The document provides an introduction to variational autoencoders (VAE). It discusses how VAEs can be used to learn the underlying distribution of data by introducing a latent variable z that follows a prior distribution like a standard normal. The document outlines two approaches - explicitly modeling the data distribution p(x), or using the latent variable z. It suggests using z and assuming the conditional distribution p(x|z) is a Gaussian with mean determined by a neural network gθ(z). The goal is to maximize the likelihood of the dataset by optimizing the evidence lower bound objective.