid of cluster Cj
(the mean vector of all the data points in Cj), and
dist(x, mj) is the distance between data point x
and centroid mj.




k
j
C j
j
dist
SSE
1
2
)
,
(
x
m
x (1)
CS583, Bing Liu, UIC 14
An example
+
+
CS583, Bing Liu, UIC 15
An example (cont …)
CS583, Bing Liu, UIC 16
An example distance function
CS583, Bing Liu, UIC 17
A disk version of k-means
 K-means can be implemented with data on
disk
 In each iteration, it scans the data once.
 as the centroids can be computed incrementally
 It can be used to cluster large datasets that
do not fit in main memory
 We need to control the number of iterations
 In practice, a limited is set (< 50).
 Not the best method. There are other scale-
up algorithms, e.g., BIRCH.
CS583, Bing Liu, UIC 18
A disk version of k-means (cont …)
CS583, Bing Liu, UIC 19
Strengths of k-means
 Strengths:
 Simple: easy to understand and to implement
 Efficient: Time complexity: O(tkn),
where n is the number of data points,
k is the number of clusters, and
t is the number of iterations.
 Since both k and t are small. k-means is considered a
linear algorithm.
 K-means is the most popular clustering algorithm.
 Note that: it terminates at a local optimum if SSE is
used. The global optimum is hard to find due to
complexity.
CS583, Bing Liu, UIC 20
Weaknesses of k-means
 The algorithm is only applicable if the mean is
defined.
 For categorical data, k-mode - the centroid is
represented by most frequent values.
 The user needs to specify k.
 The algorithm is sensitive to outliers
 Outliers are data points that are very far away from
other data points.
 Outliers could be errors in the data recording or
some special data points with very different values.
CS583, Bing Liu, UIC 21
Weaknesses of k-means: Problems with
outliers
CS583, Bing Liu, UIC 22
Weaknesses of k-means: To deal with
outliers
 One method is to remove some data points in the
clustering process that are much further away from
the centroids than other data points.
 To be safe, we may want to monitor these possible outliers
over a few iterations and then decide to remove them.
 Another method is to perform random sampling.
Since in sampling we only choose a small subset of
the data points, the chance of selecting an outlier is
very small.
 Assign the rest of the data points to the clusters by
distance or similarity comparison, or classification
CS583, Bing Liu, UIC 23
Weaknesses of k-means (cont …)
 The algorithm is sensitive to initial seeds.
CS583, Bing Liu, UIC 24
Weaknesses of k-means (cont …)
 If we use different seeds: good results
 There are some
methods to help
choose good
seeds
CS583, Bing Liu, UIC 25
Weaknesses of k-means (cont …)
 The k-means algorithm is not suitable for
discovering clusters that are not hyper-ellipsoids (or
hyper-spheres).
+
CS583, Bing Liu, UIC 26
K-means summary
 Despite weaknesses, k-means is still the
most popular algorithm due to its simplicity,
efficiency and
 other clustering algorithms have their own lists of
weaknesses.
 No clear evidence that any other clustering
algorithm performs better in general
 although they may be more suitable for some
specific types of data or applications.
 Comparing different clustering algorithms is a
difficult task. No one knows the correct
clusters!
CS583, Bing Liu, UIC 27
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 28
Common ways to represent clusters
 Use the centroid of each cluster to represent
the cluster.
 compute the radius and
 standard deviation of the cluster to determine its
spread in each dimension
 The centroid representation alone works well if the
clusters are of the hyper-spherical shape.
 If clusters are elongated or are of other shapes,
centroids are not sufficient
CS583, Bing Liu, UIC 29
Using classification model
 All the data points in a
cluster are regarded to
have the same class
label, e.g., the cluster
ID.
 run a supervised learning
algorithm on the data to
find a classification model.
CS583, Bing Liu, UIC 30
Use frequent values to represent cluster
 This method is mainly for clustering of
categorical data (e.g., k-modes clustering).
 Main method used in text clustering, where a
small set of frequent words in each cluster is
selected to represent the cluster.
CS583, Bing Liu, UIC 31
Clusters of arbitrary shapes
 Hyper-elliptical and hyper-
spherical clusters are usually
easy to represent, using their
centroid together with spreads.
 Irregular shape clusters are hard
to represent. They may not be
useful in some applications.
 Using centroids are not suitable
(upper figure) in general
 K-means clusters may be more
useful (lower figure), e.g., for making
2 size T-shirts.
CS583, Bing Liu, UIC 32
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 33
Hierarchical Clustering
 Produce a nested sequence of clusters, a tree,
also called Dendrogram.
CS583, Bing Liu, UIC 34
Types of hierarchical clustering
 Agglomerative (bottom up) clustering: It builds the
dendrogram (tree) from the bottom level, and
 merges the most similar (or nearest) pair of clusters
 stops when all the data points are merged into a single
cluster (i.e., the root cluster).
 Divisive (top down) clustering: It starts with all data
points in one cluster, the root.
 Splits the root into a set of child clusters. Each child cluster
is recursively divided further
 stops when only singleton clusters of individual data points
remain, i.e., each cluster with only a single point
CS583, Bing Liu, UIC 35
Agglomerative clustering
It is more popular then divisive methods.
 At the beginning, each data point forms a
cluster (also called a node).
 Merge nodes/clusters that have the least
distance.
 Go on merging
 Eventually all nodes belong to one cluster
CS583, Bing Liu, UIC 36
Agglomerative clustering algorithm
CS583, Bing Liu, UIC 37
An example: working of the algorithm
CS583, Bing Liu, UIC 38
Measuring the distance of two clusters
 A few ways to measure distances of two
clusters.
 Results in different variations of the
algorithm.
 Single link
 Complete link
 Average link
 Centroids
 …
CS583, Bing Liu, UIC 39
Single link method
 The distance between
two clusters is the
distance between two
closest data points in
the two clusters, one
data point from each
cluster.
 It can find arbitrarily
shaped clusters, but
 It may cause the
undesirable “chain effect”
by noisy points
Two natural clusters are
split into two
CS583, Bing Liu, UIC 40
Complete link method
 The distance between two clusters is the distance
of two furthest data points in the two clusters.
 It is sensitive to outliers because they are far
away
CS583, Bing Liu, UIC 41
Average link and centroid methods
 Average link: A compromise between
 the sensitivity of complete-link clustering to
outliers and
 the tendency of single-link clustering to form long
chains that do not correspond to the intuitive
notion of clusters as compact, spherical objects.
 In this method, the distance between two clusters
is the average distance of all pair-wise distances
between the data points in two clusters.
 Centroid method: In this method, the distance
between two clusters is the distance between
their centroids
CS583, Bing Liu, UIC 42
The complexity
 All the algorithms are at least O(n2
). n is the
number of data points.
 Single link can be done in O(n2
).
 Complete and average links can be done in
O(n2
logn).
 Due the complexity, hard to use for large data
sets.
 Sampling
 Scale-up methods (e.g., BIRCH).
CS583, Bing Liu, UIC 43
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 44
Distance functions
 Key to clustering. “similarity” and
“dissimilarity” can also commonly used terms.
 There are numerous distance functions for
 Different types of data
 Numeric data
 Nominal data
 Different specific applications
CS583, Bing Liu, UIC 45
Distance functions for numeric attributes
 Most commonly used functions are
 Euclidean distance and
 Manhattan (city block) distance
 We denote distance with: dist(xi, xj), where xi
and xj are data points (vectors)
 They are special cases of Minkowski
distance. h is positive integer.
h
h
jr
ir
h
j
i
h
j
i
j
i x
x
x
x
x
x
dist
1
2
2
1
1 )
)
(
...
)
(
)
((
)
,
( 






