Using  Data  for  Con.nuous  
Improvement
Jason	
  Levin,	
  Western	
  Governors	
  University	
  
Ellen	
  Wagner,	
  Predic8ve	
  Analy8cs	
  Repor8ng	
  
Framework	
  	
  
Using Data For
Continuous Improvement
Ellen	
  Wagner	
  
Chief	
  Research	
  and	
  Strategy	
  Officer	
  
@edwsonoma	
  	
  
ellen.wagner@parframework.org	
  
June	
  4,	
  2015	
  
Reflections after Four Years in the
Predictive Analytics Trenches
From Hindsight to Foresight
While “Big Data” raise expectations,
student data drive big decisions in .edu
Are You “Scorecard-Ready”?
hNp://collegecost.ed.gov/	
  
The US college completion problem
Source:	
  	
  New	
  York	
  Times;	
  NCES	
  
0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
1996	
  
1997	
  
1998	
  
1999	
  
2000	
  
2001	
  
2002	
  
2003	
  
2004	
  
2005	
  
2-­‐yr	
  colleges	
  
4-­‐yr	
  colleges	
  
Gradua&on	
  rates	
  at	
  150%	
  of	
  &me	
  
Cohort	
  year	
  
So – How are we doing?
•  The	
  president’s	
  ambi8ous	
  goal	
  of	
  being	
  1st	
  in	
  the	
  world	
  by	
  
2020	
  looks	
  unachievable.	
  	
  
•  While	
  the	
  na8onal	
  college-­‐gradua8on	
  rate	
  has	
  climbed	
  to	
  44	
  
percent,	
  the	
  gulf	
  between	
  the	
  United	
  States	
  and	
  other	
  
na8ons	
  remains	
  wide,	
  and	
  the	
  target	
  is	
  moving.	
  	
  
•  How	
  are	
  we	
  doing?	
  We	
  have	
  moved	
  up	
  from	
  12th	
  place	
  into	
  a	
  
8e	
  for	
  11th	
  place	
  	
  
hNp://chronicle.com/ar8cle/6-­‐Years-­‐in6-­‐to-­‐Go-­‐Only/151303/	
  
•  Meanwhile,	
  US	
  Ed	
  Tech	
  companies	
  hit	
  paydirt	
  in	
  2014,	
  raising	
  
$1.36	
  Billion	
  in	
  201	
  rounds	
  of	
  funding	
  with	
  more	
  than	
  386	
  
unique	
  investors.
hNps://www.edsurge.com/n/2014-­‐12-­‐23-­‐2014-­‐us-­‐edtech-­‐funding-­‐hits-­‐1-­‐36b	
  	
  
A 501 (c) (3) Organization
PAR Framework
•  Collabora8ve,	
  member-­‐driven,	
  non-­‐profit	
  
analy8cs	
  as	
  a	
  service	
  provider.	
  	
  	
  
•  Comprehensive	
  approach	
  to	
  student	
  success	
  	
  
– Cross	
  ins8tu8onal	
  benchmarks	
  	
  
– Ins8tu8onal	
  specific	
  predic&ve	
  models	
  	
  
– Individual	
  student-­‐level	
  watch	
  lists	
  for	
  reten8on	
  &	
  
academic	
  success	
  
– Ac8onable	
  framework	
  for	
  evalua&ng	
  campus	
  
interven&on	
  programs	
  and	
  measuring	
  impact	
  	
  
A massive, commonly defined
dataset for analytics
•  More	
  than	
  2,500	
  downloads	
  of	
  PAR	
  data	
  defini8ons	
  	
  
•  >	
  2.4	
  million	
  students	
  and	
  >25	
  million	
  student	
  
courses	
  in	
  the	
  PAR	
  data	
  warehouse,	
  in	
  a	
  single	
  
federated	
  data	
  set,	
  developed	
  using	
  common	
  data	
  
defini8ons.	
  	
  
•  351	
  unique	
  campuses	
  
•  77	
  discrete	
  variables	
  are	
  available	
  for	
  each	
  student	
  
record	
  in	
  the	
  data	
  set.	
  Addi8onal	
  2	
  dozen	
  
constructed	
  variables	
  used	
  to	
  explore	
  specific	
  
dimensions	
  and	
  promising	
  paNerns	
  of	
  risk	
  and	
  
reten8on.	
  
