SlideShare a Scribd company logo
Introduction to Algorithms
6.046J
Lecture 1
Prof. Shafi Goldwasser
Prof. Erik Demaine
L1.2
Welcome to Introduction to
Algorithms, Spring 2004
Handouts
1. Course Information
2. Course Calendar
3. Problem Set 1
4. Akra-Bazzi Handout
L1.3
Course information
1. Staff
2. Prerequisites
3. Lectures & Recitations
4. Handouts
5. Textbook (CLRS)
6. Website
8. Extra Help
9. Registration
10.Problem sets
11.Describing algorithms
12.Grading policy
13.Collaboration policy
L1.4
What is course about?
The theoretical study of design and
analysis of computer algorithms
Basic goals for an algorithm:
• always correct
• always terminates
• This class: performance
 Performance often draws the line between
what is possible and what is impossible.
L1.5
Design and Analysis of Algorithms
• Analysis: predict the cost of an algorithm in
terms of resources and performance
• Design: design algorithms which minimize the
cost
L1.7
The problem of sorting
Input: sequence a1, a2, …, an of numbers.
Example:
Input: 8 2 4 9 3 6
Output: 2 3 4 6 8 9
Output: permutation a'1, a'2, …, a'n such
that a'1  a'2 …  a'n .
L1.8
Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
for j ← 2 to n
do key ← A[ j]
i ← j – 1
while i > 0 and A[i] > key
do A[i+1] ← A[i]
i ← i – 1
A[i+1] = key
“pseudocode”
i j
key
sorted
A:
1 n
L1.9
Example of insertion sort
8 2 4 9 3 6
L1.10
Example of insertion sort
8 2 4 9 3 6
L1.11
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
L1.12
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
L1.13
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
L1.14
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
L1.15
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
L1.16
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
L1.17
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
L1.18
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
L1.19
Example of insertion sort
8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
2 3 4 6 8 9 done
L1.20
Running time
• The running time depends on the input: an
already sorted sequence is easier to sort.
• Major Simplifying Convention:
Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.
TA(n) = time of A on length n inputs
• Generally, we seek upper bounds on the
running time, to have a guarantee of
performance.
L1.21
Kinds of analyses
Worst-case: (usually)
• T(n) = maximum time of algorithm
on any input of size n.
Average-case: (sometimes)
• T(n) = expected time of algorithm
over all inputs of size n.
• Need assumption of statistical
distribution of inputs.
Best-case: (NEVER)
• Cheat with a slow algorithm that
works fast on some input.
L1.22
Machine-independent time
What is insertion sort’s worst-case time?
BIG IDEAS:
• Ignore machine dependent constants,
otherwise impossible to verify and to compare algorithms
• Look at growth of T(n) as n → ∞ .
“Asymptotic Analysis”
L1.23
Q-notation
• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Q(n3)
DEF:
Q(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0  c1 g(n)  f (n)  c2 g(n)
for all n  n0 }
Basic manipulations:
L1.24
Asymptotic performance
n
T(n)
n0
.
• Asymptotic analysis is a
useful tool to help to
structure our thinking
toward better algorithm
• We shouldn’t ignore
asymptotically slower
algorithms, however.
• Real-world design
situations often call for a
careful balancing
When n gets large enough, a Q(n2) algorithm
always beats a Q(n3) algorithm.
L1.25
Insertion sort analysis
Worst case: Input reverse sorted.
 


Q

Q

n
j
n
j
n
T
2
2
)
(
)
(
Average case: All permutations equally likely.
 


