SlideShare a Scribd company logo
Hadoop + MongoDB
{ Name: ‘Bryan Reinero’,
Title: ‘Developer Advocate’,
Twitter: ‘@blimpyacht’,
Email: ‘bryan@mongdb.com’ }
2
Hadoop
A framework for distributed processing of large data sets
• Terabyte and petabyte datasets
• Data warehousing
• Advanced analytics
• Not a database
• No indexes
• Batch processing
3
Data Management
4
Data Management
Hadoop
Fault tolerance
Batch processing
Coarse-grained operations
Unstructured Data
MongoDB
High availability
Mutable data
Fine-grained operations
Flexible Schemas
5
Data Management
Hadoop
Offline Processing
Analytics
Data Warehousing
MongoDB
Online Operations
Application
Operational
6
Typical Implementations
Application Server
7
MongoDB as an Operational Store
Application Server
8
Use Cases
• Behavioral analytics
• Segmentation
• Fraud detection
• Prediction
• Pricing analytics
• Sales analytics
What does it do?
10
Processing Sensor Data
{
"_id" : ObjectId("556172a53004b760dde8a488"),
”deviceId" : 556172530004,
"value" : 6205,
"timestamp" : ISODate(”2015-06-02T02:03:17.906Z"),
"loc" : [
-174.95596353219008,
40.654427078258834
]
} Average Sensor Value By
Device
Time Interval
Location Bucket
11
Processing Sensor Data
{
"_id" : ObjectId("556172a53004b760dde8a488"),
”deviceId" : 556172530004,
"value" : 6205,
"timestamp" : ISODate(”2015-06-02T02:03:17.906Z"),
"loc" : [
-174.95596353219008,
40.654427078258834
]
} Average Sensor Value By
Device
Time Interval
Location Bucket
12
Processing Sensor Data
{
"_id" : ObjectId("556172a53004b760dde8a488"),
”deviceId" : 556172530004,
"value" : 6205,
"timestamp" : ISODate(”2015-06-02T02:03:17.906Z"),
"loc" : [
-174.95596353219008,
40.654427078258834
]
} Average Sensor Value By
Device
Time Interval
Location Bucket
13
Processing Sensor Data
{
"_id" : ObjectId("556172a53004b760dde8a488"),
”deviceId" : 556172530004,
"value" : 6205,
"timestamp" : ISODate(”2015-06-02T02:03:17.906Z"),
"loc" : [
-174.95596353219008,
40.654427078258834
]
} Average Sensor Value By
Device
Time Interval
Location Bucket
14
MapReduce
map() {
emit(
{ key: ObjectId(…),
value: 6205
}
);
emit(
{ key: bucketByLoc( loc ),
value: 6205
}
);
emit(
{ key: bucketByDate( timestamp ),
value: value
}
);
}
15
MapReduce
{key: ObjectId(…),
value: 6205 }
map() {
emit(
{ key: ObjectId(…),
value: 6205
}
);
emit(
{ key: bucketByLoc( loc ),
value: 6205
}
);
emit(
{ key: bucketByDate( timestamp ),
value: value
}
);
}
16
MapReduce
map() {
emit(
{ key: ObjectId(…),
value: 6205
}
);
emit(
{ key: bucketByLoc( loc ),
value: 6205
}
);
emit(
{ key: bucketByDate( timestamp ),
value: value
}
);
}
{key: zone_a,
value: 6205}
17
MapReduce
map() {
emit(
{ key: ObjectId(…),
value: 6205
}
);
emit(
{ key: bucketByLoc( loc ),
value: 6205
}
);
emit(
{ key: bucketByDate( timestamp ),
value: value
}
);
}
{ key: m06_d01_h02,
value: 6205}
18
MapReduce
19
MapReduce
key: zonea, value: 6025
20
MapReduce
key: zonea, value: 4904
21
MapReduce
key: zonea, value: 6338
22
MapReduce
key: m06_d01_h02, value: 6205
23
MapReduce
key: m06_d01_h02, value: 4904
24
MapReduce
key: m06_d01_h02, value: 6338
25
MapReduce
key: m06_d01_h02, value: 6721
26
MapReduce
function reduce ( key, values ) {
var result = { count: 1, sum : 0 };
values.forEach( function( v ){