PAR Differentiators
•  PAR	
  open	
  frameworks	
  
•  Massive	
  dataset	
  for	
  analy8cs	
  	
  
•  Community	
  of	
  prac8ce	
  and	
  research,	
  with	
  a	
  focus	
  on	
  
research	
  outcomes	
  	
  
•  Market	
  validated	
  and	
  member	
  driven	
  ins8tu8onal	
  
intelligence	
  tools	
  	
  
PAR Starts with
Structured, Readily Available Data
Common data definitions =
reusable predictive models
and meaningful
comparisons
Openly published via a cc
license @
https://public.datacookbook.com/public/
institutions/par
Common data definitions make our
disparate data sources work together
“How	
  can	
  we	
  study	
  
problems	
  related	
  to	
  
student	
  success	
  
longitudinally	
  and	
  across	
  
many	
  ins8tu8ons	
  if	
  we’re	
  
not	
  really	
  using	
  the	
  same	
  
terminology?”	
  
	
  
Russ	
  LiNle	
  
(formerly	
  Sinclair	
  Community	
  College,	
  
now	
  a	
  member	
  of	
  PAR’s	
  execu8ve	
  
team	
  )	
  
Photo	
  by:	
  Hans	
  Hillewaert	
  
Common Framework for Examining
Interventions
PAR Puts it All Together
•  Determine	
  students	
  probability	
  of	
  failure	
  
(predic'ons)	
  
•  Determine	
  which	
  students	
  respond	
  to	
  
interven8ons	
  (upli-	
  modeling)	
  
•  Determine	
  which	
  interven8ons	
  are	
  most	
  
effec8ve	
  (explanatory	
  modeling)	
  
•  Allocate	
  resources	
  accordingly	
  (cost	
  benefit	
  
analysis)	
  
Gartner Research on the
PAR Framework, July 2014
...	
  In	
  this	
  complex	
  endeavor	
  we	
  recommend	
  a	
  “learning	
  by	
  
doing”	
  approach	
  and	
  joining	
  or	
  at	
  least	
  studying	
  the	
  PAR	
  
Framework	
  project	
  experience.	
  This	
  is	
  the	
  most	
  advanced	
  openly	
  
available	
  informa8on	
  in	
  higher	
  educa8on	
  to	
  our	
  knowledge.”	
  	
  
Jan-­‐Mar8n	
  Lowendahl,	
  (2014)	
  Educa8on	
  Hype	
  Cycle.	
  Stamford	
  
CT:	
  Gartner	
  Research	
  July	
  23,	
  2014	
  G00263196	
  	
  
Specific Examples of Data Driven
Improvements
•  U	
  of	
  Hawaii	
  –	
  “Obstacle	
  courses”	
  
•  UMUC	
  /	
  U	
  of	
  Hawaii	
  –	
  replica8on	
  of	
  
community	
  college	
  success	
  predic8on	
  studies	
  
•  University	
  of	
  North	
  Dakota	
  –	
  predic8ves	
  8ed	
  
to	
  student	
  watchlist	
  data	
  
•  Interven8on	
  measurement	
  at	
  Sinclair	
  CC	
  and	
  
Lone	
  Star	
  CC	
  
•  Data	
  alignment	
  –	
  Univ	
  of	
  Illinois	
  Springfield	
  
Reflections on 4 Years in the
Learner Analytics Trenches
•  In	
  .edu,	
  big	
  data	
  *may*	
  be	
  in	
  our	
  future,	
  but	
  we	
  also	
  need	
  to	
  
leverage	
  liNle	
  and	
  medium	
  data	
  to	
  help	
  drive	
  beNer	
  decision-­‐
making.	
  
•  Common	
  data	
  defini8ons	
  are	
  a	
  game	
  changer	
  for	
  scalable,	
  
generalizable,	
  repeatable	
  learner	
  analy8cs.	
  	
  
•  Predic8ons	
  are	
  of	
  greater	
  ins8tu8onal	
  value	
  when	
  8ed	
  to	
  
treatments	
  and	
  interven8ons	
  for	
  improvement,	
  and	
  
interven8on	
  measurement	
  to	
  make	
  sure	
  results	
  are	
  being	
  
delivered.	
  
Reflections on 4 Years in the
Learner Analytics Trenches
•  Infrastructure	
  maNers,	
  but	
  EXOSTRUCTURE	
  maNers	
  more.	
  
•  Scale	
  requires	
  reliable,	
  generalizable	
  outcomes	
  and	
  measures	
  that	
  
can	
  be	
  replicated	
  in	
  a	
  variety	
  of	
  sesngs	
  with	
  a	
  minimal	
  amount	
  of	
  
customiza8on.	
  In	
  the	
  case	
  of	
  PAR,	
  common	
  defini8ons	
  and	
  look-­‐up	
  
tables	
  served	
  as	
  a	
  “RoseNa	
  Stone”	
  of	
  student	
  success	
  data,	
  making	
  
it	
  possible	
  for	
  project	
  to	
  talk	
  to	
  one	
  another	
  between	
  and	
  within	
  
projects.	
  
