SlideShare a Scribd company logo
Data Visualization with ggplot2 : : CHEAT SHEET
ggplot2 is based on the grammar of graphics, the idea
that you can build every graph from the same
components: a data set, a coordinate system,
and geoms—visual marks that represent data points.
Basics
GRAPHICAL PRIMITIVES
a + geom_blank()


(Useful for expanding limits)


b + geom_curve(aes(yend = lat + 1,


xend=long+1),curvature=1) - x, xend, y, yend,
alpha, angle, color, curvature, linetype, size


a + geom_path(lineend="butt", linejoin="round",
linemitre=1)


x, y, alpha, color, group, linetype, size


a + geom_polygon(aes(group = group))


x, y, alpha, color, fill, group, linetype, size


b + geom_rect(aes(xmin = long, ymin=lat, xmax=
long + 1, ymax = lat + 1)) - xmax, xmin, ymax,
ymin, alpha, color, fill, linetype, size


a + geom_ribbon(aes(ymin=unemploy - 900,
ymax=unemploy + 900)) - x, ymax, ymin,
alpha, color, fill, group, linetype, size
+ =
To display values, map variables in the data to visual
properties of the geom (aesthetics) like size, color, and x
and y locations.
+ =
data geom


x = F · y = A
coordinate
system
plot
data geom


x = F · y = A


color = F


size = A
coordinate
system
plot
Complete the template below to build a graph.
required
ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot
that you finish by adding layers to. Add one geom
function per layer.




qplot(x = cty, y = hwy, data = mpg, geom = “point")
Creates a complete plot with given data, geom, and
mappings. Supplies many useful defaults.


last_plot() Returns the last plot


ggsave("plot.png", width = 5, height = 5) Saves last plot
as 5’ x 5’ file named "plot.png" in working directory.
Matches file type to file extension.
F M A
F M A
aesthetic mappings data geom
LINE SEGMENTS
b + geom_abline(aes(intercept=0, slope=1))


b + geom_hline(aes(yintercept = lat))


b + geom_vline(aes(xintercept = long))
common aesthetics: x, y, alpha, color, linetype, size
b + geom_segment(aes(yend=lat+1, xend=long+1))


b + geom_spoke(aes(angle = 1:1155, radius = 1))
a <- ggplot(economics, aes(date, unemploy))


b <- ggplot(seals, aes(x = long, y = lat))
ONE VARIABLE continuous
c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)
c + geom_area(stat = "bin")


x, y, alpha, color, fill, linetype, size


c + geom_density(kernel = "gaussian")


x, y, alpha, color, fill, group, linetype, size, weight


c + geom_dotplot()


x, y, alpha, color, fill


c + geom_freqpoly() x, y, alpha, color, group,
linetype, size


c + geom_histogram(binwidth = 5) x, y, alpha,
color, fill, linetype, size, weight


c2 + geom_qq(aes(sample = hwy)) x, y, alpha,
color, fill, linetype, size, weight
discrete
d <- ggplot(mpg, aes(fl))
d + geom_bar()


x, alpha, color, fill, linetype, size, weight
e + geom_label(aes(label = cty), nudge_x = 1,
nudge_y = 1, check_overlap = TRUE) x, y, label,
alpha, angle, color, family, fontface, hjust,
lineheight, size, vjust


e + geom_jitter(height = 2, width = 2)


x, y, alpha, color, fill, shape, size


e + geom_point(), x, y, alpha, color, fill, shape,
size, stroke


e + geom_quantile(), x, y, alpha, color, group,
linetype, size, weight


e + geom_rug(sides = "bl"), x, y, alpha, color,
linetype, size


e + geom_smooth(method = lm), x, y, alpha,
color, fill, group, linetype, size, weight


e + geom_text(aes(label = cty), nudge_x = 1,
nudge_y = 1, check_overlap = TRUE), x, y, label,
alpha, angle, color, family, fontface, hjust,
lineheight, size, vjust
discrete x , continuous y


f <- ggplot(mpg, aes(class, hwy))
f + geom_col(), x, y, alpha, color, fill, group,
linetype, size


f + geom_boxplot(), x, y, lower, middle, upper,
ymax, ymin, alpha, color, fill, group, linetype,
shape, size, weight


f + geom_dotplot(binaxis = "y", stackdir =
"center"), x, y, alpha, color, fill, group


f + geom_violin(scale = "area"), x, y, alpha, color,
fill, group, linetype, size, weight
discrete x , discrete y


g <- ggplot(diamonds, aes(cut, color))
g + geom_count(), x, y, alpha, color, fill, shape,
size, stroke
THREE VARIABLES


seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))
l + geom_contour(aes(z = z))


x, y, z, alpha, colour, group, linetype,


size, weight
l + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5,
interpolate=FALSE)


