SlideShare a Scribd company logo
Words in Space
A Visual Exploration of Distance, Documents, and
Distributions for Text Analysis
PyData DC
2018
Dr. Rebecca Bilbro
Head of Data Science, ICX Media
Co-creator, Scikit-Yellowbrick
Author, Applied Text Analysis with Python
@rebeccabilbro
Machine Learning Review
The Machine Learning Problem:
Given a set of n samples of data such that each sample is
represented by more than a single number (e.g. multivariate
data that has several attributes or features), create a model
that is able to predict unknown properties of each sample.
Spatial interpretation:
Given data points in a bounded,
high dimensional space, define
regions of decisions for any point
in that space.
Instances are composed of features that make up our dimensions.
Feature space is the n-dimensions where our variables live (not
including target).
Feature extraction is the art of creating a space with decision
boundaries.
Example
Target
Y ≡ Thickness of car tires after some testing period
Variables
X1
≡ distance travelled in test
X2
≡ time duration of test
X3
≡ amount of chemical C in tires
The feature space is R3
, or more accurately, the positive quadrant in R3
as all the X
variables can only be positive quantities.
Domain knowledge about tires might suggest that the speed the vehicle was
moving at is important, hence we generate another variable, X4
(this is the feature
extraction part):
X4
= X1
/ X2
≡ the speed of the vehicle during testing.
This extends our old feature space into a new one, the positive part of R4
.
A mapping is a function, ϕ, from R3
to R4
:
ϕ(x1
,x2
,x3
) = (x1
,x2
,x3
,x1
x2
)
Modeling Non-Numeric Data
Real-world data is often not
represented numerically
out of the box (e.g. text,
images), therefore some
transformation must be
applied in order to do
machine learning.
Tricky Part
Machine learning relies on our ability to imagine data as
points in space, where the relative closeness of any two
is a measure of their similarity.
So...when we transform those non-numeric features into
numeric ones, how should we quantify the distance
between instances?
Many ways of quantifying “distance” (or similarity)
often the
default for
numeric data
common rule
of thumb for
text data
With text, our choice of distance metric is very
important! Why?
Challenges of Modeling Text Data
● Very high dimensional
○ One dimension for every word (token) in the corpus!
● Sparsely distributed
○ Documents vary in length!
○ Most instances (documents) may be mostly zeros!
● Has some features that are more important than others
○ E.g. the “of” dimension vs. the “basketball” dimension when clustering sports articles.
● Has some feature variations that matter more than others
○ E.g. freq(tree) vs. freq(horticulture) in classifying gardening books.
Help!
scikit-learn
from sklearn.metrics import pairwise_distances(X, Y=None,
metric=’euclidean’, n_jobs=None, **kwds)
Compute the distance matrix from a vector array X and optional Y.
Valid values for metric are:
● From scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’].
● From scipy.spatial.distance...
SciPy!
Distance functions between two numeric vectors
u and v:
● braycurtis(u, v[, w])
● canberra(u, v[, w])
● chebyshev(u, v[, w])
● cityblock(u, v[, w])
● correlation(u, v[, w, centered])
● cosine(u, v[, w])
● euclidean(u, v[, w])
● mahalanobis(u, v, VI)
● minkowski(u, v[, p, w])
● seuclidean(u, v, V)
● sqeuclidean(u, v[, w])
● wminkowski(u, v, p, w)
Distance functions between two boolean vectors
(sets) u and v:
● dice(u, v[, w])
● hamming(u, v[, w])
● jaccard(u, v[, w])
● kulsinski(u, v[, w])
● rogerstanimoto(u, v[, w])
● russellrao(u, v[, w])
● sokalmichener(u, v[, w])
● sokalsneath(u, v[, w])
● yule(u, v[, w])
Note: most don’t
support sparse
matrix inputs
● Extends the Scikit-Learn API.
● Enhances the model selection process.
● Tools for feature visualization, visual
diagnostics, and visual steering.
● Not a replacement for other visualization
libraries.
Yellowbrick
Feature
Analysis
Algorithm
Selection
Hyperparameter
Tuning
model selection isiterative, but can besteered!
TSNE (t-distributed Stochastic Neighbor
Embedding)
1. Apply SVD (or PCA) to reduce
dimensionality (for efficiency).