x
x
CS583, Bing Liu, UIC 46
Euclidean distance and Manhattan distance
 If h = 2, it is the Euclidean distance
 If h = 1, it is the Manhattan distance
 Weighted Euclidean distance
2
2
2
2
2
1
1 )
(
...
)
(
)
(
)
,
( jr
ir
j
i
j
i
j
i x
x
x
x
x
x
dist 






x
x
|
|
...
|
|
|
|
)
,
( 2
2
1
1 jr
ir
j
i
j
i
j
i x
x
x
x
x
x
dist 






x
x
2
2
2
2
2
2
1
1
1 )
(
...
)
(
)
(
)
,
( jr
ir
r
j
i
j
i
j
i x
x
w
x
x
w
x
x
w
dist 






x
x
CS583, Bing Liu, UIC 47
Squared distance and Chebychev distance
 Squared Euclidean distance: to place
progressively greater weight on data points
that are further apart.
 Chebychev distance: one wants to define two
data points as "different" if they are different
on any one of the attributes.
2
2
2
2
2
1
1 )
(
...
)
(
)
(
)
,
( jr
ir
j
i
j
i
j
i x
x
x
x
x
x
dist 






x
x
|)
|
...,
|,
|
|,
max(|
)
,
( 2
2
1
1 jr
ir
j
i
j
i
j
i x
x
x
x
x
x
dist 



x
x
CS583, Bing Liu, UIC 48
Distance functions for binary and
nominal attributes
 Binary attribute: has two values or states but
no ordering relationships, e.g.,
 Gender: male and female.
 We use a confusion matrix to introduce the
distance functions/measures.
 Let the ith and jth data points be xi and xj
(vectors)
CS583, Bing Liu, UIC 49
Confusion matrix
CS583, Bing Liu, UIC 50
Symmetric binary attributes
 A binary attribute is symmetric if both of its
states (0 and 1) have equal importance, and
carry the same weights, e.g., male and
female of the attribute Gender
 Distance function: Simple Matching
Coefficient, proportion of mismatches of their
values
d
c
b
a
c
b
dist j
i





)
,
( x
x
CS583, Bing Liu, UIC 51
Symmetric binary attributes: example
CS583, Bing Liu, UIC 52
Asymmetric binary attributes
 Asymmetric: if one of the states is more
important or more valuable than the other.
 By convention, state 1 represents the more
important state, which is typically the rare or
infrequent state.
 Jaccard coefficient is a popular measure
 We can have some variations, adding weights
c
b
a
c
b
dist j
i




)
,
( x
x
CS583, Bing Liu, UIC 53
Nominal attributes
 Nominal attributes: with more than two states
or values.
 the commonly used distance measure is also
based on the simple matching method.
 Given two data points xi and xj, let the number of
attributes be r, and the number of values that
match in xi and xj be q.
r
q
r
dist j
i


)
,
( x
x
CS583, Bing Liu, UIC 54
Distance function for text documents
 A text document consists of a sequence of
sentences and each sentence consists of a
sequence of words.
 To simplify: a document is usually considered a
“bag” of words in document clustering.
 Sequence and position of words are ignored.
 A document is represented with a vector just like a
normal data point.
 It is common to use similarity to compare two
documents rather than distance.
 The most commonly used similarity function is the cosine
similarity. We will study this later.
CS583, Bing Liu, UIC 55
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 56
Data standardization
 In the Euclidean space, standardization of attributes
is recommended so that all attributes can have equal
impact on the computation of distances.
 Consider the following pair of data points
 xi: (0.1, 20) and xj: (0.9, 720).
 The distance is almost completely dominated by
(720-20) = 700.
 Standardize attributes: to force the attributes to have
a common value range
,
700.000457
)
20
720
(
)
1
.
0
9
.
0
(
)
,
( 2
2





j
i
dist x
x
CS583, Bing Liu, UIC 57
Interval-scaled attributes
 Their values are real numbers following a
linear scale.
 The difference in Age between 10 and 20 is the
same as that between 40 and 50.
 The key idea is that intervals keep the same
importance through out the scale
 Two main approaches to standardize interval
scaled attributes, range and z-score. f is an
attribute
,
)
min(
)
max(
)
min(
)
(
f
f
f
x
x
range
if
if



CS583, Bing Liu, UIC 58
Interval-scaled attributes (cont …)
 Z-score: transforms the attribute values so that they
have a mean of zero and a mean absolute
deviation of 1. The mean absolute deviation of
attribute f, denoted by sf, is computed as follows
 ,
|
|
...
|
|
|
|
1
2
1 f
nf
f
f
f
f
f m
x
m
x
m
x
n
s 