x, y, alpha, fill


l + geom_tile(aes(fill = z)), x, y, alpha, color, fill,
linetype, size, width
h + geom_bin2d(binwidth = c(0.25, 500))


x, y, alpha, color, fill, linetype, size, weight


h + geom_density2d()


x, y, alpha, colour, group, linetype, size


h + geom_hex()


x, y, alpha, colour, fill, size




i + geom_area()


x, y, alpha, color, fill, linetype, size


i + geom_line()


x, y, alpha, color, group, linetype, size


i + geom_step(direction = "hv")


x, y, alpha, color, group, linetype, size






j + geom_crossbar(fatten = 2)


x, y, ymax, ymin, alpha, color, fill, group, linetype,
size


j + geom_errorbar(), x, ymax, ymin, alpha, color,
group, linetype, size, width (also
geom_errorbarh())


j + geom_linerange()


x, ymin, ymax, alpha, color, group, linetype, size


j + geom_pointrange()


x, y, ymin, ymax, alpha, color, fill, group, linetype,
shape, size
continuous function


i <- ggplot(economics, aes(date, unemploy))
visualizing error


df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)


j <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))
maps


data <- data.frame(murder = USArrests$Murder,


state = tolower(rownames(USArrests)))


map <- map_data("state")


k <- ggplot(data, aes(fill = murder))
k + geom_map(aes(map_id = state), map = map)
+ expand_limits(x = map$long, y = map$lat),
map_id, alpha, color, fill, linetype, size
Not


required,
sensible
defaults
supplied
Geoms Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables.


Each function returns a layer.
TWO VARIABLES


continuous x , continuous y


e <- ggplot(mpg, aes(cty, hwy))


continuous bivariate distribution


h <- ggplot(diamonds, aes(carat, price))
RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at http://ggplot2.tidyverse.org • ggplot2 3.1.0 • Updated: 2018-12
ggplot (data = <DATA> ) +


<GEOM_FUNCTION> (mapping = aes( <MAPPINGS> ),


stat = <STAT> , position = <POSITION> ) +


<COORDINATE_FUNCTION> +


<FACET_FUNCTION> +


<SCALE_FUNCTION> +


<THEME_FUNCTION>
Scales Coordinate Systems
A stat builds new variables to plot (e.g., count, prop).
Stats An alternative way to build a layer
+ =
data geom


x = x ·


y = ..count..
coordinate
system
plot
fl cty cyl
x ..count..
stat
Visualize a stat by changing the default stat of a geom
function, geom_bar(stat="count") or by using a stat
function, stat_count(geom="bar"), which calls a default
geom to make a layer (equivalent to a geom function).


Use ..name.. syntax to map stat variables to aesthetics.
i + stat_density2d(aes(fill = ..level..),


geom = "polygon")
stat function geommappings
variable created by stat
geom to use
c + stat_bin(binwidth = 1, origin = 10)


x, y | ..count.., ..ncount.., ..density.., ..ndensity..


c + stat_count(width = 1) x, y, | ..count.., ..prop..


c + stat_density(adjust = 1, kernel = “gaussian")


x, y, | ..count.., ..density.., ..scaled..


e + stat_bin_2d(bins = 30, drop = T)


x, y, fill | ..count.., ..density..


e + stat_bin_hex(bins=30) x, y, fill | ..count.., ..density..


e + stat_density_2d(contour = TRUE, n = 100)


x, y, color, size | ..level..


e + stat_ellipse(level = 0.95, segments = 51, type = "t")


l + stat_contour(aes(z = z)) x, y, z, order | ..level..


l + stat_summary_hex(aes(z = z), bins = 30, fun = max)


x, y, z, fill | ..value..


l + stat_summary_2d(aes(z = z), bins = 30, fun = mean)


x, y, z, fill | ..value..


f + stat_boxplot(coef = 1.5) x, y | ..lower..,


..middle.., ..upper.., ..width.. , ..ymin.., ..ymax..


f + stat_ydensity(kernel = "gaussian", scale = “area") x, y |
..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width..


e + stat_ecdf(n = 40) x, y | ..x.., ..y..


e + stat_quantile(quantiles = c(0.1, 0.9), formula = y ~
log(x), method = "rq") x, y | ..quantile..


e + stat_smooth(method = "lm", formula = y ~ x, se=T,
level=0.95) x, y | ..se.., ..x.., ..y.., ..ymin.., ..ymax..


ggplot() + stat_function(aes(x = -3:3), n = 99, fun =
dnorm, args = list(sd=0.5)) x | ..x.., ..y..


e + stat_identity(na.rm = TRUE)


ggplot() + stat_qq(aes(sample=1:100), dist = qt,
dparam=list(df=5)) sample, x, y | ..sample.., ..theoretical..