•  Using	
  commercial	
  sotware	
  stacks	
  already	
  in	
  place	
  on	
  campuses	
  
and	
  data	
  exchanges	
  to	
  extend	
  interoperability	
  with	
  other	
  IPAS	
  
systems	
  extends	
  value	
  and	
  u8lity	
  of	
  tech	
  investments.	
  
	
  	
  	
  
Reflections on 4 Years in the
Learner Analytics Trenches
•  Change	
  happens	
  when	
  fueled	
  by	
  collabora8on,	
  
transparency	
  and	
  trust.	
  
•  Data	
  needs	
  to	
  maNer	
  to	
  everyone	
  on	
  campus.	
  While	
  data	
  
professionals	
  will	
  be	
  needed	
  to	
  help	
  construct	
  new	
  
modeling	
  techniques,	
  ALL	
  members	
  of	
  the	
  higher	
  educa8on	
  
community	
  are	
  going	
  to	
  need	
  to	
  “up	
  their	
  game”	
  when	
  it	
  
come	
  to	
  being	
  fluent	
  with	
  data-­‐driven	
  decision-­‐making,	
  
from	
  advisors	
  to	
  faculty	
  to	
  administra8ve	
  staff	
  to	
  students.	
  
•  It	
  takes	
  all	
  of	
  us	
  working	
  together	
  toward	
  the	
  same	
  goal	
  in	
  
our	
  own	
  unique	
  ways	
  to	
  make	
  the	
  difference.	
  
CBE4CC
Addi.onal  Ques.ons?

Using Data for Continuous Improvement Faculty Development Model - Competency-Based Education