 ,
...
1
2
1 nf
f
f
f x
x
x
n
m 



.
)
(
f
f
if
if
s
m
x
x
z


Z-score:
CS583, Bing Liu, UIC 59
Ratio-scaled attributes
 Numeric attributes, but unlike interval-scaled
attributes, their scales are exponential,
 For example, the total amount of
microorganisms that evolve in a time t is
approximately given by
AeBt
,
 where A and B are some positive constants.
 Do log transform:
 Then treat it as an interval-scaled attribuete
)
log( if
x
CS583, Bing Liu, UIC 60
Nominal attributes
 Sometime, we need to transform nominal
attributes to numeric attributes.
 Transform nominal attributes to binary
attributes.
 The number of values of a nominal attribute is v.
 Create v binary attributes to represent them.
 If a data instance for the nominal attribute takes a
particular value, the value of its binary attribute is
set to 1, otherwise it is set to 0.
 The resulting binary attributes can be used as
numeric attributes, with two values, 0 and 1.
CS583, Bing Liu, UIC 61
Nominal attributes: an example
 Nominal attribute fruit: has three values,
 Apple, Orange, and Pear
 We create three binary attributes called,
Apple, Orange, and Pear in the new data.
 If a particular data instance in the original
data has Apple as the value for fruit,
 then in the transformed data, we set the value of
the attribute Apple to 1, and
 the values of attributes Orange and Pear to 0
CS583, Bing Liu, UIC 62
Ordinal attributes
 Ordinal attribute: an ordinal attribute is like a
nominal attribute, but its values have a
numerical ordering. E.g.,
 Age attribute with values: Young, MiddleAge and
Old. They are ordered.
 Common approach to standardization: treat is as
an interval-scaled attribute.
CS583, Bing Liu, UIC 63
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 64
Mixed attributes
 Our distance functions given are for data with
all numeric attributes, or all nominal
attributes, etc.
 Practical data has different types:
 Any subset of the 6 types of attributes,
 interval-scaled,
 symmetric binary,
 asymmetric binary,
 ratio-scaled,
 ordinal and
 nominal
CS583, Bing Liu, UIC 65
Convert to a single type
 One common way of dealing with mixed
attributes is to
 Decide the dominant attribute type, and
 Convert the other types to this type.
 E.g, if most attributes in a data set are
interval-scaled,
 we convert ordinal attributes and ratio-scaled
attributes to interval-scaled attributes.
 It is also appropriate to treat symmetric binary
attributes as interval-scaled attributes.
CS583, Bing Liu, UIC 66
Convert to a single type (cont …)
 It does not make much sense to convert a
nominal attribute or an asymmetric binary
attribute to an interval-scaled attribute,
 but it is still frequently done in practice by
assigning some numbers to them according to
some hidden ordering, e.g., prices of the fruits
 Alternatively, a nominal attribute can be
converted to a set of (symmetric) binary
attributes, which are then treated as numeric
attributes.
CS583, Bing Liu, UIC 67
Combining individual distances
 This approach computes
individual attribute
distances and then
combine them. 



 r
f
f
ij
f
ij
r
f
f
ij
j
i
d
dist
1
1
)
,
(


x
x
CS583, Bing Liu, UIC 68
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 69
How to choose a clustering algorithm
 Clustering research has a long history. A vast
collection of algorithms are available.
 We only introduced several main algorithms.
 Choosing the “best” algorithm is a challenge.
 Every algorithm has limitations and works well with certain
data distributions.
 It is very hard, if not impossible, to know what distribution
the application data follow. The data may not fully follow
any “ideal” structure or distribution required by the
algorithms.
 One also needs to decide how to standardize the data, to
choose a suitable distance function and to select other
parameter values.
CS583, Bing Liu, UIC 70
Choose a clustering algorithm (cont …)
 Due to these complexities, the common practice is
to
 run several algorithms using different distance functions
and parameter settings, and
 then carefully analyze and compare the results.
 The interpretation of the results must be based on
insight into the meaning of the original data together
with knowledge of the algorithms used.
 Clustering is highly application dependent and to
certain extent subjective (personal preferences).
CS583, Bing Liu, UIC 71
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 72
Cluster Evaluation: hard problem
 The quality of a clustering is very hard to
evaluate because
 We do not know the correct clusters
 Some methods are used:
 User inspection
 Study centroids, and spreads
 Rules from a decision tree.
 For text documents, one can read some documents in
clusters.
CS583, Bing Liu, UIC 73
Cluster evaluation: ground truth
 We use some labeled data (for classification)
 Assumption: Each class is a cluster.
 After clustering, a confusion matrix is
constructed. From the matrix, we compute
various measurements, entropy, purity,
precision, recall and F-score.
 Let the classes in the data D be C = (c1, c2, …, ck).
The clustering method produces k clusters, which
divides D into k disjoint subsets, D1, D2, …, Dk.
CS583, Bing Liu, UIC 74
Evaluation measures: Entropy
CS583, Bing Liu, UIC 75
Evaluation measures: purity
CS583, Bing Liu, UIC 76
An example
CS583, Bing Liu, UIC 77
A remark about ground truth evaluation
 Commonly used to compare different clustering
algorithms.
 A real-life data set for clustering has no class labels.
 Thus although an algorithm may perform very well on some
labeled data sets, no guarantee that it will perform well on
the actual application data at hand.
 The fact that it performs well on some label data
sets does give us some confidence of the quality of
the algorithm.
 This evaluation method is said to be based on
external data or information.
CS583, Bing Liu, UIC 78
Evaluation based on internal information
 Intra-cluster cohesion (compactness):
 Cohesion measures how near the data points in a
cluster are to the cluster centroid.
 Sum of squared error (SSE) is a commonly used
measure.
 Inter-cluster separation (isolation):
 Separation means that different cluster centroids
should be far away from one another.
 In most applications, expert judgments are
still the key.
CS583, Bing Liu, UIC 79
Indirect evaluation
 In some applications, clustering is not the primary
task, but used to help perform another task.
 We can use the performance on the primary task to
compare clustering methods.
 For instance, in an application, the primary task is to
provide recommendations on book purchasing to
online shoppers.
 If we can cluster books according to their features, we
might be able to provide better recommendations.
 We can evaluate different clustering algorithms based on
how well they help with the recommendation task.
 Here, we assume that the recommendation can be reliably
evaluated.
CS583, Bing Liu, UIC 80
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 81
Holes in data space
 All the clustering algorithms only group data.
 Clusters only represent one aspect of the
knowledge in the data.
 Another aspect that we have not studied is
the holes.
 A hole is a region in the data space that contains
no or few data points. Reasons:
 insufficient data in certain areas, and/or
 certain attribute-value combinations are not possible or
seldom occur.
CS583, Bing Liu, UIC 82
Holes are useful too
 Although clusters are important, holes in the
space can be quite useful too.
 For example, in a disease database
 we may find that certain symptoms and/or test
values do not occur together, or
 when a certain medicine is used, some test
values never go beyond certain ranges.
 Discovery of such information can be
important in medical domains because
 it could mean the discovery of a cure to a disease
or some biological laws.
CS583, Bing Liu, UIC 83
Data regions and empty regions
 Given a data space, separate
 data regions (clusters) and
 empty regions (holes, with few or no data points).
 Use a supervised learning technique, i.e.,
decision tree induction, to separate the two
types of regions.
 Due to the use of a supervised learning
method for an unsupervised learning task,
 an interesting connection is made between the
two types of learning paradigms.
CS583, Bing Liu, UIC 84
Supervised learning for unsupervised
learning
 Decision tree algorithm is not directly applicable.
 it needs at least two classes of data.
 A clustering data set has no class label for each data point.
 The problem can be dealt with by a simple idea.
 Regard each point in the data set to have a class label Y.
 Assume that the data space is uniformly distributed with
another type of points, called non-existing points. We
give them the class, N.
 With the N points added, the problem of partitioning
the data space into data and empty regions
becomes a supervised classification problem.
CS583, Bing Liu, UIC 85
An example
 A decision tree method is used for
partitioning in (B).
CS583, Bing Liu, UIC 86
Can it done without adding N points?
 Yes.
 Physically adding N points increases the size
of the data and thus the running time.
 More importantly: it is unlikely that we can
have points truly uniformly distributed in a
high dimensional space as we would need an
exponential number of points.
 Fortunately, no need to physically add any N
points.
 We can compute them when needed
CS583, Bing Liu, UIC 87
Characteristics of the approach
 It provides representations of the resulting data and
empty regions in terms of hyper-rectangles, or rules.
 It detects outliers automatically. Outliers are data
points in an empty region.
 It may not use all attributes in the data just as in a
normal decision tree for supervised learning.
 It can automatically determine what attributes are useful.
Subspace clustering …
 Drawback: data regions of irregular shapes are hard
to handle since decision tree learning only generates
hyper-rectangles (formed by axis-parallel hyper-
planes), which are rules.
CS583, Bing Liu, UIC 88
Building the Tree
 The main computation in decision tree building is to
evaluate entropy (for information gain):
 Can it be evaluated without adding N points? Yes.
 Pr(cj) is the probability of class cj in data set D, and |
C| is the number of classes, Y and N (2 classes).
 To compute Pr(cj), we only need the number of Y (data)
points and the number of N (non-existing) points.
 We already have Y (or data) points, and we can compute the
number of N points on the fly. Simple: as we assume that the
N points are uniformly distributed in the space.
)
Pr(
log
)
Pr(
)
(
|
|
1
2 j
C
j
j c
c
D
entropy 