Q

Q

n
j
n
j
n
T
2
2
)
2
/
(
)
(
Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.
[arithmetic series]
L1.26
Example 2: Integer
Multiplication
• Let X = A B and Y = C D where A,B,C
and D are n/2 bit integers
• Simple Method: XY = (2n/2A+B)(2n/2C+D)
• Running Time Recurrence
T(n) < 4T(n/2) + 100n
• Solution T(n) = q(n2)
L1.27
Better Integer Multiplication
• Let X = A B and Y = C D where A,B,C and D
are n/2 bit integers
• Karatsuba:
XY = (2n/2+2n)AC+2n/2(A-B)(C-D) + (2n/2+1) BD
• Running Time Recurrence
T(n) < 3T(n/2) + 100n
• Solution: q(n) = O(n log 3)
L1.28
Example 3:Merge sort
MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]
and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists.
Key subroutine: MERGE
L1.29
Merging two sorted arrays
20
13
7
2
12
11
9
1
L1.30
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
L1.31
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
L1.32
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
L1.33
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
L1.34
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
L1.35
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
L1.36
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
L1.37
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
L1.38
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
L1.39
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
20
13
12
L1.40
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
20
13
12
12
L1.41
Merging two sorted arrays
20
13
7
2
12
11
9
1
1
20
13
7
2
12
11
9
2
20
13
7
12
11
9
7
20
13
12
11
9
9
20
13
12
11
11
20
13
12
12
Time = Q(n) to merge a total
of n elements (linear time).
L1.42
Analyzing merge sort
MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[ 1 . . n/2 ]
and A[ n/2+1 . . n ] .
3. “Merge” the 2 sorted lists
T(n)
Q(1)
2T(n/2)
Q(n)
Sloppiness: Should be T( n/2 ) + T( n/2 ) ,
but it turns out not to matter asymptotically.
L1.43
Recurrence for merge sort
T(n) =
Q(1) if n = 1;
2T(n/2) + Q(n) if n > 1.
• We shall usually omit stating the base
case when T(n) = Q(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.
• Lecture 2 provides several ways to find a
good upper bound on T(n).
L1.44
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
L1.45
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
T(n)
L1.46
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
T(n/2) T(n/2)
cn
L1.47
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
T(n/4) T(n/4) T(n/4) T(n/4)
cn/2 cn/2
L1.48
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
L1.49
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
h = lg n
L1.50
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
h = lg n
cn
L1.51
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
h = lg n
cn
cn
L1.52
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
h = lg n
cn
cn
cn
…
L1.53
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
h = lg n
cn
cn
cn
#leaves = n Q(n)
…
L1.54
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/4 cn/4 cn/4 cn/4
cn/2 cn/2
Q(1)
h = lg n
cn
cn
cn
#leaves = n Q(n)
Total Q(n lg n)
…
L1.55
Conclusions
• Q(n lg n) grows more slowly than Q(n2).
• Therefore, merge sort asymptotically
beats insertion sort in the worst case.
• In practice, merge sort beats insertion
sort for n > 30 or so.

More Related Content

Similar to Welcome to Introduction to Algorithms, Spring 2004 (20)