2. Embed vectors using probability
distributions from both the original
dimensionality and the decomposed
dimensionality.
3. Cluster and visualize similar
documents in a scatterplot.
Three Example Datasets
Hobbies corpus
● From the Baleen project
● 448 newspaper/blog articles
● 5 classes: gaming, cooking, cinema, books, sports
● Doc length (in words): 532 avg, 14564 max, 1 min
Farm Ads corpus
● From the UCI Repository
● 4144 ads represented as a list of metadata tags
● 2 classes: accepted, not accepted
● Doc length (in words): 270 avg, 5316 max, 1 min
Dresses Attributes Sales corpus
● From the UCI Repository
● 500 dresses represented as features: neckline, waistline, fabric, size, season
● Doc length (in words): 11 avg, 11 max, 11 min
Euclidean Distance
Euclidean distance is the straight-line distance between 2 points in Euclidean
(metric) space.
tsne = TSNEVisualizer(metric="euclidean")
tsne.fit(docs, labels)
tsne.poof()
5 10 15 20 25
252015105
Doc 2
(20, 19)
Doc 1
(7, 14)
Euclidean Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Cityblock (Manhattan) Distance
Manhattan distance between two points is computed as the sum of the absolute
differences of their Cartesian coordinates.
tsne = TSNEVisualizer(metric="cityblock")
tsne.fit(docs, labels)
tsne.poof()
Cityblock (Manhattan) Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Chebyshev Distance
Chebyshev distance is the L∞-norm of the difference between two points (a special
case of the Minkowski distance where p goes to infinity). It is also known as
chessboard distance.
tsne = TSNEVisualizer(metric="chebyshev")
tsne.fit(docs, labels)
tsne.poof()
Chebyshev Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Minkowski Distance
Minkowski distance is a generalization of Euclidean, Manhattan, and Chebyshev
distance, and defines distance between points in a normalized vector space as the
generalized Lp-norm of their difference.
tsne = TSNEVisualizer(metric="minkowski")
tsne.fit(docs, labels)
tsne.poof()
Minkowski Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Mahalanobis Distance
A multidimensional generalization
of the distance between a point
and a distribution of points.
tsne = TSNEVisualizer(metric="mahalanobis", method='exact')
tsne.fit(docs, labels)
tsne.poof()
Think: shifting and rescaling coordinates with respect to distribution. Can help find
similarities between different-length docs.
Mahalanobis Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Cosine “Distance”
Cosine “distance” is the cosine of the angle between two doc vectors. The more
parallel, the more similar. Corrects for length variations (angles rather than
magnitudes). Considers only non-zero elements (efficient for sparse vectors!).
Note: Cosine distance is not technically a distance measure because it doesn’t
satisfy the triangle inequality.
tsne = TSNEVisualizer(metric="cosine")
tsne.fit(docs, labels)
tsne.poof()
Cosine “Distance”
Hobbies Corpus Ads Corpus Dresses Corpus
Canberra Distance
Canberra distance is a weighted version of Manhattan distance. It is often used for
data scattered around an origin, as it is biased for measures around the origin and
very sensitive for values close to zero.
tsne = TSNEVisualizer(metric="canberra")
tsne.fit(docs, labels)
tsne.poof()
Canberra Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Jaccard Distance
Jaccard distance defines similarity between finite sets as the
quotient of their intersection and their union. More effective for
detecting things like document duplication.
tsne = TSNEVisualizer(metric="jaccard")
tsne.fit(docs, labels)
tsne.poof()
Jaccard Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Hamming Distance
Hamming distance between two strings is the number of positions at which the
corresponding symbols are different. Measures minimum substitutions required to
change one string into the other.
tsne = TSNEVisualizer(metric="hamming")
tsne.fit(docs, labels)
tsne.poof()
Hamming Distance
Hobbies Corpus Ads Corpus Dresses Corpus
Other Yellowbrick Text Visualizers
Intercluster
Distance
Maps
Token
Frequency
Distribution
Dispersion
Plot
“Overview first, zoom and filter, then
details-on-demand”
- Ben Schneiderman
Thank you!