CS583, Bing Liu, UIC 89
An example
 The space has 25 data (Y) points and 25 N points.
Assume the system is evaluating a possible cut S.
 # N points on the left of S is 25 * 4/10 = 10. The number of
Y points is 3.
 Likewise, # N points on the right of S is 15 (= 25 - 10).The
number of Y points is 22.
 With these numbers, entropy can be computed.
CS583, Bing Liu, UIC 90
How many N points to add?
 We add a different number of N points at each
different node.
 The number of N points for the current node E is
determined by the following rule (note that at the root
node, the number of inherited N points is 0):
CS583, Bing Liu, UIC 91
An example
CS583, Bing Liu, UIC 92
How many N points to add? (cont…)
 Basically, for a Y node (which has more data
points), we increase N points so that
#Y = #N
 The number of N points is not reduced if the
current node is an N node (an N node has
more N points than Y points).
 A reduction may cause outlier Y points to form Y
nodes (a Y node has an equal number of Y points
as N points or more).
 Then data regions and empty regions may not be
separated well.
CS583, Bing Liu, UIC 93
Building the decision tree
 Using the above ideas, a decision tree can be
built to separate data regions and empty
regions.
 The actual method is more sophisticated as a
few other tricky issues need to be handled in
 tree building and
 tree pruning.
CS583, Bing Liu, UIC 94
Road map
 Basic concepts
 K-means algorithm
 Representation of clusters
 Hierarchical clustering
 Distance functions
 Data standardization
 Handling mixed attributes
 Which clustering algorithm to use?
 Cluster evaluation
 Discovering holes and data regions
 Summary
CS583, Bing Liu, UIC 95
Summary
 Clustering is has along history and still active
 There are a huge number of clustering algorithms
 More are still coming every year.
 We only introduced several main algorithms. There are
many others, e.g.,
 density based algorithm, sub-space clustering, scale-up
methods, neural networks based methods, fuzzy clustering,
co-clustering, etc.
 Clustering is hard to evaluate, but very useful in
practice. This partially explains why there are still a
large number of clustering algorithms being devised
every year.
 Clustering is highly application dependent and to some
extent subjective.

More Related Content

PPT
CS583-unsupervised-learning.ppt
PPT
CS583-unsupervised-learning.ppt learning
PPT
Lecture11_ Intro to clustering and K-means algorithm.ppt
PPT
Lecture11_ Intro to clustering and K-means algorithm.ppt
PPT
15857 cse422 unsupervised-learning
PPT
K_MeansK_MeansK_MeansK_MeansK_MeansK_MeansK_Means.ppt
PDF
clustering using different methods in .pdf
PDF
[ML]-Unsupervised-learning_Unit2.ppt.pdf
CS583-unsupervised-learning.ppt
CS583-unsupervised-learning.ppt learning
Lecture11_ Intro to clustering and K-means algorithm.ppt
Lecture11_ Intro to clustering and K-means algorithm.ppt
15857 cse422 unsupervised-learning
K_MeansK_MeansK_MeansK_MeansK_MeansK_MeansK_Means.ppt
clustering using different methods in .pdf
[ML]-Unsupervised-learning_Unit2.ppt.pdf

Similar to unsupervised-learning AI information and analytics (20)

PPTX
Unsupervised Learning.pptx
PDF
Machine Learning - Clustering
PPTX
Unsupervised%20Learninffffg (2).pptx. application
PPT
Chap8 basic cluster_analysis
PPTX
machine learning - Clustering in R
PPTX
Poggi analytics - clustering - 1
PDF
Chapter#04[Part#01]K-Means Clusterig.pdf
PPT
cs4811-ch10c-clusuughv hgyf yfyf tering.ppt
PPT
UnSupervised Machincs4811-ch23a-clustering.ppt
PPT
cs4811-ch23a-K-means clustering algorithm .ppt
PPTX
Unsupervised learning (clustering)
PDF
iiit delhi unsupervised pdf.pdf
PPTX
Unsupervised learning Modi.pptx
PPT
26-Clustering MTech-2017.ppt
PPT
Clustering_Unsupervised learning Unsupervised learning.ppt
PDF
Clustering.pdf
PPTX
Unsupervised learning Algorithms and Assumptions
DOCX
Neural nw k means
PDF
Best data science training, best data science training institute in Chennai
Unsupervised Learning.pptx
Machine Learning - Clustering
Unsupervised%20Learninffffg (2).pptx. application
Chap8 basic cluster_analysis
machine learning - Clustering in R
Poggi analytics - clustering - 1
Chapter#04[Part#01]K-Means Clusterig.pdf
cs4811-ch10c-clusuughv hgyf yfyf tering.ppt
UnSupervised Machincs4811-ch23a-clustering.ppt
cs4811-ch23a-K-means clustering algorithm .ppt
Unsupervised learning (clustering)
iiit delhi unsupervised pdf.pdf
Unsupervised learning Modi.pptx
26-Clustering MTech-2017.ppt
Clustering_Unsupervised learning Unsupervised learning.ppt
Clustering.pdf
Unsupervised learning Algorithms and Assumptions
Neural nw k means
Best data science training, best data science training institute in Chennai
Ad

Recently uploaded (20)