PDF
Data Structures (BE)
PRABHAHARAN429
 
PPTX
ch16.pptx
lordaragorn2
 
PPTX
ch16 (1).pptx
lordaragorn2
 
PDF
DAA - chapter 1.pdf
ASMAALWADEE2
 
PPT
Algorithm.ppt
Tareq Hasan
 
PPTX
Algorithms - Rocksolid Tour 2013
Gary Short
 
PPTX
Unit 1.pptx
DeepakYadav656387
 
PPT
Algorithm in Computer, Sorting and Notations
Abid Kohistani
 
PDF
Chp-1 Quick Review of basic concepts.pdf
SolomonMolla4
 
PDF
Unit-1 DAA_Notes.pdf
AmayJaiswal4
 
PPT
03_sorting and it's types with example .ppt
vanshii9976
 
PPT
03_sorting123456789454545454545444543.ppt
ssuser7b9bda1
 
PPT
quicksortnmsd cmz ,z m,zmm,mbfjjjjhjhfjsg
RafishaikIT02044
 
PPTX
Lecture 4 (1).pptx
workwithiec
 
PPT
1-Chapter One - Analysis of Algorithms.ppt
mershaabdisa
 
PDF
Sorting
Gopi Saiteja
 
PPTX
Lecture 7_introduction_algorithms.pptx
ngBinh3
 
PDF
test1
Shodhan Kini
 
PDF
Ln liers
Shodhan Kini
 
Data Structures (BE)
PRABHAHARAN429
 
ch16.pptx
lordaragorn2
 
ch16 (1).pptx
lordaragorn2
 
DAA - chapter 1.pdf
ASMAALWADEE2
 
Algorithm.ppt
Tareq Hasan
 
Algorithms - Rocksolid Tour 2013
Gary Short
 
Unit 1.pptx
DeepakYadav656387
 
Algorithm in Computer, Sorting and Notations
Abid Kohistani
 
Chp-1 Quick Review of basic concepts.pdf
SolomonMolla4
 
Unit-1 DAA_Notes.pdf
AmayJaiswal4
 
03_sorting and it's types with example .ppt
vanshii9976
 
03_sorting123456789454545454545444543.ppt
ssuser7b9bda1
 
quicksortnmsd cmz ,z m,zmm,mbfjjjjhjhfjsg
RafishaikIT02044
 
Lecture 4 (1).pptx
workwithiec
 
1-Chapter One - Analysis of Algorithms.ppt
mershaabdisa
 
Sorting
Gopi Saiteja
 
Lecture 7_introduction_algorithms.pptx
ngBinh3
 
Ln liers
Shodhan Kini
 

More from jeronimored (20)

PPTX
Day by day people are becoming smarter, so in this era , some specific machin...
jeronimored
 
PPT
Android's mobile operating system is based on the Linux kernel and is the wor...
jeronimored
 
PPT
Over the past century and a half, important technological developments have c...
jeronimored
 
PDF
Computer Networks 7.Physical LayerComputer Networks 7.Physical Layer
jeronimored
 
PPT
Android – Open source mobile OS developed ny the Open Handset Alliance led by...
jeronimored
 
PPT
Intel microprocessor history lec12_x86arch.ppt
jeronimored
 
PPT
Intro Ch 01BA business alliance consisting of 47 companies to develop open st...
jeronimored
 
PPT
preKnowledge-InternetNetworking Android's mobile operating system is based on...
jeronimored
 
PPT
TelecommunicationsThe Internet Basic Telecom Model
jeronimored
 
PPT
Functional Areas of Network Management Configuration Management
jeronimored
 
PPT
Coding, Information Theory (and Advanced Modulation
jeronimored
 
PPT
8085microprocessorarchitectureppt-121013115356-phpapp02_2.ppt
jeronimored
 
PPT
A microprocessor is the main component of a microcomputer system and is also ...
jeronimored
 
PPT
Erroneous co-routines can block system Formal interfaces slow down system
jeronimored
 
PPT
Resource Management in (Embedded) Real-Time Systems
jeronimored
 
PPT
Management Tools Desirable features Management Architectures Simple Network ...
jeronimored
 
PPT
MICMicrowave Tubes – klystron, reflex klystron, magnetron and TWT.
jeronimored
 
PPT
Network Management Network Management Model
jeronimored
 
PPT
Saumya Debray The University of Arizona Tucson
jeronimored
 
PPT
An operating system (OS) provides a virtual execution environment on top of h...
jeronimored
 
Day by day people are becoming smarter, so in this era , some specific machin...
jeronimored
 
Android's mobile operating system is based on the Linux kernel and is the wor...
jeronimored
 
Over the past century and a half, important technological developments have c...
jeronimored
 
Computer Networks 7.Physical LayerComputer Networks 7.Physical Layer
jeronimored
 
Android – Open source mobile OS developed ny the Open Handset Alliance led by...
jeronimored
 
Intel microprocessor history lec12_x86arch.ppt
jeronimored
 
Intro Ch 01BA business alliance consisting of 47 companies to develop open st...
jeronimored
 
preKnowledge-InternetNetworking Android's mobile operating system is based on...
jeronimored
 