result.sum = v.value;
result.count++;
});
return result;
}
27
MapReduce
function reduce ( key, values ) {
var result = { count: 1, sum : 0 };
values.forEach( function( v ){
result.sum = v.value;
result.count++;
});
return result;
}
28
HDFS
YARN
MapReduce
Pig Hive
Spark
29
HDFS and YARN
• Hadoop Distributed File System (HDFS)
– Distributed file-system that stores data on commodity machines
in a Hadoop cluster
• Yet Another Resource Negotiator (YARN)
– Resource management platform responsible for managing and
scheduling compute resources in a Hadoop cluster
30
Hadoop Distributed File System (HDFS)
DATA
NODE
DATA
NODE
DATA
NODE
DATA
NODE
Client
Read / Writes
Replication
NAME
NODE
Metadata
Operations
31
Yet Another Resource Negotiator
COMPUTE NODE
Client
NODE
MANAGER
NODE
MANAGER
RESOURCE
MANAGER
APPLICATION
MASTER
CONTAINER
CONTAINER
CONTAINER
Using The Connector
33
What You’re Gonna Need
A reducer class
extends org.apache.hadoop.mapreduce.Reducer
A mapper class
extends org.apache.hadoop.mapreduce.Mapper
Hadoop Connector Jar
https://github.com/mongodb/mongo-hadoop
34
MapReduce Configuration
• MongoDB input
– mongo.job.input.format = com.mongodb.hadoop.MongoInputFormat
– mongo.input.uri = mongodb://mydb:27017/db1.collection1
• MongoDB output
– mongo.job.output.format = com.mongodb.hadoop.MongoOutputFormat
– mongo.output.uri = mongodb://mydb:27017/db1.collection2
• BSON input/output
– mongo.job.input.format = com.hadoop.BSONFileInputFormat
– mapred.input.dir = hdfs:///tmp/database.bson
– mongo.job.output.format = com.hadoop.BSONFileOutputFormat
– mapred.output.dir = hdfs:///tmp/output.bson
35
Yet Another Resource Negotiator
COMPUTE NODE
Client
NODE
MANAGER
NODE
MANAGER
RESOURCE
MANAGER
APPLICATION
MASTER
CONTAINER
CONTAINER
CONTAINER
Bin/hadoop jar MyJob.jar
MongoDB_Hadoop_Connector.jar
36
Cluster
MONGOS
SHARD A
SHARDB
SHARD C
SHARD D
MONGOS Client
37
38
extends MongoSplitter class
39
extends MongoSplitter class
List<InputSplit> calculateSplits()
40
• High-level platform for creating MapReduce
• Pig Latin abstracts Java into easier-to-use notation
• Executed as a series of MapReduce applications
• Supports user-defined functions (UDFs)
Pig
41
samples = LOAD 'mongodb://127.0.0.1:27017/sensor.logs'
USING
com.mongodb.hadoop.pig.MongoLoader(’deviceId:int,value:double');
grouped = GROUP samples by deviceId;
sample_stats = FOREACH grouped {
mean = AVG(samples.value);
GENERATE group as deviceId, mean as mean;
}
STORE sample_stats INTO 'mongodb://127.0.0.1:27017/sensor.stats'
USING com.mongodb.hadoop.pig.MongoStorage;
42
• Data warehouse infrastructure built on top of Hadoop
• Provides data summarization, query, and analysis
• HiveQL is a subset of SQL
• Support for user-defined functions (UDFs)
43
• Powerful built-in transformations and actions
– map, reduceByKey, union, distinct, sample, intersection, and more
– foreach, count, collect, take, and many more
An engine for processing Hadoop data. Can perform
MapReduce in addition to streaming, interactive queries,
and machine learning.
44
Data Flows
Hadoop
Connector
BSON Files
MapReduce & HDFS
Thanks!
{ name: ‘Bryan Reinero’,
title: ‘Developer Advocate’,
twitter: ‘@blimpyacht’,
code: ‘github.com/breinero’
email: ‘bryan@mongdb.com’ }