More Related Content

PPTX
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
PyData
 
PDF
Words in space
Rebecca Bilbro
 
PDF
A Visual Exploration of Distance, Documents, and Distributions
Rebecca Bilbro
 
PPT
[PPT]
butest
 
PDF
Dimensionality reduction with UMAP
Jakub Bartczuk
 
PPTX
Discrete Mathematics Presentation
Salman Elahi
 
PDF
Recursive algorithms
subhashchandra197
 
PPTX
Clique
sk_klms
 
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
PyData
 
Words in space
Rebecca Bilbro
 
A Visual Exploration of Distance, Documents, and Distributions
Rebecca Bilbro
 
[PPT]
butest
 
Dimensionality reduction with UMAP
Jakub Bartczuk
 
Discrete Mathematics Presentation
Salman Elahi
 
Recursive algorithms
subhashchandra197
 
Clique
sk_klms
 

What's hot (20)

PDF
06 Vector Visualization
Valerii Klymchuk
 
PPT
Graceful labelings
radhikamathy
 
PDF
05 Scalar Visualization
Valerii Klymchuk
 
PDF
Siamese networks
Nicholas McClure
 
PDF
Document Modeling with Implicit Approximate Posterior Distributions
Tomonari Masada
 
PPT
4 Cliques Clusters
Maksim Tsvetovat
 
PPT
Unit26 shortest pathalgorithm
meisamstar
 
PDF
Machine Learning Basics
Humberto Marchezi
 
PDF
Generalized Notions of Data Depth
Mukund Raj
 
PDF
K means
Tien-Yang (Aiden) Wu
 
PPT
Aggregation computation over distributed data streams(the final version)
Yueshen Xu
 
PPTX
Dijkstra’S Algorithm
ami_01
 
PPTX
K-means clustering algorithm
Vinit Dantkale
 
PDF
Interaction Networks for Learning about Objects, Relations and Physics
Ken Kuroki
 
PPTX
Networks dijkstra's algorithm- pgsr
Linawati Adiman
 
PPTX
CLIQUE Automatic subspace clustering of high dimensional data for data mining...
Raed Aldahdooh
 
PPT
Intro to MATLAB and K-mean algorithm
khalid Shah
 
PDF
K means clustering
Thomas K T
 
PDF
Dual Learning for Machine Translation (NIPS 2016)
Toru Fujino
 
06 Vector Visualization
Valerii Klymchuk
 
Graceful labelings
radhikamathy
 
05 Scalar Visualization
Valerii Klymchuk
 
Siamese networks
Nicholas McClure
 
Document Modeling with Implicit Approximate Posterior Distributions
Tomonari Masada
 
4 Cliques Clusters
Maksim Tsvetovat
 
Unit26 shortest pathalgorithm
meisamstar
 
Machine Learning Basics
Humberto Marchezi
 
Generalized Notions of Data Depth
Mukund Raj
 
Aggregation computation over distributed data streams(the final version)
Yueshen Xu
 
Dijkstra’S Algorithm
ami_01
 
K-means clustering algorithm
Vinit Dantkale
 
Interaction Networks for Learning about Objects, Relations and Physics
Ken Kuroki
 
Networks dijkstra's algorithm- pgsr
Linawati Adiman
 
CLIQUE Automatic subspace clustering of high dimensional data for data mining...
Raed Aldahdooh
 
Intro to MATLAB and K-mean algorithm
khalid Shah
 
K means clustering
Thomas K T
 
Dual Learning for Machine Translation (NIPS 2016)
Toru Fujino
 
Ad

Similar to Words in Space - Rebecca Bilbro (20)

PPT
similarities-knn-1.ppt
satvikpatil5
 
PDF
Google BigQuery is a very popular enterprise warehouse that’s built with a co...
Abebe Admasu
 
PPTX
Data Mining Lecture_5.pptx
Subrata Kumer Paul
 
PPTX
similarities-knn.pptx
ZhammerEsrael2
 
PDF
Chapter2 NEAREST NEIGHBOURHOOD ALGORITHMS.pdf
PRABHUCECC
 
PDF
A COMPARATIVE STUDY ON DISTANCE MEASURING APPROACHES FOR CLUSTERING
IJORCS
 
PDF
09Evaluation_Clustering.pdf
BizuayehuDesalegn
 
PPTX
SkNoushadddoja_28100119039.pptx
PrakasBhowmik
 
PPT
16 17 bag_words
khawarbashir
 
PDF
Clustering Algorithms - Kmeans,Min ALgorithm
Sharmila Chidaravalli
 
PDF
Introduction to machine learning
Knoldus Inc.
 