TelecommunicationsThe Internet Basic Telecom Model
jeronimored
 
Functional Areas of Network Management Configuration Management
jeronimored
 
Coding, Information Theory (and Advanced Modulation
jeronimored
 
8085microprocessorarchitectureppt-121013115356-phpapp02_2.ppt
jeronimored
 
A microprocessor is the main component of a microcomputer system and is also ...
jeronimored
 
Erroneous co-routines can block system Formal interfaces slow down system
jeronimored
 
Resource Management in (Embedded) Real-Time Systems
jeronimored
 
Management Tools Desirable features Management Architectures Simple Network ...
jeronimored
 
MICMicrowave Tubes – klystron, reflex klystron, magnetron and TWT.
jeronimored
 
Network Management Network Management Model
jeronimored
 
Saumya Debray The University of Arizona Tucson
jeronimored
 
An operating system (OS) provides a virtual execution environment on top of h...
jeronimored
 
Ad

Recently uploaded (20)

PDF
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
PPTX
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
PPTX
MobileComputingMANET2023 MobileComputingMANET2023.pptx
masterfake98765
 
PPTX
Worm gear strength and wear calculation as per standard VB Bhandari Databook.
shahveer210504
 
PPTX
265587293-NFPA 101 Life safety code-PPT-1.pptx
chandermwason
 
PPTX
What is Shot Peening | Shot Peening is a Surface Treatment Process
Vibra Finish
 
PPTX
Element 11. ELECTRICITY safety and hazards
merrandomohandas
 
PPTX
Depth First Search Algorithm in 🧠 DFS in Artificial Intelligence (AI)
rafeeqshaik212002
 
PPTX
Green Building & Energy Conservation ppt
Sagar Sarangi
 
PPTX
fatigue in aircraft structures-221113192308-0ad6dc8c.pptx
aviatecofficial
 
PDF
PORTFOLIO Golam Kibria Khan — architect with a passion for thoughtful design...
MasumKhan59
 
PDF
AI TECHNIQUES FOR IDENTIFYING ALTERATIONS IN THE HUMAN GUT MICROBIOME IN MULT...
vidyalalltv1
 
PDF
Viol_Alessandro_Presentazione_prelaurea.pdf
dsecqyvhbowrzxshhf
 
PDF
Water Industry Process Automation & Control Monthly July 2025
Water Industry Process Automation & Control
 
PDF
Biomechanics of Gait: Engineering Solutions for Rehabilitation (www.kiu.ac.ug)
publication11
 
PPTX
Solar Thermal Energy System Seminar.pptx
Gpc Purapuza
 
PPTX
Arduino Based Gas Leakage Detector Project
CircuitDigest
 
DOCX
CS-802 (A) BDH Lab manual IPS Academy Indore
thegodhimself05
 
PPTX
Damage of stability of a ship and how its change .pptx
ehamadulhaque
 
PPTX
VITEEE 2026 Exam Details , Important Dates
SonaliSingh127098
 
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
MobileComputingMANET2023 MobileComputingMANET2023.pptx
masterfake98765
 
Worm gear strength and wear calculation as per standard VB Bhandari Databook.
shahveer210504
 
265587293-NFPA 101 Life safety code-PPT-1.pptx
chandermwason
 
What is Shot Peening | Shot Peening is a Surface Treatment Process
Vibra Finish
 
Element 11. ELECTRICITY safety and hazards
merrandomohandas
 
Depth First Search Algorithm in 🧠 DFS in Artificial Intelligence (AI)
rafeeqshaik212002
 
Green Building & Energy Conservation ppt
Sagar Sarangi
 
fatigue in aircraft structures-221113192308-0ad6dc8c.pptx
aviatecofficial
 
PORTFOLIO Golam Kibria Khan — architect with a passion for thoughtful design...
MasumKhan59
 