e + stat_sum() x, y, size | ..n.., ..prop..


e + stat_summary(fun.data = "mean_cl_boot")


h + stat_summary_bin(fun = "mean", geom = "bar")


e + stat_unique()
Scales map data values to the visual values of an
aesthetic. To change a mapping, add a new scale.
(n <- d + geom_bar(aes(fill = fl)))
n + scale_fill_manual(


values = c("skyblue", "royalblue", "blue", “navy"),


limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", “r"),


name = "fuel", labels = c("D", "E", "P", "R"))
scale_
aesthetic
to adjust
prepackaged
scale to use
scale-specific
arguments
title to use in
legend/axis
labels to use
in legend/axis
breaks to use in
legend/axis
range of
values to include
in mapping
GENERAL PURPOSE SCALES


Use with most aesthetics


scale_*_continuous() - map cont’ values to visual ones


scale_*_discrete() - map discrete values to visual ones


scale_*_identity() - use data values as visual ones


scale_*_manual(values = c()) - map discrete values to
manually chosen visual ones


scale_*_date(date_labels = "%m/%d"), date_breaks = "2
weeks") - treat data values as dates.


scale_*_datetime() - treat data x values as date times.
Use same arguments as scale_x_date(). See ?strptime for
label formats.
X & Y LOCATION SCALES


Use with x or y aesthetics (x shown here)


scale_x_log10() - Plot x on log10 scale


scale_x_reverse() - Reverse direction of x axis


scale_x_sqrt() - Plot x on square root scale
COLOR AND FILL SCALES (DISCRETE)


n <- d + geom_bar(aes(fill = fl))


n + scale_fill_brewer(palette = "Blues")


For palette choices:
RColorBrewer::display.brewer.all()


n + scale_fill_grey(start = 0.2, end = 0.8,


na.value = "red")
COLOR AND FILL SCALES (CONTINUOUS)


o <- c + geom_dotplot(aes(fill = ..x..))


o + scale_fill_distiller(palette = "Blues")




o + scale_fill_gradient(low="red", high="yellow")




o + scale_fill_gradient2(low="red", high=“blue",
mid = "white", midpoint = 25)




o + scale_fill_gradientn(colours=topo.colors(6))


Also: rainbow(), heat.colors(), terrain.colors(),
cm.colors(), RColorBrewer::brewer.pal()
SHAPE AND SIZE SCALES


p <- e + geom_point(aes(shape = fl, size = cyl))


p + scale_shape() + scale_size()


p + scale_shape_manual(values = c(3:7))


p + scale_radius(range = c(1,6))


p + scale_size_area(max_size = 6)
r <- d + geom_bar()


r + coord_cartesian(xlim = c(0, 5))


xlim, ylim


The default cartesian coordinate system


r + coord_fixed(ratio = 1/2)


ratio, xlim, ylim


Cartesian coordinates with fixed aspect ratio
between x and y units


r + coord_flip()


xlim, ylim


Flipped Cartesian coordinates


r + coord_polar(theta = "x", direction=1 )


theta, start, direction


Polar coordinates


r + coord_trans(ytrans = “sqrt")


xtrans, ytrans, limx, limy


Transformed cartesian coordinates. Set xtrans and
ytrans to the name of a window function.


π + coord_quickmap()


π + coord_map(projection = "ortho",
orientation=c(41, -74, 0))projection, xlim, ylim


Map projections from the mapproj package
(mercator (default), azequalarea, lagrange, etc.)
Position Adjustments
Position adjustments determine how to arrange geoms
that would otherwise occupy the same space.


s <- ggplot(mpg, aes(fl, fill = drv))


s + geom_bar(position = "dodge")


Arrange elements side by side


s + geom_bar(position = "fill")


Stack elements on top of one another,


normalize height


e + geom_point(position = "jitter")


Add random noise to X and Y position of each
element to avoid overplotting


e + geom_label(position = "nudge")


Nudge labels away from points


s + geom_bar(position = "stack")


Stack elements on top of one another


Each position adjustment can be recast as a function with
manual width and height arguments


s + geom_bar(position = position_dodge(width = 1))
A
B
Themes
r + theme_bw()


White background


with grid lines


r + theme_gray()


Grey background


(default theme)


r + theme_dark()


dark for contrast
r + theme_classic()


r + theme_light()


r + theme_linedraw()


r + theme_minimal()


Minimal themes


r + theme_void()


Empty theme
Faceting
Facets divide a plot into


subplots based on the


values of one or more


discrete variables.