More Related Content

What's hot (20)

PDF
Building Data Applications with Apache Druid
Imply
 
PPTX
MongoDB Days UK: Using MongoDB and Python for Data Analysis Pipelines
MongoDB
 
PPTX
Hermes: Free the Data! Distributed Computing with MongoDB
MongoDB
 
PPTX
Programmatic Bidding Data Streams & Druid
Charles Allen
 
PDF
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
NoSQLmatters
 
PPT
MongoDB Tick Data Presentation
MongoDB
 
PPTX
July 2014 HUG : Pushing the limits of Realtime Analytics using Druid
Yahoo Developer Network
 
PDF
Apache Spark and MongoDB - Turning Analytics into Real-Time Action
João Gabriel Lima
 
PDF
Archmage, Pinterest’s Real-time Analytics Platform on Druid
Imply
 
PDF
August meetup - All about Apache Druid
Imply
 
PDF
The architecture of data analytics PaaS on AWS
Treasure Data, Inc.
 
PPTX
Using MongoDB As a Tick Database
MongoDB
 
PPTX
MongoDB & Hadoop - Understanding Your Big Data
MongoDB
 
PPTX
Big Data Analytics 3: Machine Learning to Engage the Customer, with Apache Sp...
MongoDB
 
PDF
Benchmarking Apache Druid
Matt Sarrel
 
PDF
Gregorry Letribot - Druid at Criteo - NoSQL matters 2015
NoSQLmatters
 
PDF
Analytics over Terabytes of Data at Twitter
Imply
 
PDF
Apache Druid Vision and Roadmap
Imply
 
PDF
Hbase status quo apache-con europe - nov 2012
Chris Huang
 
PPTX
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
DataWorks Summit
 
Building Data Applications with Apache Druid
Imply
 
MongoDB Days UK: Using MongoDB and Python for Data Analysis Pipelines
MongoDB
 
Hermes: Free the Data! Distributed Computing with MongoDB
MongoDB
 
Programmatic Bidding Data Streams & Druid
Charles Allen
 
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
NoSQLmatters
 
MongoDB Tick Data Presentation
MongoDB
 
July 2014 HUG : Pushing the limits of Realtime Analytics using Druid
Yahoo Developer Network
 
Apache Spark and MongoDB - Turning Analytics into Real-Time Action
João Gabriel Lima
 
Archmage, Pinterest’s Real-time Analytics Platform on Druid
Imply
 
August meetup - All about Apache Druid
Imply
 
The architecture of data analytics PaaS on AWS
Treasure Data, Inc.
 
Using MongoDB As a Tick Database
MongoDB
 
MongoDB & Hadoop - Understanding Your Big Data
MongoDB
 
Big Data Analytics 3: Machine Learning to Engage the Customer, with Apache Sp...
MongoDB
 
Benchmarking Apache Druid
Matt Sarrel
 
Gregorry Letribot - Druid at Criteo - NoSQL matters 2015
NoSQLmatters
 
Analytics over Terabytes of Data at Twitter
Imply
 
Apache Druid Vision and Roadmap
Imply
 
Hbase status quo apache-con europe - nov 2012
Chris Huang
 
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
DataWorks Summit
 

Viewers also liked (20)

PDF
Collecting and analyzing sensor data with hadoop or other no sql databases
Matteo Redaelli
 
PPTX
Mongo db and hadoop driving business insights - final
MongoDB
 
PPTX
MongoDB Days Silicon Valley: MongoDB and the Hadoop Connector
MongoDB
 
PDF
Hadoop to spark-v2
Sujee Maniyam
 
PPTX
Pentaho Analytics for MongoDB - presentation from MongoDB World 2014
Pentaho
 
PDF
Hadoop Spark Introduction-20150130
Xuan-Chao Huang
 
PDF
MongoDB & Hadoop: Flexible Hourly Batch Processing Model
Takahiro Inoue
 
PDF
Rethinking wicked problems
Leif Rasmussen
 
PDF
2010: Særmagasin: KINA - TRUSSEL ELLER MULIGHED?
Anders Rostgaard
 
PDF
Nets_annual report_2015_FINAL
Klaus Madsen
 
PDF
Community development and networks
Leif Rasmussen
 
PDF
Danske kreds 0115WEB
Rasmus Hach
 
PDF
Anesthesia Business Consultants: Communique winter12
Anesthesia Business Consultants
 
PPT
Proposed FY2012 Commonwealth Budget :: ANALYSIS
uwlackawayne
 
PDF
Responsible investment & governance annual report 2011
Nordea Bank
 
PPTX
Marina_Loenning_MORGENDAGENS_BEDRIFTSKUNDER_SETT_MED_TELENORS_OYNE_IT-tinget_...
Conference_by_EVRY
 
PPT
Hanne Leth Andersen: Uddannelse og arbejdsliv: en eller to verdener?
Nordiskt Nätverk för Vuxnas Lärande
 
PPTX
Time Management Energistyrelsen
René Claus Larsen
 
PDF
Anesthesia Business Consultants: Communique spring12
Anesthesia Business Consultants
 
PDF
qwest communications 1Q 03_Earnings_Release
finance19
 
Collecting and analyzing sensor data with hadoop or other no sql databases
Matteo Redaelli
 