PDF
Combined cosine-linear regression model similarity with application to handwr...
IJECEIAES
 
PDF
DMTM 2015 - 06 Introduction to Clustering
Pier Luca Lanzi
 
PPTX
3a-knn.pptxhggmtdu0lphm0kultkkkkkkkkkkkk
Pluto62
 
PDF
DMTM Lecture 11 Clustering
Pier Luca Lanzi
 
PPT
Cs345 cl
mattriley
 
PPT
Support Vector Machines Support Vector Machines
nikitabhagat28
 
PDF
apidays Paris 2024 - Embeddings: Core Concepts for Developers, Jocelyn Matthe...
apidays
 
PDF
C4.1.2
Daniel LIAO
 
PDF
Metric-learn, a Scikit-learn compatible package
William de Vazelhes
 
similarities-knn-1.ppt
satvikpatil5
 
Google BigQuery is a very popular enterprise warehouse that’s built with a co...
Abebe Admasu
 
Data Mining Lecture_5.pptx
Subrata Kumer Paul
 
similarities-knn.pptx
ZhammerEsrael2
 
Chapter2 NEAREST NEIGHBOURHOOD ALGORITHMS.pdf
PRABHUCECC
 
A COMPARATIVE STUDY ON DISTANCE MEASURING APPROACHES FOR CLUSTERING
IJORCS
 
09Evaluation_Clustering.pdf
BizuayehuDesalegn
 
SkNoushadddoja_28100119039.pptx
PrakasBhowmik
 
16 17 bag_words
khawarbashir
 
Clustering Algorithms - Kmeans,Min ALgorithm
Sharmila Chidaravalli
 
Introduction to machine learning
Knoldus Inc.
 
Combined cosine-linear regression model similarity with application to handwr...
IJECEIAES
 
DMTM 2015 - 06 Introduction to Clustering
Pier Luca Lanzi
 
3a-knn.pptxhggmtdu0lphm0kultkkkkkkkkkkkk
Pluto62
 
DMTM Lecture 11 Clustering
Pier Luca Lanzi
 
Cs345 cl
mattriley
 
Support Vector Machines Support Vector Machines
nikitabhagat28
 
apidays Paris 2024 - Embeddings: Core Concepts for Developers, Jocelyn Matthe...
apidays
 
C4.1.2
Daniel LIAO
 
Metric-learn, a Scikit-learn compatible package
William de Vazelhes
 
Ad

More from PyData (20)

PDF
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
PyData
 
PDF
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
PyData
 
PDF
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
PyData
 
PDF
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
PyData
 
PDF
Deploying Data Science for Distribution of The New York Times - Anne Bauer
PyData
 
PPTX
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
PyData
 
PDF
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
PyData
 
PDF
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
PyData
 
PDF
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
PyData
 
PDF
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
PyData
 
PPTX
Pydata beautiful soup - Monica Puerto
PyData
 
PDF
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
PyData
 
PPTX
Extending Pandas with Custom Types - Will Ayd
PyData
 
PDF
Measuring Model Fairness - Stephen Hoover
PyData
 
PDF
What's the Science in Data Science? - Skipper Seabold
PyData
 
PDF
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
PyData
 
PDF
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
PyData
 
PDF
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
PyData
 
PDF
Deprecating the state machine: building conversational AI with the Rasa stack...
PyData
 
PDF
Towards automating machine learning: benchmarking tools for hyperparameter tu...
PyData
 
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
PyData
 
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
PyData
 
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
PyData
 
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
PyData
 
Deploying Data Science for Distribution of The New York Times - Anne Bauer
PyData
 
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
PyData
 
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
PyData
 
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
PyData
 
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
PyData
 
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
PyData
 
Pydata beautiful soup - Monica Puerto
PyData
 
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
PyData
 
Extending Pandas with Custom Types - Will Ayd
PyData
 
Measuring Model Fairness - Stephen Hoover
PyData
 
What's the Science in Data Science? - Skipper Seabold
PyData
 
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
PyData
 
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
PyData
 
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
PyData
 
Deprecating the state machine: building conversational AI with the Rasa stack...
PyData
 
Towards automating machine learning: benchmarking tools for hyperparameter tu...
PyData
 

Recently uploaded (20)

PPTX
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
PPTX
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
PDF
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
PPTX
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
PDF
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
PDF
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
PDF
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
PDF
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
PDF
The Future of Artificial Intelligence (AI)
Mukul
 
PDF
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
PPTX
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
PDF
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
PPTX
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
PDF
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
PDF
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
PDF
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PDF
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 
IT Runs Better with ThousandEyes AI-driven Assurance
ThousandEyes
 