t <- ggplot(mpg, aes(cty, hwy)) + geom_point()


t + facet_grid(cols = vars(fl))


facet into columns based on fl


t + facet_grid(rows = vars(year))


facet into rows based on year


t + facet_grid(rows = vars(year), cols = vars(fl))


facet into both rows and columns


t + facet_wrap(vars(fl))


wrap facets into a rectangular layout


Set scales to let axis limits vary across facets


t + facet_grid(rows = vars(drv), cols = vars(fl),


scales = "free")


x and y axis limits adjust to individual facets


"free_x" - x axis limits adjust


"free_y" - y axis limits adjust


Set labeller to adjust facet labels


t + facet_grid(cols = vars(fl), labeller = label_both)


t + facet_grid(rows = vars(fl),


labeller = label_bquote(alpha ^ .(fl)))
fl: c fl: d fl: e fl: p fl: r
↵c
↵d ↵e
↵p
↵r
Labels
t + labs( x = "New x axis label", y = "New y axis label",


title ="Add a title above the plot",


subtitle = "Add a subtitle below title",


caption = "Add a caption below plot",


<aes> = "New <aes> legend title")


t + annotate(geom = "text", x = 8, y = 9, label = "A")
Use scale functions


to update legend
labels
<AES>
geom to place manual values for geom’s aesthetics
<AES>
Legends
n + theme(legend.position = "bottom")


Place legend at "bottom", "top", "le
ft
", or "right"


n + guides(fill = "none")


Set legend type for each aesthetic: colorbar, legend, or
none (no legend)


n + scale_fill_discrete(name = "Title",


labels = c("A", "B", "C", "D", "E"))


Set legend title and labels with a scale function.
Zooming
Without clipping (preferred)


t + coord_cartesian(


xlim = c(0, 100), ylim = c(10, 20))


With clipping (removes unseen data points)


t + xlim(0, 100) + ylim(10, 20)


t + scale_x_continuous(limits = c(0, 100)) +
scale_y_continuous(limits = c(0, 100))
RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at http://ggplot2.tidyverse.org • ggplot2 3.1.0 • Updated: 2018-12
60
long
lat

More Related Content

PDF
Data Visualization with ggplot2.pdf
CarlosTrujillo199971
 
PDF
Data visualization-2.1
RenukaRajmohan
 
PDF
data-visualization.pdf
Juan José Rivas
 
PDF
Ggplot2 cheatsheet-2.1
Dieudonne Nahigombeye
 
PDF
Ggplot
Jhojan Diaz Roa
 
PDF
Download full ebook of Datacamp Ggplot2 Cheatsheet Itebooks instant download pdf
miatalafeer
 
PDF
R workshop iii -- 3 hours to learn ggplot2 series
Vivian S. Zhang
 
PDF
Data visualization using the grammar of graphics
Rupak Roy
 
Data Visualization with ggplot2.pdf
CarlosTrujillo199971
 
Data visualization-2.1
RenukaRajmohan
 
data-visualization.pdf
Juan José Rivas
 
Ggplot2 cheatsheet-2.1
Dieudonne Nahigombeye
 
Download full ebook of Datacamp Ggplot2 Cheatsheet Itebooks instant download pdf
miatalafeer
 
R workshop iii -- 3 hours to learn ggplot2 series
Vivian S. Zhang
 
Data visualization using the grammar of graphics
Rupak Roy
 

Similar to VISIALIZACION DE DATA.pdf (20)

PPTX
ggplotcourse.pptx
JAVIERDELAHOZ8
 
PPTX
RBootcamp Day 4
Olga Scrivner
 
PDF
Ggplot2 ch2
heba_ahmad
 
PDF
Q plot tutorial
Abhik Seal
 
PDF
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
PPTX
Tech talk ggplot2
jalle6
 
PDF
[系列活動] Data exploration with modern R
台灣資料科學年會
 
PPTX
Visualization_Data with ggplot2_Day 2.pptx
krittika26
 
PPT
A Survey Of R Graphics
Dataspora
 
DOCX
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
PDF
Introduction to R Graphics with ggplot2
izahn
 
DOCX
R-ggplot2 package Examples
Dr. Volkan OBAN
 
PDF
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
Ajay Ohri
 
PDF
Spatial visualization with ggplot2
Joaquim Silva
 
PDF
R programming for data science
Sovello Hildebrand
 
PPTX
Data and donuts: Data Visualization using R
C. Tobin Magle
 
PDF
Introduction to R Short course Fall 2016
Spencer Fox
 
PDF
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
PDF
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 
PDF
Ggplot in python
Ajay Ohri
 
ggplotcourse.pptx
JAVIERDELAHOZ8
 
RBootcamp Day 4
Olga Scrivner
 
Ggplot2 ch2
heba_ahmad
 
Q plot tutorial
Abhik Seal
 
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
Tech talk ggplot2
jalle6
 
[系列活動] Data exploration with modern R
台灣資料科學年會
 
Visualization_Data with ggplot2_Day 2.pptx
krittika26
 
A Survey Of R Graphics
Dataspora
 
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
Introduction to R Graphics with ggplot2
izahn
 