  • 1.
    Using  Data  for Con.nuous   Improvement Jason  Levin,  Western  Governors  University   Ellen  Wagner,  Predic8ve  Analy8cs  Repor8ng   Framework    
  • 2.
    Using Data For ContinuousImprovement Ellen  Wagner   Chief  Research  and  Strategy  Officer   @edwsonoma     [email protected]   June  4,  2015  
  • 3.
    Reflections after FourYears in the Predictive Analytics Trenches
  • 4.
  • 5.
    While “Big Data”raise expectations, student data drive big decisions in .edu
  • 6.
  • 7.
    The US collegecompletion problem Source:    New  York  Times;  NCES   0   10   20   30   40   50   60   70   1996   1997   1998   1999   2000   2001   2002   2003   2004   2005   2-­‐yr  colleges   4-­‐yr  colleges   Gradua&on  rates  at  150%  of  &me   Cohort  year  
  • 8.
    So – Howare we doing? •  The  president’s  ambi8ous  goal  of  being  1st  in  the  world  by   2020  looks  unachievable.     •  While  the  na8onal  college-­‐gradua8on  rate  has  climbed  to  44   percent,  the  gulf  between  the  United  States  and  other   na8ons  remains  wide,  and  the  target  is  moving.     •  How  are  we  doing?  We  have  moved  up  from  12th  place  into  a   8e  for  11th  place     hNp://chronicle.com/ar8cle/6-­‐Years-­‐in6-­‐to-­‐Go-­‐Only/151303/   •  Meanwhile,  US  Ed  Tech  companies  hit  paydirt  in  2014,  raising   $1.36  Billion  in  201  rounds  of  funding  with  more  than  386   unique  investors. hNps://www.edsurge.com/n/2014-­‐12-­‐23-­‐2014-­‐us-­‐edtech-­‐funding-­‐hits-­‐1-­‐36b    
  • 9.
    A 501 (c)(3) Organization
  • 10.
    PAR Framework •  Collabora8ve,  member-­‐driven,  non-­‐profit   analy8cs  as  a  service  provider.       •  Comprehensive  approach  to  student  success     – Cross  ins8tu8onal  benchmarks     – Ins8tu8onal  specific  predic&ve  models     – Individual  student-­‐level  watch  lists  for  reten8on  &   academic  success   – Ac8onable  framework  for  evalua&ng  campus   interven&on  programs  and  measuring  impact    
  • 11.
    A massive, commonlydefined dataset for analytics •  More  than  2,500  downloads  of  PAR  data  defini8ons     •  >  2.4  million  students  and  >25  million  student   courses  in  the  PAR  data  warehouse,  in  a  single   federated  data  set,  developed  using  common  data   defini8ons.     •  351  unique  campuses   •  77  discrete  variables  are  available  for  each  student   record  in  the  data  set.  Addi8onal  2  dozen   constructed  variables  used  to  explore  specific   dimensions  and  promising  paNerns  of  risk  and   reten8on.  
  • 12.
    PAR Differentiators •  PAR  open  frameworks   •  Massive  dataset  for  analy8cs     •  Community  of  prac8ce  and  research,  with  a  focus  on   research  outcomes     •  Market  validated  and  member  driven  ins8tu8onal   intelligence  tools    
  • 13.
    PAR Starts with Structured,Readily Available Data Common data definitions = reusable predictive models and meaningful comparisons Openly published via a cc license @ https://public.datacookbook.com/public/ institutions/par
  • 14.
    Common data definitionsmake our disparate data sources work together “How  can  we  study   problems  related  to   student  success   longitudinally  and  across   many  ins8tu8ons  if  we’re   not  really  using  the  same   terminology?”     Russ  LiNle   (formerly  Sinclair  Community  College,   now  a  member  of  PAR’s  execu8ve   team  )   Photo  by:  Hans  Hillewaert  
  • 15.
    Common Framework forExamining Interventions
  • 16.
    PAR Puts itAll Together •  Determine  students  probability  of  failure   (predic'ons)   •  Determine  which  students  respond  to   interven8ons  (upli-  modeling)   •  Determine  which  interven8ons  are  most   effec8ve  (explanatory  modeling)   •  Allocate  resources  accordingly  (cost  benefit   analysis)  
  • 17.
    Gartner Research onthe PAR Framework, July 2014 ...  In  this  complex  endeavor  we  recommend  a  “learning  by   doing”  approach  and  joining  or  at  least  studying  the  PAR   Framework  project  experience.  This  is  the  most  advanced  openly   available  informa8on  in  higher  educa8on  to  our  knowledge.”     Jan-­‐Mar8n  Lowendahl,  (2014)  Educa8on  Hype  Cycle.  Stamford   CT:  Gartner  Research  July  23,  2014  G00263196    
  • 18.
    Specific Examples ofData Driven Improvements •  U  of  Hawaii  –  “Obstacle  courses”   •  UMUC  /  U  of  Hawaii  –  replica8on  of   community  college  success  predic8on  studies   •  University  of  North  Dakota  –  predic8ves  8ed   to  student  watchlist  data   •  Interven8on  measurement  at  Sinclair  CC  and   Lone  Star  CC   •  Data  alignment  –  Univ  of  Illinois  Springfield  
  • 19.
    Reflections on 4Years in the Learner Analytics Trenches •  In  .edu,  big  data  *may*  be  in  our  future,  but  we  also  need  to   leverage  liNle  and  medium  data  to  help  drive  beNer  decision-­‐ making.   •  Common  data  defini8ons  are  a  game  changer  for  scalable,   generalizable,  repeatable  learner  analy8cs.     •  Predic8ons  are  of  greater  ins8tu8onal  value  when  8ed  to   treatments  and  interven8ons  for  improvement,  and   interven8on  measurement  to  make  sure  results  are  being   delivered.  
  • 20.
    Reflections on 4Years in the Learner Analytics Trenches •  Infrastructure  maNers,  but  EXOSTRUCTURE  maNers  more.   •  Scale  requires  reliable,  generalizable  outcomes  and  measures  that   can  be  replicated  in  a  variety  of  sesngs  with  a  minimal  amount  of   customiza8on.  In  the  case  of  PAR,  common  defini8ons  and  look-­‐up   tables  served  as  a  “RoseNa  Stone”  of  student  success  data,  making   it  possible  for  project  to  talk  to  one  another  between  and  within   projects.   •  Using  commercial  sotware  stacks  already  in  place  on  campuses   and  data  exchanges  to  extend  interoperability  with  other  IPAS   systems  extends  value  and  u8lity  of  tech  investments.        
  • 21.
    Reflections on 4Years in the Learner Analytics Trenches •  Change  happens  when  fueled  by  collabora8on,   transparency  and  trust.   •  Data  needs  to  maNer  to  everyone  on  campus.  While  data   professionals  will  be  needed  to  help  construct  new   modeling  techniques,  ALL  members  of  the  higher  educa8on   community  are  going  to  need  to  “up  their  game”  when  it   come  to  being  fluent  with  data-­‐driven  decision-­‐making,   from  advisors  to  faculty  to  administra8ve  staff  to  students.   •  It  takes  all  of  us  working  together  toward  the  same  goal  in   our  own  unique  ways  to  make  the  difference.  
  • 22.