PDF
Ableton Live Suite for MacOS Crack Full Download (Latest 2025)
PDF
AI Guide for Business Growth - Arna Softech
PDF
E-Commerce Website Development Companyin india
PDF
Top 10 Software Development Trends to Watch in 2025 🚀.pdf
PPTX
Computer Software - Technology and Livelihood Education
PDF
Website Design Services for Small Businesses.pdf
PDF
novaPDF Pro 11.9.482 Crack + License Key [Latest 2025]
PDF
Multiverse AI Review 2025: Access All TOP AI Model-Versions!
PDF
Microsoft Office 365 Crack Download Free
PPTX
Cybersecurity-and-Fraud-Protecting-Your-Digital-Life.pptx
PDF
Topaz Photo AI Crack New Download (Latest 2025)
PDF
Introduction to Ragic - #1 No Code Tool For Digitalizing Your Business Proces...
PPTX
"Secure File Sharing Solutions on AWS".pptx
PPTX
Introduction to Windows Operating System
PDF
DNT Brochure 2025 – ISV Solutions @ D365
PPTX
GSA Content Generator Crack (2025 Latest)
PPTX
Matchmaking for JVMs: How to Pick the Perfect GC Partner
PDF
AI/ML Infra Meetup | Beyond S3's Basics: Architecting for AI-Native Data Access
PPTX
Full-Stack Developer Courses That Actually Land You Jobs
PPTX
MLforCyber_MLDataSetsandFeatures_Presentation.pptx
Ableton Live Suite for MacOS Crack Full Download (Latest 2025)
AI Guide for Business Growth - Arna Softech
E-Commerce Website Development Companyin india
Top 10 Software Development Trends to Watch in 2025 🚀.pdf
Computer Software - Technology and Livelihood Education
Website Design Services for Small Businesses.pdf
novaPDF Pro 11.9.482 Crack + License Key [Latest 2025]
Multiverse AI Review 2025: Access All TOP AI Model-Versions!
Microsoft Office 365 Crack Download Free
Cybersecurity-and-Fraud-Protecting-Your-Digital-Life.pptx
Topaz Photo AI Crack New Download (Latest 2025)
Introduction to Ragic - #1 No Code Tool For Digitalizing Your Business Proces...
"Secure File Sharing Solutions on AWS".pptx
Introduction to Windows Operating System
DNT Brochure 2025 – ISV Solutions @ D365
GSA Content Generator Crack (2025 Latest)
Matchmaking for JVMs: How to Pick the Perfect GC Partner
AI/ML Infra Meetup | Beyond S3's Basics: Architecting for AI-Native Data Access
Full-Stack Developer Courses That Actually Land You Jobs
MLforCyber_MLDataSetsandFeatures_Presentation.pptx
Ad