R-ggplot2 package Examples
Dr. Volkan OBAN
 
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
Ajay Ohri
 
Spatial visualization with ggplot2
Joaquim Silva
 
R programming for data science
Sovello Hildebrand
 
Data and donuts: Data Visualization using R
C. Tobin Magle
 
Introduction to R Short course Fall 2016
Spencer Fox
 
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 
Ggplot in python
Ajay Ohri
 
Ad

Recently uploaded (20)

PPTX
Judaism-group-1.pptx for reporting grade 11
ayselprettysomuch
 
PPTX
US inequality along numerous dimensions
Gaetan Lion
 
PDF
PROBABLE ECONOMIC SHOCKWAVES APPROACHING: HOW BAYER'S GLYPHOSATE EXIT IN THE ...
Srivaanchi Nathan
 
PPTX
PUrposive-commmunicatuon112uospptxyynsns
yunaselle7
 
PPTX
ACA_OBEEast Coast of Kamchatka, 8.7M · 30 Jul 2025 08:52:50, Public · Exchang...
gshivakrishna3
 
PPTX
Session 1 FTP 2023 25th June 25 TRADE FINANCE
NarinderKumarBhasin
 
PPTX
Consumer-healtsusususususjjsjsjsjsjsjsjsjs
mnadygrandy1
 
PPTX
Mastering-Full-Stack-Web-Development-An-NIELIT-Perspective.pptx
VedprakashArya13
 
PDF
An Uncut Conversation With ChatGPT | PDF Document
Mike Hydes
 
PDF
SCB EIC expects CLMV outlook to face diverging risks amid global trade headwinds
SCBEICSCB
 
PDF
LM Curve Deri IS-LM Framework sess 10.pdf
mrigankjain19
 
PDF
STEM Education in Rural Maharashtra by Abhay Bhutada Foundation
Heera Yadav
 
PPTX
Accounting for liabilities stockholderss
Adugna37
 
PDF
Cryptocurrency Wallet Security Protecting Your Digital Assets.pdf
Kabir Singh
 
PDF
Tran Quoc Bao named in Fortune - Asia Healthcare Leadership Index 2025
Gorman Bain Capital
 
PPTX
Principles of Management buisness sti.pptx
CarToonMaNia5
 
PPTX
Accounting for fixed ASSETS AND INTANGIBLE ASSETS
Adugna37
 
PDF
Economic Development, Environmental Conservation, and Tourism: A Triad for We...
Matthews Bantsijang
 
PDF
Torex to Acquire Prime Mining - July 2025
Adnet Communications
 
Judaism-group-1.pptx for reporting grade 11
ayselprettysomuch
 
US inequality along numerous dimensions
Gaetan Lion
 
PROBABLE ECONOMIC SHOCKWAVES APPROACHING: HOW BAYER'S GLYPHOSATE EXIT IN THE ...
Srivaanchi Nathan
 
PUrposive-commmunicatuon112uospptxyynsns
yunaselle7
 
ACA_OBEEast Coast of Kamchatka, 8.7M · 30 Jul 2025 08:52:50, Public · Exchang...
gshivakrishna3
 
Session 1 FTP 2023 25th June 25 TRADE FINANCE
NarinderKumarBhasin
 
Consumer-healtsusususususjjsjsjsjsjsjsjsjs
mnadygrandy1
 
Mastering-Full-Stack-Web-Development-An-NIELIT-Perspective.pptx
VedprakashArya13
 
An Uncut Conversation With ChatGPT | PDF Document
Mike Hydes
 
SCB EIC expects CLMV outlook to face diverging risks amid global trade headwinds
SCBEICSCB
 
LM Curve Deri IS-LM Framework sess 10.pdf
mrigankjain19
 
STEM Education in Rural Maharashtra by Abhay Bhutada Foundation
Heera Yadav
 
Accounting for liabilities stockholderss
Adugna37
 
Cryptocurrency Wallet Security Protecting Your Digital Assets.pdf
Kabir Singh
 
Tran Quoc Bao named in Fortune - Asia Healthcare Leadership Index 2025
Gorman Bain Capital
 
Principles of Management buisness sti.pptx
CarToonMaNia5
 
Accounting for fixed ASSETS AND INTANGIBLE ASSETS
Adugna37
 
Economic Development, Environmental Conservation, and Tourism: A Triad for We...
Matthews Bantsijang
 