AI TECHNIQUES FOR IDENTIFYING ALTERATIONS IN THE HUMAN GUT MICROBIOME IN MULT...
vidyalalltv1
 
Viol_Alessandro_Presentazione_prelaurea.pdf
dsecqyvhbowrzxshhf
 
Water Industry Process Automation & Control Monthly July 2025
Water Industry Process Automation & Control
 
Biomechanics of Gait: Engineering Solutions for Rehabilitation (www.kiu.ac.ug)
publication11
 
Solar Thermal Energy System Seminar.pptx
Gpc Purapuza
 
Arduino Based Gas Leakage Detector Project
CircuitDigest
 
CS-802 (A) BDH Lab manual IPS Academy Indore
thegodhimself05
 
Damage of stability of a ship and how its change .pptx
ehamadulhaque
 
VITEEE 2026 Exam Details , Important Dates
SonaliSingh127098
 
Ad

Welcome to Introduction to Algorithms, Spring 2004

  • 1. Introduction to Algorithms 6.046J Lecture 1 Prof. Shafi Goldwasser Prof. Erik Demaine
  • 2. L1.2 Welcome to Introduction to Algorithms, Spring 2004 Handouts 1. Course Information 2. Course Calendar 3. Problem Set 1 4. Akra-Bazzi Handout
  • 3. L1.3 Course information 1. Staff 2. Prerequisites 3. Lectures & Recitations 4. Handouts 5. Textbook (CLRS) 6. Website 8. Extra Help 9. Registration 10.Problem sets 11.Describing algorithms 12.Grading policy 13.Collaboration policy
  • 4. L1.4 What is course about? The theoretical study of design and analysis of computer algorithms Basic goals for an algorithm: • always correct • always terminates • This class: performance  Performance often draws the line between what is possible and what is impossible.
  • 5. L1.5 Design and Analysis of Algorithms • Analysis: predict the cost of an algorithm in terms of resources and performance • Design: design algorithms which minimize the cost
  • 6. L1.7 The problem of sorting Input: sequence a1, a2, …, an of numbers. Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Output: permutation a'1, a'2, …, a'n such that a'1  a'2 …  a'n .
  • 7. L1.8 Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i ← j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i] i ← i – 1 A[i+1] = key “pseudocode” i j key sorted A: 1 n
  • 8. L1.9 Example of insertion sort 8 2 4 9 3 6
  • 9. L1.10 Example of insertion sort 8 2 4 9 3 6
  • 10. L1.11 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6
  • 11. L1.12 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6
  • 12. L1.13 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6
  • 13. L1.14 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6
  • 14. L1.15 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6
  • 15. L1.16 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6
  • 16. L1.17 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6
  • 17. L1.18 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6
  • 18. L1.19 Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 2 3 4 6 8 9 done
  • 19. L1.20 Running time • The running time depends on the input: an already sorted sequence is easier to sort. • Major Simplifying Convention: Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones. TA(n) = time of A on length n inputs • Generally, we seek upper bounds on the running time, to have a guarantee of performance.
  • 20. L1.21 Kinds of analyses Worst-case: (usually) • T(n) = maximum time of algorithm on any input of size n. Average-case: (sometimes) • T(n) = expected time of algorithm over all inputs of size n. • Need assumption of statistical distribution of inputs. Best-case: (NEVER) • Cheat with a slow algorithm that works fast on some input.
  • 21. L1.22 Machine-independent time What is insertion sort’s worst-case time? BIG IDEAS: • Ignore machine dependent constants, otherwise impossible to verify and to compare algorithms • Look at growth of T(n) as n → ∞ . “Asymptotic Analysis”
  • 22. L1.23 Q-notation • Drop low-order terms; ignore leading constants. • Example: 3n3 + 90n2 – 5n + 6046 = Q(n3) DEF: Q(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that 0  c1 g(n)  f (n)  c2 g(n) for all n  n0 } Basic manipulations:
  • 23. L1.24 Asymptotic performance n T(n) n0 . • Asymptotic analysis is a useful tool to help to structure our thinking toward better algorithm • We shouldn’t ignore asymptotically slower algorithms, however. • Real-world design situations often call for a careful balancing When n gets large enough, a Q(n2) algorithm always beats a Q(n3) algorithm.
  • 24. L1.25 Insertion sort analysis Worst case: Input reverse sorted.     Q  Q  n j n j n T 2 2 ) ( ) ( Average case: All permutations equally likely.     Q  Q  n j n j n T 2 2 ) 2 / ( ) ( Is insertion sort a fast sorting algorithm? • Moderately so, for small n. • Not at all, for large n. [arithmetic series]
  • 25. L1.26 Example 2: Integer Multiplication • Let X = A B and Y = C D where A,B,C and D are n/2 bit integers • Simple Method: XY = (2n/2A+B)(2n/2C+D) • Running Time Recurrence T(n) < 4T(n/2) + 100n • Solution T(n) = q(n2)
  • 26. L1.27 Better Integer Multiplication • Let X = A B and Y = C D where A,B,C and D are n/2 bit integers • Karatsuba: XY = (2n/2+2n)AC+2n/2(A-B)(C-D) + (2n/2+1) BD • Running Time Recurrence T(n) < 3T(n/2) + 100n • Solution: q(n) = O(n log 3)
  • 27. L1.28 Example 3:Merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . n/2 ] and A[ n/2+1 . . n ] . 3. “Merge” the 2 sorted lists. Key subroutine: MERGE
  • 28. L1.29 Merging two sorted arrays 20 13 7 2 12 11 9 1
  • 29. L1.30 Merging two sorted arrays 20 13 7 2 12 11 9 1 1
  • 30. L1.31 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9
  • 31. L1.32 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2
  • 32. L1.33 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9
  • 33. L1.34 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7
  • 34. L1.35 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9
  • 35. L1.36 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9
  • 36. L1.37 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11
  • 37. L1.38 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11
  • 38. L1.39 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12
  • 39. L1.40 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 12
  • 40. L1.41 Merging two sorted arrays 20 13 7 2 12 11 9 1 1 20 13 7 2 12 11 9 2 20 13 7 12 11 9 7 20 13 12 11 9 9 20 13 12 11 11 20 13 12 12 Time = Q(n) to merge a total of n elements (linear time).
  • 41. L1.42 Analyzing merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . n/2 ] and A[ n/2+1 . . n ] . 3. “Merge” the 2 sorted lists T(n) Q(1) 2T(n/2) Q(n) Sloppiness: Should be T( n/2 ) + T( n/2 ) , but it turns out not to matter asymptotically.
  • 42. L1.43 Recurrence for merge sort T(n) = Q(1) if n = 1; 2T(n/2) + Q(n) if n > 1. • We shall usually omit stating the base case when T(n) = Q(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence. • Lecture 2 provides several ways to find a good upper bound on T(n).
  • 43. L1.44 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
  • 44. L1.45 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n)
  • 45. L1.46 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n/2) T(n/2) cn
  • 46. L1.47 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn T(n/4) T(n/4) T(n/4) T(n/4) cn/2 cn/2
  • 47. L1.48 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1)
  • 48. L1.49 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1) h = lg n
  • 49. L1.50 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1) h = lg n cn
  • 50. L1.51 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1) h = lg n cn cn
  • 51. L1.52 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1) h = lg n cn cn cn …
  • 52. L1.53 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1) h = lg n cn cn cn #leaves = n Q(n) …
  • 53. L1.54 Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/4 cn/4 cn/4 cn/4 cn/2 cn/2 Q(1) h = lg n cn cn cn #leaves = n Q(n) Total Q(n lg n) …
  • 54. L1.55 Conclusions • Q(n lg n) grows more slowly than Q(n2). • Therefore, merge sort asymptotically beats insertion sort in the worst case. • In practice, merge sort beats insertion sort for n > 30 or so.