2. Narrated Hasan: Knowledge is of two types. Firstly,
knowledge perceived by the heart, and that is useful
knowledge; secondly, the knowledge at on the tip of
one’s tongue, and that is an argument from Allah, the
Exalted and Glorious, against the children of Adam.
Transmitted by Darimi.
Al-Tirmidhi – Hadith 270
3. Outline
• Memory and it types
• DRAM vs SRAM
• Memory cell structure
• ROM and its types
• Memory organization
• Error correction
7. Dynamic RAM
• Bits stored as charge in capacitors
• Charges leak
• Need refreshing even when powered
• Simpler construction
• Smaller per bit
• Less expensive
• Need refresh circuits
• Slower
• Main memory
• Essentially analogue
—Level of charge determines value
9. DRAM Operation
• Address line active when bit read or written
—Transistor switch closed (current flows)
• Write
—Voltage to bit line
– High for 1 low for 0
—Then signal address line
– Transfers charge to capacitor
• Read
—Address line selected
– transistor turns on
—Charge from capacitor fed via bit line to sense amplifier
– Compares with reference value to determine 0 or 1
—Capacitor charge must be restored
10. Static RAM
• Bits stored as on/off switches
• No charges to leak
• No refreshing needed when powered
• More complex construction
• Larger per bit
• More expensive
• Does not need refresh circuits
• Faster
• Cache
• Digital
—Uses flip-flops
12. Static RAM Operation
• Transistor arrangement gives stable logic
state
• State 1
—C1 high, C2 low
—T1 T4 off, T2 T3 on
• State 0
—C2 high, C1 low
—T2 T3 off, T1 T4 on
• Address line transistors T5 T6 is switch
• Write – apply value to B & compliment to
B
• Read – value is on line B
13. SRAM v DRAM
• Both volatile
—Power needed to preserve data
• Dynamic cell
—Simpler to build, smaller
—More dense
—Less expensive
—Needs refresh
—Larger memory units
• Static
—Faster
—Cache
14. Read Only Memory (ROM)
• Permanent storage
—Nonvolatile
• Microprogramming (see later)
• Library subroutines
• Systems programs (BIOS)
• Function tables
15. Types of ROM
• Written during manufacture
—Very expensive for small runs
• Programmable (once)
—PROM
—Needs special equipment to program
• Read “mostly”
—Erasable Programmable (EPROM)
– Erased by UV
—Electrically Erasable (EEPROM)
– Takes much longer to write than read
—Flash memory
– Erase whole memory electrically
16. Organisation in detail
• A 16Mbit chip can be organised as 1M of
16 bit words
• A bit per chip system has 16 lots of 1Mbit
chip with bit 1 of each word in chip 1 and
so on
• A 16Mbit chip can be organised as a 2048
x 2048 x 4bit array
—Reduces number of address pins
– Multiplex row address and column address
– 11 pins to address (211=2048)
– Adding one more pin doubles range of values so x4
capacity
17. Refreshing
• Refresh circuit included on chip
• Disable chip
• Count through rows
• Read & Write back
• Takes time
• Slows down apparent performance
24. Example (single bit error) at M=8
• Determine code length
• Bit by bit comparison is done using XOR
and the result is called syndrome,
indicating the error bit
• Length of syndrome bits = length of K bits
and range between 0-2^K -1
• Calculate check bits using
• The code just described is known as a
single-error-correcting (SEC)
26. Advanced DRAM Organization
• Basic DRAM same since first RAM chips
• Enhanced DRAM
—Contains small SRAM as well
—SRAM holds last line read (c.f. Cache!)
• Cache DRAM
—Larger SRAM component
—Use as cache or serial buffer
27. Synchronous DRAM (SDRAM)
• Access is synchronized with an external clock
• Address is presented to RAM
• RAM finds data (CPU waits in conventional
DRAM)
• Since SDRAM moves data in time with system
clock, CPU knows when data will be ready
• CPU does not have to wait, it can do something
else
• Burst mode allows SDRAM to set up stream of
data and fire it out in block
• DDR-SDRAM sends data twice per clock cycle
(leading & trailing edge)
30. RAMBUS
• Adopted by Intel for Pentium & Itanium
• Main competitor to SDRAM
• Vertical package – all pins on one side
• Data exchange over 28 wires < cm long
• Bus addresses up to 320 RDRAM chips at
1.6Gbps
• Asynchronous block protocol
—480ns access time
—Then 1.6 Gbps
32. DDR SDRAM
• SDRAM can only send data once per clock
• Double-data-rate SDRAM can send data
twice per clock cycle
—Rising edge and falling edge
33. Cache DRAM
• Mitsubishi
• Integrates small SRAM cache (16 kb) onto
generic DRAM chip
• Used as true cache
—64-bit lines
—Effective for ordinary random access
• To support serial access of block of data
—E.g. refresh bit-mapped screen
– CDRAM can prefetch data from DRAM into SRAM
buffer
– Subsequent accesses solely to SRAM