Torex to Acquire Prime Mining - July 2025
Adnet Communications
 
Ad

VISIALIZACION DE DATA.pdf

  • 1. Data Visualization with ggplot2 : : CHEAT SHEET ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points. Basics GRAPHICAL PRIMITIVES a + geom_blank() 
 (Useful for expanding limits) b + geom_curve(aes(yend = lat + 1, 
 xend=long+1),curvature=1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size a + geom_path(lineend="butt", linejoin="round", linemitre=1) 
 x, y, alpha, color, group, linetype, size a + geom_polygon(aes(group = group)) 
 x, y, alpha, color, fill, group, linetype, size b + geom_rect(aes(xmin = long, ymin=lat, xmax= long + 1, ymax = lat + 1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size a + geom_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size + = To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations. + = data geom x = F · y = A coordinate system plot data geom x = F · y = A color = F size = A coordinate system plot Complete the template below to build a graph. required ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer. 
 qplot(x = cty, y = hwy, data = mpg, geom = “point") Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults. last_plot() Returns the last plot ggsave("plot.png", width = 5, height = 5) Saves last plot as 5’ x 5’ file named "plot.png" in working directory. Matches file type to file extension. F M A F M A aesthetic mappings data geom LINE SEGMENTS b + geom_abline(aes(intercept=0, slope=1)) b + geom_hline(aes(yintercept = lat)) b + geom_vline(aes(xintercept = long)) common aesthetics: x, y, alpha, color, linetype, size b + geom_segment(aes(yend=lat+1, xend=long+1)) b + geom_spoke(aes(angle = 1:1155, radius = 1)) a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat)) ONE VARIABLE continuous c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg) c + geom_area(stat = "bin") 
 x, y, alpha, color, fill, linetype, size c + geom_density(kernel = "gaussian") 
 x, y, alpha, color, fill, group, linetype, size, weight c + geom_dotplot() 
 x, y, alpha, color, fill c + geom_freqpoly() x, y, alpha, color, group, linetype, size c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight discrete d <- ggplot(mpg, aes(fl)) d + geom_bar() 
 x, alpha, color, fill, linetype, size, weight e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust e + geom_jitter(height = 2, width = 2) 
 x, y, alpha, color, fill, shape, size e + geom_point(), x, y, alpha, color, fill, shape, size, stroke e + geom_quantile(), x, y, alpha, color, group, linetype, size, weight 
 e + geom_rug(sides = "bl"), x, y, alpha, color, linetype, size e + geom_smooth(method = lm), x, y, alpha, color, fill, group, linetype, size, weight e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE), x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust discrete x , continuous y f <- ggplot(mpg, aes(class, hwy)) f + geom_col(), x, y, alpha, color, fill, group, linetype, size f + geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight f + geom_dotplot(binaxis = "y", stackdir = "center"), x, y, alpha, color, fill, group f + geom_violin(scale = "area"), x, y, alpha, color, fill, group, linetype, size, weight discrete x , discrete y g <- ggplot(diamonds, aes(cut, color)) g + geom_count(), x, y, alpha, color, fill, shape, size, stroke THREE VARIABLES seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat)) l + geom_contour(aes(z = z)) 
 x, y, z, alpha, colour, group, linetype, 
 size, weight l + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5, interpolate=FALSE) 
 x, y, alpha, fill l + geom_tile(aes(fill = z)), x, y, alpha, color, fill, linetype, size, width h + geom_bin2d(binwidth = c(0.25, 500)) 
 x, y, alpha, color, fill, linetype, size, weight h + geom_density2d() 
 x, y, alpha, colour, group, linetype, size h + geom_hex() 
 x, y, alpha, colour, fill, size 
 i + geom_area() 
 x, y, alpha, color, fill, linetype, size i + geom_line() 
 x, y, alpha, color, group, linetype, size i + geom_step(direction = "hv") 
 x, y, alpha, color, group, linetype, size 
 