AI in Daily Life: How Artificial Intelligence Helps Us Every Day
vanshrpatil7
 
Responsible AI and AI Ethics - By Sylvester Ebhonu
Sylvester Ebhonu
 
AI and Robotics for Human Well-being.pptx
JAYMIN SUTHAR
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
How Open Source Changed My Career by abdelrahman ismail
a0m0rajab1
 
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
The Future of Artificial Intelligence (AI)
Mukul
 
Using Anchore and DefectDojo to Stand Up Your DevSecOps Function
Anchore
 
Applied-Statistics-Mastering-Data-Driven-Decisions.pptx
parmaryashparmaryash
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
Unlocking the Future- AI Agents Meet Oracle Database 23ai - AIOUG Yatra 2025.pdf
Sandesh Rao
 
The Evolution of KM Roles (Presented at Knowledge Summit Dublin 2025)
Enterprise Knowledge
 
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
Security features in Dell, HP, and Lenovo PC systems: A research-based compar...
Principled Technologies
 
OFFOFFBOX™ – A New Era for African Film | Startup Presentation
ambaicciwalkerbrian
 
Data_Analytics_vs_Data_Science_vs_BI_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
MASTERDECK GRAPHSUMMIT SYDNEY (Public).pdf
Neo4j
 

Words in Space - Rebecca Bilbro

  • 1. Words in Space A Visual Exploration of Distance, Documents, and Distributions for Text Analysis PyData DC 2018
  • 2. Dr. Rebecca Bilbro Head of Data Science, ICX Media Co-creator, Scikit-Yellowbrick Author, Applied Text Analysis with Python @rebeccabilbro
  • 4. The Machine Learning Problem: Given a set of n samples of data such that each sample is represented by more than a single number (e.g. multivariate data that has several attributes or features), create a model that is able to predict unknown properties of each sample.
  • 5. Spatial interpretation: Given data points in a bounded, high dimensional space, define regions of decisions for any point in that space.
  • 6. Instances are composed of features that make up our dimensions.
  • 7. Feature space is the n-dimensions where our variables live (not including target). Feature extraction is the art of creating a space with decision boundaries.
  • 8. Example Target Y ≡ Thickness of car tires after some testing period Variables X1 ≡ distance travelled in test X2 ≡ time duration of test X3 ≡ amount of chemical C in tires The feature space is R3 , or more accurately, the positive quadrant in R3 as all the X variables can only be positive quantities.
  • 9. Domain knowledge about tires might suggest that the speed the vehicle was moving at is important, hence we generate another variable, X4 (this is the feature extraction part): X4 = X1 / X2 ≡ the speed of the vehicle during testing. This extends our old feature space into a new one, the positive part of R4 . A mapping is a function, ϕ, from R3 to R4 : ϕ(x1 ,x2 ,x3 ) = (x1 ,x2 ,x3 ,x1 x2 )
  • 11. Real-world data is often not represented numerically out of the box (e.g. text, images), therefore some transformation must be applied in order to do machine learning.
  • 12. Tricky Part Machine learning relies on our ability to imagine data as points in space, where the relative closeness of any two is a measure of their similarity. So...when we transform those non-numeric features into numeric ones, how should we quantify the distance between instances?
  • 13. Many ways of quantifying “distance” (or similarity) often the default for numeric data common rule of thumb for text data
  • 14. With text, our choice of distance metric is very important! Why?
  • 15. Challenges of Modeling Text Data ● Very high dimensional ○ One dimension for every word (token) in the corpus! ● Sparsely distributed ○ Documents vary in length! ○ Most instances (documents) may be mostly zeros! ● Has some features that are more important than others ○ E.g. the “of” dimension vs. the “basketball” dimension when clustering sports articles. ● Has some feature variations that matter more than others ○ E.g. freq(tree) vs. freq(horticulture) in classifying gardening books.
  • 16. Help!
  • 17. scikit-learn from sklearn.metrics import pairwise_distances(X, Y=None, metric=’euclidean’, n_jobs=None, **kwds) Compute the distance matrix from a vector array X and optional Y. Valid values for metric are: ● From scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]. ● From scipy.spatial.distance...