unsupervised-learning AI information and analytics

  • 2. CS583, Bing Liu, UIC 2 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 3. CS583, Bing Liu, UIC 3 Supervised learning vs. unsupervised learning  Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute.  These patterns are then utilized to predict the values of the target attribute in future data instances.  Unsupervised learning: The data have no target attribute.  We want to explore the data to find some intrinsic structures in them.
  • 4. CS583, Bing Liu, UIC 4 Clustering  Clustering is a technique for finding similarity groups in data, called clusters. I.e.,  it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.  Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.  Due to historical reasons, clustering is often considered synonymous with unsupervised learning.  In fact, association rule mining is also unsupervised  This chapter focuses on clustering.
  • 5. CS583, Bing Liu, UIC 5 An illustration  The data set has three natural groups of data points, i.e., 3 natural clusters.
  • 6. CS583, Bing Liu, UIC 6 What is clustering for?  Let us see some real-life examples  Example 1: groups people of similar sizes together to make “small”, “medium” and “large” T-Shirts.  Tailor-made for each person: too expensive  One-size-fits-all: does not fit all.  Example 2: In marketing, segment customers according to their similarities  To do targeted marketing.
  • 7. CS583, Bing Liu, UIC 7 What is clustering for? (cont…)  Example 3: Given a collection of text documents, we want to organize them according to their content similarities,  To produce a topic hierarchy  In fact, clustering is one of the most utilized data mining techniques.  It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.  In recent years, due to the rapid increase of online documents, text clustering becomes important.
  • 8. CS583, Bing Liu, UIC 8 Aspects of clustering  A clustering algorithm  Partitional clustering  Hierarchical clustering  …  A distance (similarity, or dissimilarity) function  Clustering quality  Inter-clusters distance  maximized  Intra-clusters distance  minimized  The quality of a clustering result depends on the algorithm, the distance function, and the application.
  • 9. CS583, Bing Liu, UIC 9 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 10. CS583, Bing Liu, UIC 10 K-means clustering  K-means is a partitional clustering algorithm  Let the set of data points (or instances) D be {x1, x2, …, xn}, where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X  Rr , and r is the number of attributes (dimensions) in the data.  The k-means algorithm partitions the given data into k clusters.  Each cluster has a cluster center, called centroid.  k is specified by the user
  • 11. CS583, Bing Liu, UIC 11 K-means algorithm  Given k, the k-means algorithm works as follows: 1) Randomly choose k data points (seeds) to be the initial centroids, cluster centers 2) Assign each data point to the closest centroid 3) Re-compute the centroids using the current cluster memberships. 4) If a convergence criterion is not met, go to 2).
  • 12. CS583, Bing Liu, UIC 12 K-means algorithm – (cont …)
  • 13. CS583, Bing Liu, UIC 13 Stopping/convergence criterion 1. no (or minimum) re-assignments of data points to different clusters, 2. no (or minimum) change of centroids, or 3. minimum decrease in the sum of squared error (SSE),  Ci is the jth cluster, mj is the centroid of cluster Cj (the mean vector of all the data points in Cj), and dist(x, mj) is the distance between data point x and centroid mj.     k j C j j dist SSE 1 2 ) , ( x m x (1)
  • 14. CS583, Bing Liu, UIC 14 An example + +
  • 15. CS583, Bing Liu, UIC 15 An example (cont …)
  • 16. CS583, Bing Liu, UIC 16 An example distance function
  • 17. CS583, Bing Liu, UIC 17 A disk version of k-means  K-means can be implemented with data on disk  In each iteration, it scans the data once.  as the centroids can be computed incrementally  It can be used to cluster large datasets that do not fit in main memory  We need to control the number of iterations  In practice, a limited is set (< 50).  Not the best method. There are other scale- up algorithms, e.g., BIRCH.
  • 18. CS583, Bing Liu, UIC 18 A disk version of k-means (cont …)
  • 19. CS583, Bing Liu, UIC 19 Strengths of k-means  Strengths:  Simple: easy to understand and to implement  Efficient: Time complexity: O(tkn), where n is the number of data points, k is the number of clusters, and t is the number of iterations.  Since both k and t are small. k-means is considered a linear algorithm.  K-means is the most popular clustering algorithm.  Note that: it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.
  • 20. CS583, Bing Liu, UIC 20 Weaknesses of k-means  The algorithm is only applicable if the mean is defined.  For categorical data, k-mode - the centroid is represented by most frequent values.  The user needs to specify k.  The algorithm is sensitive to outliers  Outliers are data points that are very far away from other data points.  Outliers could be errors in the data recording or some special data points with very different values.
  • 21. CS583, Bing Liu, UIC 21 Weaknesses of k-means: Problems with outliers
  • 22. CS583, Bing Liu, UIC 22 Weaknesses of k-means: To deal with outliers  One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.  To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.  Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.  Assign the rest of the data points to the clusters by distance or similarity comparison, or classification
  • 23. CS583, Bing Liu, UIC 23 Weaknesses of k-means (cont …)  The algorithm is sensitive to initial seeds.
  • 24. CS583, Bing Liu, UIC 24 Weaknesses of k-means (cont …)  If we use different seeds: good results  There are some methods to help choose good seeds
  • 25. CS583, Bing Liu, UIC 25 Weaknesses of k-means (cont …)  The k-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres). +
  • 26. CS583, Bing Liu, UIC 26 K-means summary  Despite weaknesses, k-means is still the most popular algorithm due to its simplicity, efficiency and  other clustering algorithms have their own lists of weaknesses.  No clear evidence that any other clustering algorithm performs better in general  although they may be more suitable for some specific types of data or applications.  Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!
  • 27. CS583, Bing Liu, UIC 27 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 28. CS583, Bing Liu, UIC 28 Common ways to represent clusters  Use the centroid of each cluster to represent the cluster.  compute the radius and  standard deviation of the cluster to determine its spread in each dimension  The centroid representation alone works well if the clusters are of the hyper-spherical shape.  If clusters are elongated or are of other shapes, centroids are not sufficient
  • 29. CS583, Bing Liu, UIC 29 Using classification model  All the data points in a cluster are regarded to have the same class label, e.g., the cluster ID.  run a supervised learning algorithm on the data to find a classification model.
  • 30. CS583, Bing Liu, UIC 30 Use frequent values to represent cluster  This method is mainly for clustering of categorical data (e.g., k-modes clustering).  Main method used in text clustering, where a small set of frequent words in each cluster is selected to represent the cluster.
  • 31. CS583, Bing Liu, UIC 31 Clusters of arbitrary shapes  Hyper-elliptical and hyper- spherical clusters are usually easy to represent, using their centroid together with spreads.  Irregular shape clusters are hard to represent. They may not be useful in some applications.  Using centroids are not suitable (upper figure) in general  K-means clusters may be more useful (lower figure), e.g., for making 2 size T-shirts.
  • 32. CS583, Bing Liu, UIC 32 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 33. CS583, Bing Liu, UIC 33 Hierarchical Clustering  Produce a nested sequence of clusters, a tree, also called Dendrogram.
  • 34. CS583, Bing Liu, UIC 34 Types of hierarchical clustering  Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and  merges the most similar (or nearest) pair of clusters  stops when all the data points are merged into a single cluster (i.e., the root cluster).  Divisive (top down) clustering: It starts with all data points in one cluster, the root.  Splits the root into a set of child clusters. Each child cluster is recursively divided further  stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point
  • 35. CS583, Bing Liu, UIC 35 Agglomerative clustering It is more popular then divisive methods.  At the beginning, each data point forms a cluster (also called a node).  Merge nodes/clusters that have the least distance.  Go on merging  Eventually all nodes belong to one cluster
  • 36. CS583, Bing Liu, UIC 36 Agglomerative clustering algorithm
  • 37. CS583, Bing Liu, UIC 37 An example: working of the algorithm
  • 38. CS583, Bing Liu, UIC 38 Measuring the distance of two clusters  A few ways to measure distances of two clusters.  Results in different variations of the algorithm.  Single link  Complete link  Average link  Centroids  …
  • 39. CS583, Bing Liu, UIC 39 Single link method  The distance between two clusters is the distance between two closest data points in the two clusters, one data point from each cluster.  It can find arbitrarily shaped clusters, but  It may cause the undesirable “chain effect” by noisy points Two natural clusters are split into two