 j + geom_crossbar(fatten = 2) 
 x, y, ymax, ymin, alpha, color, fill, group, linetype, size j + geom_errorbar(), x, ymax, ymin, alpha, color, group, linetype, size, width (also geom_errorbarh()) j + geom_linerange() 
 x, ymin, ymax, alpha, color, group, linetype, size j + geom_pointrange() 
 x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size continuous function i <- ggplot(economics, aes(date, unemploy)) visualizing error df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se)) maps data <- data.frame(murder = USArrests$Murder, 
 state = tolower(rownames(USArrests))) 
 map <- map_data("state") 
 k <- ggplot(data, aes(fill = murder)) k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map$long, y = map$lat), map_id, alpha, color, fill, linetype, size Not 
 required, sensible defaults supplied Geoms Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables. 
 Each function returns a layer. TWO VARIABLES continuous x , continuous y e <- ggplot(mpg, aes(cty, hwy)) 
 continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price)) RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • [email protected] • 844-448-1212 • rstudio.com • Learn more at http://ggplot2.tidyverse.org • ggplot2 3.1.0 • Updated: 2018-12 ggplot (data = <DATA> ) + <GEOM_FUNCTION> (mapping = aes( <MAPPINGS> ), stat = <STAT> , position = <POSITION> ) + <COORDINATE_FUNCTION> + <FACET_FUNCTION> + <SCALE_FUNCTION> + <THEME_FUNCTION>
  • 2. Scales Coordinate Systems A stat builds new variables to plot (e.g., count, prop). Stats An alternative way to build a layer + = data geom x = x · 
 y = ..count.. coordinate system plot fl cty cyl x ..count.. stat Visualize a stat by changing the default stat of a geom function, geom_bar(stat="count") or by using a stat function, stat_count(geom="bar"), which calls a default geom to make a layer (equivalent to a geom function). Use ..name.. syntax to map stat variables to aesthetics. i + stat_density2d(aes(fill = ..level..), geom = "polygon") stat function geommappings variable created by stat geom to use c + stat_bin(binwidth = 1, origin = 10) 
 x, y | ..count.., ..ncount.., ..density.., ..ndensity.. c + stat_count(width = 1) x, y, | ..count.., ..prop.. c + stat_density(adjust = 1, kernel = “gaussian") 
 x, y, | ..count.., ..density.., ..scaled.. e + stat_bin_2d(bins = 30, drop = T) 
 x, y, fill | ..count.., ..density.. e + stat_bin_hex(bins=30) x, y, fill | ..count.., ..density.. e + stat_density_2d(contour = TRUE, n = 100) 
 x, y, color, size | ..level.. e + stat_ellipse(level = 0.95, segments = 51, type = "t") l + stat_contour(aes(z = z)) x, y, z, order | ..level.. l + stat_summary_hex(aes(z = z), bins = 30, fun = max) 
 x, y, z, fill | ..value.. l + stat_summary_2d(aes(z = z), bins = 30, fun = mean) 
 x, y, z, fill | ..value.. f + stat_boxplot(coef = 1.5) x, y | ..lower.., 
 ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax.. f + stat_ydensity(kernel = "gaussian", scale = “area") x, y | ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width.. e + stat_ecdf(n = 40) x, y | ..x.., ..y.. e + stat_quantile(quantiles = c(0.1, 0.9), formula = y ~ log(x), method = "rq") x, y | ..quantile.. e + stat_smooth(method = "lm", formula = y ~ x, se=T, level=0.95) x, y | ..se.., ..x.., ..y.., ..ymin.., ..ymax.. ggplot() + stat_function(aes(x = -3:3), n = 99, fun = dnorm, args = list(sd=0.5)) x | ..x.., ..y.. e + stat_identity(na.rm = TRUE) ggplot() + stat_qq(aes(sample=1:100), dist = qt, dparam=list(df=5)) sample, x, y | ..sample.., ..theoretical.. e + stat_sum() x, y, size | ..n.., ..prop.. e + stat_summary(fun.data = "mean_cl_boot") h + stat_summary_bin(fun = "mean", geom = "bar") e + stat_unique() Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale. (n <- d + geom_bar(aes(fill = fl))) n + scale_fill_manual( values = c("skyblue", "royalblue", "blue", “navy"), limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", “r"), name = "fuel", labels = c("D", "E", "P", "R")) scale_ aesthetic to adjust prepackaged scale to use scale-specific arguments title to use in legend/axis labels to use in legend/axis breaks to use in legend/axis range of values to include in mapping GENERAL PURPOSE SCALES Use with most aesthetics scale_*_continuous() - map cont’ values to visual ones scale_*_discrete() - map discrete values to visual ones scale_*_identity() - use data values as visual ones scale_*_manual(values = c()) - map discrete values to manually chosen visual ones scale_*_date(date_labels = "%m/%d"), date_breaks = "2 weeks") - treat data values as dates. scale_*_datetime() - treat data x values as date times. Use same arguments as scale_x_date(). See ?strptime for label formats. X & Y LOCATION SCALES Use with x or y aesthetics (x shown here) scale_x_log10() - Plot x on log10 scale scale_x_reverse() - Reverse direction of x axis scale_x_sqrt() - Plot x on square root scale COLOR AND FILL SCALES (DISCRETE) n <- d + geom_bar(aes(fill = fl)) n + scale_fill_brewer(palette = "Blues") 