Mongo db and hadoop driving business insights - final
MongoDB
 
MongoDB Days Silicon Valley: MongoDB and the Hadoop Connector
MongoDB
 
Hadoop to spark-v2
Sujee Maniyam
 
Pentaho Analytics for MongoDB - presentation from MongoDB World 2014
Pentaho
 
Hadoop Spark Introduction-20150130
Xuan-Chao Huang
 
MongoDB & Hadoop: Flexible Hourly Batch Processing Model
Takahiro Inoue
 
Rethinking wicked problems
Leif Rasmussen
 
2010: Særmagasin: KINA - TRUSSEL ELLER MULIGHED?
Anders Rostgaard
 
Nets_annual report_2015_FINAL
Klaus Madsen
 
Community development and networks
Leif Rasmussen
 
Danske kreds 0115WEB
Rasmus Hach
 
Anesthesia Business Consultants: Communique winter12
Anesthesia Business Consultants
 
Proposed FY2012 Commonwealth Budget :: ANALYSIS
uwlackawayne
 
Responsible investment & governance annual report 2011
Nordea Bank
 
Marina_Loenning_MORGENDAGENS_BEDRIFTSKUNDER_SETT_MED_TELENORS_OYNE_IT-tinget_...
Conference_by_EVRY
 
Hanne Leth Andersen: Uddannelse og arbejdsliv: en eller to verdener?
Nordiskt Nätverk för Vuxnas Lärande
 
Time Management Energistyrelsen
René Claus Larsen
 
Anesthesia Business Consultants: Communique spring12
Anesthesia Business Consultants
 
qwest communications 1Q 03_Earnings_Release
finance19
 
Ad

Similar to Webinar: MongoDB + Hadoop (20)

POTX
What's the Scoop on Hadoop? How It Works and How to WORK IT!
MongoDB
 
PDF
What is hadoop
Asis Mohanty
 
PPTX
Big Data Analytics with Hadoop, MongoDB and SQL Server
Mark Kromer
 
PPTX
Big data applications
Juan Pablo Paz Grau, Ph.D., PMP
 
PPTX
Big Data in the Microsoft Platform
Jesus Rodriguez
 
PPTX
Microsoft's Hadoop Story
Michael Rys
 
PPTX
Big Data Analytics with Hadoop
Philippe Julio
 
PPSX
Hadoop-Quick introduction
Sandeep Singh
 
PDF
Unit IV.pdf
KennyPratheepKumar
 
PPTX
Hadoop.pptx
arslanhaneef
 
PPTX
Hadoop.pptx
sonukumar379092
 
PPTX
List of Engineering Colleges in Uttarakhand
Roorkee College of Engineering, Roorkee
 
PPTX
Hadoop and big data training
agiamas
 
PPTX
Hadoop in a Nutshell
Anthony Thomas
 
PPTX
Introduction to Hadoop
York University
 
PDF
The practice of big data - making big data approachable
kcmallu
 
PDF
Bi with apache hadoop(en)
Alexander Alten
 
PPT
Hadoop
chandinisanz
 
PDF
1. Big Data - Introduction(what is bigdata).pdf
AmanCSE050
 
PPT
Big data and hadoop
Prashanth Yennampelli
 
What's the Scoop on Hadoop? How It Works and How to WORK IT!
MongoDB
 
What is hadoop
Asis Mohanty
 
Big Data Analytics with Hadoop, MongoDB and SQL Server
Mark Kromer
 
Big data applications
Juan Pablo Paz Grau, Ph.D., PMP
 
Big Data in the Microsoft Platform
Jesus Rodriguez
 
Microsoft's Hadoop Story
Michael Rys
 
Big Data Analytics with Hadoop
Philippe Julio
 
Hadoop-Quick introduction
Sandeep Singh
 
Unit IV.pdf
KennyPratheepKumar
 
Hadoop.pptx
arslanhaneef
 
Hadoop.pptx
sonukumar379092
 
List of Engineering Colleges in Uttarakhand
Roorkee College of Engineering, Roorkee
 
Hadoop and big data training
agiamas
 
Hadoop in a Nutshell
Anthony Thomas
 
Introduction to Hadoop
York University
 
The practice of big data - making big data approachable
kcmallu
 
Bi with apache hadoop(en)
Alexander Alten
 
Hadoop
chandinisanz
 
1. Big Data - Introduction(what is bigdata).pdf
AmanCSE050
 
Big data and hadoop
Prashanth Yennampelli
 
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 

Recently uploaded (20)

PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
PPT
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
PDF
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
PPTX
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PPTX
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
PDF
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
What’s my job again? Slides from Mark Simos talk at 2025 Tampa BSides
Mark Simos
 
Ericsson LTE presentation SEMINAR 2010.ppt
npat3
 
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
“NPU IP Hardware Shaped Through Software and Use-case Analysis,” a Presentati...
Edge AI and Vision Alliance
 

Webinar: MongoDB + Hadoop

Editor's Notes