  • 40. CS583, Bing Liu, UIC 40 Complete link method  The distance between two clusters is the distance of two furthest data points in the two clusters.  It is sensitive to outliers because they are far away
  • 41. CS583, Bing Liu, UIC 41 Average link and centroid methods  Average link: A compromise between  the sensitivity of complete-link clustering to outliers and  the tendency of single-link clustering to form long chains that do not correspond to the intuitive notion of clusters as compact, spherical objects.  In this method, the distance between two clusters is the average distance of all pair-wise distances between the data points in two clusters.  Centroid method: In this method, the distance between two clusters is the distance between their centroids
  • 42. CS583, Bing Liu, UIC 42 The complexity  All the algorithms are at least O(n2 ). n is the number of data points.  Single link can be done in O(n2 ).  Complete and average links can be done in O(n2 logn).  Due the complexity, hard to use for large data sets.  Sampling  Scale-up methods (e.g., BIRCH).
  • 43. CS583, Bing Liu, UIC 43 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 44. CS583, Bing Liu, UIC 44 Distance functions  Key to clustering. “similarity” and “dissimilarity” can also commonly used terms.  There are numerous distance functions for  Different types of data  Numeric data  Nominal data  Different specific applications
  • 45. CS583, Bing Liu, UIC 45 Distance functions for numeric attributes  Most commonly used functions are  Euclidean distance and  Manhattan (city block) distance  We denote distance with: dist(xi, xj), where xi and xj are data points (vectors)  They are special cases of Minkowski distance. h is positive integer. h h jr ir h j i h j i j i x x x x x x dist 1 2 2 1 1 ) ) ( ... ) ( ) (( ) , (        x x
  • 46. CS583, Bing Liu, UIC 46 Euclidean distance and Manhattan distance  If h = 2, it is the Euclidean distance  If h = 1, it is the Manhattan distance  Weighted Euclidean distance 2 2 2 2 2 1 1 ) ( ... ) ( ) ( ) , ( jr ir j i j i j i x x x x x x dist        x x | | ... | | | | ) , ( 2 2 1 1 jr ir j i j i j i x x x x x x dist        x x 2 2 2 2 2 2 1 1 1 ) ( ... ) ( ) ( ) , ( jr ir r j i j i j i x x w x x w x x w dist        x x
  • 47. CS583, Bing Liu, UIC 47 Squared distance and Chebychev distance  Squared Euclidean distance: to place progressively greater weight on data points that are further apart.  Chebychev distance: one wants to define two data points as "different" if they are different on any one of the attributes. 2 2 2 2 2 1 1 ) ( ... ) ( ) ( ) , ( jr ir j i j i j i x x x x x x dist        x x |) | ..., |, | |, max(| ) , ( 2 2 1 1 jr ir j i j i j i x x x x x x dist     x x
  • 48. CS583, Bing Liu, UIC 48 Distance functions for binary and nominal attributes  Binary attribute: has two values or states but no ordering relationships, e.g.,  Gender: male and female.  We use a confusion matrix to introduce the distance functions/measures.  Let the ith and jth data points be xi and xj (vectors)
  • 49. CS583, Bing Liu, UIC 49 Confusion matrix
  • 50. CS583, Bing Liu, UIC 50 Symmetric binary attributes  A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender  Distance function: Simple Matching Coefficient, proportion of mismatches of their values d c b a c b dist j i      ) , ( x x
  • 51. CS583, Bing Liu, UIC 51 Symmetric binary attributes: example
  • 52. CS583, Bing Liu, UIC 52 Asymmetric binary attributes  Asymmetric: if one of the states is more important or more valuable than the other.  By convention, state 1 represents the more important state, which is typically the rare or infrequent state.  Jaccard coefficient is a popular measure  We can have some variations, adding weights c b a c b dist j i     ) , ( x x
  • 53. CS583, Bing Liu, UIC 53 Nominal attributes  Nominal attributes: with more than two states or values.  the commonly used distance measure is also based on the simple matching method.  Given two data points xi and xj, let the number of attributes be r, and the number of values that match in xi and xj be q. r q r dist j i   ) , ( x x
  • 54. CS583, Bing Liu, UIC 54 Distance function for text documents  A text document consists of a sequence of sentences and each sentence consists of a sequence of words.  To simplify: a document is usually considered a “bag” of words in document clustering.  Sequence and position of words are ignored.  A document is represented with a vector just like a normal data point.  It is common to use similarity to compare two documents rather than distance.  The most commonly used similarity function is the cosine similarity. We will study this later.
  • 55. CS583, Bing Liu, UIC 55 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 56. CS583, Bing Liu, UIC 56 Data standardization  In the Euclidean space, standardization of attributes is recommended so that all attributes can have equal impact on the computation of distances.  Consider the following pair of data points  xi: (0.1, 20) and xj: (0.9, 720).  The distance is almost completely dominated by (720-20) = 700.  Standardize attributes: to force the attributes to have a common value range , 700.000457 ) 20 720 ( ) 1 . 0 9 . 0 ( ) , ( 2 2      j i dist x x
  • 57. CS583, Bing Liu, UIC 57 Interval-scaled attributes  Their values are real numbers following a linear scale.  The difference in Age between 10 and 20 is the same as that between 40 and 50.  The key idea is that intervals keep the same importance through out the scale  Two main approaches to standardize interval scaled attributes, range and z-score. f is an attribute , ) min( ) max( ) min( ) ( f f f x x range if if   
  • 58. CS583, Bing Liu, UIC 58 Interval-scaled attributes (cont …)  Z-score: transforms the attribute values so that they have a mean of zero and a mean absolute deviation of 1. The mean absolute deviation of attribute f, denoted by sf, is computed as follows  , | | ... | | | | 1 2 1 f nf f f f f f m x m x m x n s         , ... 1 2 1 nf f f f x x x n m     . ) ( f f if if s m x x z   Z-score:
  • 59. CS583, Bing Liu, UIC 59 Ratio-scaled attributes  Numeric attributes, but unlike interval-scaled attributes, their scales are exponential,  For example, the total amount of microorganisms that evolve in a time t is approximately given by AeBt ,  where A and B are some positive constants.  Do log transform:  Then treat it as an interval-scaled attribuete ) log( if x
  • 60. CS583, Bing Liu, UIC 60 Nominal attributes  Sometime, we need to transform nominal attributes to numeric attributes.  Transform nominal attributes to binary attributes.  The number of values of a nominal attribute is v.  Create v binary attributes to represent them.  If a data instance for the nominal attribute takes a particular value, the value of its binary attribute is set to 1, otherwise it is set to 0.  The resulting binary attributes can be used as numeric attributes, with two values, 0 and 1.
  • 61. CS583, Bing Liu, UIC 61 Nominal attributes: an example  Nominal attribute fruit: has three values,  Apple, Orange, and Pear  We create three binary attributes called, Apple, Orange, and Pear in the new data.  If a particular data instance in the original data has Apple as the value for fruit,  then in the transformed data, we set the value of the attribute Apple to 1, and  the values of attributes Orange and Pear to 0
  • 62. CS583, Bing Liu, UIC 62 Ordinal attributes  Ordinal attribute: an ordinal attribute is like a nominal attribute, but its values have a numerical ordering. E.g.,  Age attribute with values: Young, MiddleAge and Old. They are ordered.  Common approach to standardization: treat is as an interval-scaled attribute.
  • 63. CS583, Bing Liu, UIC 63 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 64. CS583, Bing Liu, UIC 64 Mixed attributes  Our distance functions given are for data with all numeric attributes, or all nominal attributes, etc.  Practical data has different types:  Any subset of the 6 types of attributes,  interval-scaled,  symmetric binary,  asymmetric binary,  ratio-scaled,  ordinal and  nominal
  • 65. CS583, Bing Liu, UIC 65 Convert to a single type  One common way of dealing with mixed attributes is to  Decide the dominant attribute type, and  Convert the other types to this type.  E.g, if most attributes in a data set are interval-scaled,  we convert ordinal attributes and ratio-scaled attributes to interval-scaled attributes.  It is also appropriate to treat symmetric binary attributes as interval-scaled attributes.
  • 66. CS583, Bing Liu, UIC 66 Convert to a single type (cont …)  It does not make much sense to convert a nominal attribute or an asymmetric binary attribute to an interval-scaled attribute,  but it is still frequently done in practice by assigning some numbers to them according to some hidden ordering, e.g., prices of the fruits  Alternatively, a nominal attribute can be converted to a set of (symmetric) binary attributes, which are then treated as numeric attributes.
  • 67. CS583, Bing Liu, UIC 67 Combining individual distances  This approach computes individual attribute distances and then combine them.      r f f ij f ij r f f ij j i d dist 1 1 ) , (   x x
  • 68. CS583, Bing Liu, UIC 68 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 69. CS583, Bing Liu, UIC 69 How to choose a clustering algorithm  Clustering research has a long history. A vast collection of algorithms are available.  We only introduced several main algorithms.  Choosing the “best” algorithm is a challenge.  Every algorithm has limitations and works well with certain data distributions.  It is very hard, if not impossible, to know what distribution the application data follow. The data may not fully follow any “ideal” structure or distribution required by the algorithms.  One also needs to decide how to standardize the data, to choose a suitable distance function and to select other parameter values.