 For palette choices: RColorBrewer::display.brewer.all() n + scale_fill_grey(start = 0.2, end = 0.8, 
 na.value = "red") COLOR AND FILL SCALES (CONTINUOUS) o <- c + geom_dotplot(aes(fill = ..x..)) o + scale_fill_distiller(palette = "Blues") 
 o + scale_fill_gradient(low="red", high="yellow") 
 o + scale_fill_gradient2(low="red", high=“blue", mid = "white", midpoint = 25) 
 o + scale_fill_gradientn(colours=topo.colors(6)) Also: rainbow(), heat.colors(), terrain.colors(), cm.colors(), RColorBrewer::brewer.pal() SHAPE AND SIZE SCALES p <- e + geom_point(aes(shape = fl, size = cyl)) p + scale_shape() + scale_size() p + scale_shape_manual(values = c(3:7)) p + scale_radius(range = c(1,6)) p + scale_size_area(max_size = 6) r <- d + geom_bar() r + coord_cartesian(xlim = c(0, 5)) 
 xlim, ylim 
 The default cartesian coordinate system r + coord_fixed(ratio = 1/2) 
 ratio, xlim, ylim 
 Cartesian coordinates with fixed aspect ratio between x and y units r + coord_flip() 
 xlim, ylim 
 Flipped Cartesian coordinates r + coord_polar(theta = "x", direction=1 ) 
 theta, start, direction 
 Polar coordinates r + coord_trans(ytrans = “sqrt") 
 xtrans, ytrans, limx, limy 
 Transformed cartesian coordinates. Set xtrans and ytrans to the name of a window function. π + coord_quickmap() π + coord_map(projection = "ortho", orientation=c(41, -74, 0))projection, xlim, ylim Map projections from the mapproj package (mercator (default), azequalarea, lagrange, etc.) Position Adjustments Position adjustments determine how to arrange geoms that would otherwise occupy the same space. s <- ggplot(mpg, aes(fl, fill = drv)) s + geom_bar(position = "dodge") 
 Arrange elements side by side s + geom_bar(position = "fill") 
 Stack elements on top of one another, 
 normalize height e + geom_point(position = "jitter") 
 Add random noise to X and Y position of each element to avoid overplotting e + geom_label(position = "nudge") 
 Nudge labels away from points 
 s + geom_bar(position = "stack") 
 Stack elements on top of one another Each position adjustment can be recast as a function with manual width and height arguments s + geom_bar(position = position_dodge(width = 1)) A B Themes r + theme_bw() 
 White background 
 with grid lines r + theme_gray() 
 Grey background 
 (default theme) r + theme_dark() 
 dark for contrast r + theme_classic() r + theme_light() r + theme_linedraw() r + theme_minimal() 
 Minimal themes r + theme_void() 
 Empty theme Faceting Facets divide a plot into 
 subplots based on the 
 values of one or more 
 discrete variables. t <- ggplot(mpg, aes(cty, hwy)) + geom_point() t + facet_grid(cols = vars(fl)) 
 facet into columns based on fl t + facet_grid(rows = vars(year)) 
 facet into rows based on year t + facet_grid(rows = vars(year), cols = vars(fl)) 
 facet into both rows and columns t + facet_wrap(vars(fl)) 
 wrap facets into a rectangular layout Set scales to let axis limits vary across facets t + facet_grid(rows = vars(drv), cols = vars(fl), scales = "free") 
 x and y axis limits adjust to individual facets 
 "free_x" - x axis limits adjust 
 "free_y" - y axis limits adjust Set labeller to adjust facet labels t + facet_grid(cols = vars(fl), labeller = label_both) t + facet_grid(rows = vars(fl), labeller = label_bquote(alpha ^ .(fl))) fl: c fl: d fl: e fl: p fl: r ↵c ↵d ↵e ↵p ↵r Labels t + labs( x = "New x axis label", y = "New y axis label", 
 title ="Add a title above the plot", 
 subtitle = "Add a subtitle below title", 
 caption = "Add a caption below plot", <aes> = "New <aes> legend title") t + annotate(geom = "text", x = 8, y = 9, label = "A") Use scale functions to update legend labels <AES> geom to place manual values for geom’s aesthetics <AES> Legends n + theme(legend.position = "bottom") 
 Place legend at "bottom", "top", "le ft ", or "right" n + guides(fill = "none") 
 Set legend type for each aesthetic: colorbar, legend, or none (no legend) n + scale_fill_discrete(name = "Title", 
 labels = c("A", "B", "C", "D", "E")) 
 Set legend title and labels with a scale function. Zooming Without clipping (preferred) t + coord_cartesian( 
 xlim = c(0, 100), ylim = c(10, 20)) With clipping (removes unseen data points) t + xlim(0, 100) + ylim(10, 20) t + scale_x_continuous(limits = c(0, 100)) + scale_y_continuous(limits = c(0, 100)) RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • [email protected] • 844-448-1212 • rstudio.com • Learn more at http://ggplot2.tidyverse.org • ggplot2 3.1.0 • Updated: 2018-12 60 long lat