  • 70. CS583, Bing Liu, UIC 70 Choose a clustering algorithm (cont …)  Due to these complexities, the common practice is to  run several algorithms using different distance functions and parameter settings, and  then carefully analyze and compare the results.  The interpretation of the results must be based on insight into the meaning of the original data together with knowledge of the algorithms used.  Clustering is highly application dependent and to certain extent subjective (personal preferences).
  • 71. CS583, Bing Liu, UIC 71 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 72. CS583, Bing Liu, UIC 72 Cluster Evaluation: hard problem  The quality of a clustering is very hard to evaluate because  We do not know the correct clusters  Some methods are used:  User inspection  Study centroids, and spreads  Rules from a decision tree.  For text documents, one can read some documents in clusters.
  • 73. CS583, Bing Liu, UIC 73 Cluster evaluation: ground truth  We use some labeled data (for classification)  Assumption: Each class is a cluster.  After clustering, a confusion matrix is constructed. From the matrix, we compute various measurements, entropy, purity, precision, recall and F-score.  Let the classes in the data D be C = (c1, c2, …, ck). The clustering method produces k clusters, which divides D into k disjoint subsets, D1, D2, …, Dk.
  • 74. CS583, Bing Liu, UIC 74 Evaluation measures: Entropy
  • 75. CS583, Bing Liu, UIC 75 Evaluation measures: purity
  • 76. CS583, Bing Liu, UIC 76 An example
  • 77. CS583, Bing Liu, UIC 77 A remark about ground truth evaluation  Commonly used to compare different clustering algorithms.  A real-life data set for clustering has no class labels.  Thus although an algorithm may perform very well on some labeled data sets, no guarantee that it will perform well on the actual application data at hand.  The fact that it performs well on some label data sets does give us some confidence of the quality of the algorithm.  This evaluation method is said to be based on external data or information.
  • 78. CS583, Bing Liu, UIC 78 Evaluation based on internal information  Intra-cluster cohesion (compactness):  Cohesion measures how near the data points in a cluster are to the cluster centroid.  Sum of squared error (SSE) is a commonly used measure.  Inter-cluster separation (isolation):  Separation means that different cluster centroids should be far away from one another.  In most applications, expert judgments are still the key.
  • 79. CS583, Bing Liu, UIC 79 Indirect evaluation  In some applications, clustering is not the primary task, but used to help perform another task.  We can use the performance on the primary task to compare clustering methods.  For instance, in an application, the primary task is to provide recommendations on book purchasing to online shoppers.  If we can cluster books according to their features, we might be able to provide better recommendations.  We can evaluate different clustering algorithms based on how well they help with the recommendation task.  Here, we assume that the recommendation can be reliably evaluated.
  • 80. CS583, Bing Liu, UIC 80 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 81. CS583, Bing Liu, UIC 81 Holes in data space  All the clustering algorithms only group data.  Clusters only represent one aspect of the knowledge in the data.  Another aspect that we have not studied is the holes.  A hole is a region in the data space that contains no or few data points. Reasons:  insufficient data in certain areas, and/or  certain attribute-value combinations are not possible or seldom occur.
  • 82. CS583, Bing Liu, UIC 82 Holes are useful too  Although clusters are important, holes in the space can be quite useful too.  For example, in a disease database  we may find that certain symptoms and/or test values do not occur together, or  when a certain medicine is used, some test values never go beyond certain ranges.  Discovery of such information can be important in medical domains because  it could mean the discovery of a cure to a disease or some biological laws.
  • 83. CS583, Bing Liu, UIC 83 Data regions and empty regions  Given a data space, separate  data regions (clusters) and  empty regions (holes, with few or no data points).  Use a supervised learning technique, i.e., decision tree induction, to separate the two types of regions.  Due to the use of a supervised learning method for an unsupervised learning task,  an interesting connection is made between the two types of learning paradigms.
  • 84. CS583, Bing Liu, UIC 84 Supervised learning for unsupervised learning  Decision tree algorithm is not directly applicable.  it needs at least two classes of data.  A clustering data set has no class label for each data point.  The problem can be dealt with by a simple idea.  Regard each point in the data set to have a class label Y.  Assume that the data space is uniformly distributed with another type of points, called non-existing points. We give them the class, N.  With the N points added, the problem of partitioning the data space into data and empty regions becomes a supervised classification problem.
  • 85. CS583, Bing Liu, UIC 85 An example  A decision tree method is used for partitioning in (B).
  • 86. CS583, Bing Liu, UIC 86 Can it done without adding N points?  Yes.  Physically adding N points increases the size of the data and thus the running time.  More importantly: it is unlikely that we can have points truly uniformly distributed in a high dimensional space as we would need an exponential number of points.  Fortunately, no need to physically add any N points.  We can compute them when needed
  • 87. CS583, Bing Liu, UIC 87 Characteristics of the approach  It provides representations of the resulting data and empty regions in terms of hyper-rectangles, or rules.  It detects outliers automatically. Outliers are data points in an empty region.  It may not use all attributes in the data just as in a normal decision tree for supervised learning.  It can automatically determine what attributes are useful. Subspace clustering …  Drawback: data regions of irregular shapes are hard to handle since decision tree learning only generates hyper-rectangles (formed by axis-parallel hyper- planes), which are rules.
  • 88. CS583, Bing Liu, UIC 88 Building the Tree  The main computation in decision tree building is to evaluate entropy (for information gain):  Can it be evaluated without adding N points? Yes.  Pr(cj) is the probability of class cj in data set D, and | C| is the number of classes, Y and N (2 classes).  To compute Pr(cj), we only need the number of Y (data) points and the number of N (non-existing) points.  We already have Y (or data) points, and we can compute the number of N points on the fly. Simple: as we assume that the N points are uniformly distributed in the space. ) Pr( log ) Pr( ) ( | | 1 2 j C j j c c D entropy    
  • 89. CS583, Bing Liu, UIC 89 An example  The space has 25 data (Y) points and 25 N points. Assume the system is evaluating a possible cut S.  # N points on the left of S is 25 * 4/10 = 10. The number of Y points is 3.  Likewise, # N points on the right of S is 15 (= 25 - 10).The number of Y points is 22.  With these numbers, entropy can be computed.
  • 90. CS583, Bing Liu, UIC 90 How many N points to add?  We add a different number of N points at each different node.  The number of N points for the current node E is determined by the following rule (note that at the root node, the number of inherited N points is 0):
  • 91. CS583, Bing Liu, UIC 91 An example
  • 92. CS583, Bing Liu, UIC 92 How many N points to add? (cont…)  Basically, for a Y node (which has more data points), we increase N points so that #Y = #N  The number of N points is not reduced if the current node is an N node (an N node has more N points than Y points).  A reduction may cause outlier Y points to form Y nodes (a Y node has an equal number of Y points as N points or more).  Then data regions and empty regions may not be separated well.
  • 93. CS583, Bing Liu, UIC 93 Building the decision tree  Using the above ideas, a decision tree can be built to separate data regions and empty regions.  The actual method is more sophisticated as a few other tricky issues need to be handled in  tree building and  tree pruning.
  • 94. CS583, Bing Liu, UIC 94 Road map  Basic concepts  K-means algorithm  Representation of clusters  Hierarchical clustering  Distance functions  Data standardization  Handling mixed attributes  Which clustering algorithm to use?  Cluster evaluation  Discovering holes and data regions  Summary
  • 95. CS583, Bing Liu, UIC 95 Summary  Clustering is has along history and still active  There are a huge number of clustering algorithms  More are still coming every year.  We only introduced several main algorithms. There are many others, e.g.,  density based algorithm, sub-space clustering, scale-up methods, neural networks based methods, fuzzy clustering, co-clustering, etc.  Clustering is hard to evaluate, but very useful in practice. This partially explains why there are still a large number of clustering algorithms being devised every year.  Clustering is highly application dependent and to some extent subjective.