  • 18. SciPy! Distance functions between two numeric vectors u and v: ● braycurtis(u, v[, w]) ● canberra(u, v[, w]) ● chebyshev(u, v[, w]) ● cityblock(u, v[, w]) ● correlation(u, v[, w, centered]) ● cosine(u, v[, w]) ● euclidean(u, v[, w]) ● mahalanobis(u, v, VI) ● minkowski(u, v[, p, w]) ● seuclidean(u, v, V) ● sqeuclidean(u, v[, w]) ● wminkowski(u, v, p, w) Distance functions between two boolean vectors (sets) u and v: ● dice(u, v[, w]) ● hamming(u, v[, w]) ● jaccard(u, v[, w]) ● kulsinski(u, v[, w]) ● rogerstanimoto(u, v[, w]) ● russellrao(u, v[, w]) ● sokalmichener(u, v[, w]) ● sokalsneath(u, v[, w]) ● yule(u, v[, w]) Note: most don’t support sparse matrix inputs
  • 19. ● Extends the Scikit-Learn API. ● Enhances the model selection process. ● Tools for feature visualization, visual diagnostics, and visual steering. ● Not a replacement for other visualization libraries. Yellowbrick Feature Analysis Algorithm Selection Hyperparameter Tuning model selection isiterative, but can besteered!
  • 20. TSNE (t-distributed Stochastic Neighbor Embedding) 1. Apply SVD (or PCA) to reduce dimensionality (for efficiency). 2. Embed vectors using probability distributions from both the original dimensionality and the decomposed dimensionality. 3. Cluster and visualize similar documents in a scatterplot.
  • 21. Three Example Datasets Hobbies corpus ● From the Baleen project ● 448 newspaper/blog articles ● 5 classes: gaming, cooking, cinema, books, sports ● Doc length (in words): 532 avg, 14564 max, 1 min Farm Ads corpus ● From the UCI Repository ● 4144 ads represented as a list of metadata tags ● 2 classes: accepted, not accepted ● Doc length (in words): 270 avg, 5316 max, 1 min Dresses Attributes Sales corpus ● From the UCI Repository ● 500 dresses represented as features: neckline, waistline, fabric, size, season ● Doc length (in words): 11 avg, 11 max, 11 min
  • 22. Euclidean Distance Euclidean distance is the straight-line distance between 2 points in Euclidean (metric) space. tsne = TSNEVisualizer(metric="euclidean") tsne.fit(docs, labels) tsne.poof() 5 10 15 20 25 252015105 Doc 2 (20, 19) Doc 1 (7, 14)
  • 23. Euclidean Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 24. Cityblock (Manhattan) Distance Manhattan distance between two points is computed as the sum of the absolute differences of their Cartesian coordinates. tsne = TSNEVisualizer(metric="cityblock") tsne.fit(docs, labels) tsne.poof()
  • 25. Cityblock (Manhattan) Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 26. Chebyshev Distance Chebyshev distance is the L∞-norm of the difference between two points (a special case of the Minkowski distance where p goes to infinity). It is also known as chessboard distance. tsne = TSNEVisualizer(metric="chebyshev") tsne.fit(docs, labels) tsne.poof()
  • 27. Chebyshev Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 28. Minkowski Distance Minkowski distance is a generalization of Euclidean, Manhattan, and Chebyshev distance, and defines distance between points in a normalized vector space as the generalized Lp-norm of their difference. tsne = TSNEVisualizer(metric="minkowski") tsne.fit(docs, labels) tsne.poof()
  • 29. Minkowski Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 30. Mahalanobis Distance A multidimensional generalization of the distance between a point and a distribution of points. tsne = TSNEVisualizer(metric="mahalanobis", method='exact') tsne.fit(docs, labels) tsne.poof() Think: shifting and rescaling coordinates with respect to distribution. Can help find similarities between different-length docs.
  • 31. Mahalanobis Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 32. Cosine “Distance” Cosine “distance” is the cosine of the angle between two doc vectors. The more parallel, the more similar. Corrects for length variations (angles rather than magnitudes). Considers only non-zero elements (efficient for sparse vectors!). Note: Cosine distance is not technically a distance measure because it doesn’t satisfy the triangle inequality. tsne = TSNEVisualizer(metric="cosine") tsne.fit(docs, labels) tsne.poof()
  • 33. Cosine “Distance” Hobbies Corpus Ads Corpus Dresses Corpus
  • 34. Canberra Distance Canberra distance is a weighted version of Manhattan distance. It is often used for data scattered around an origin, as it is biased for measures around the origin and very sensitive for values close to zero. tsne = TSNEVisualizer(metric="canberra") tsne.fit(docs, labels) tsne.poof()
  • 35. Canberra Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 36. Jaccard Distance Jaccard distance defines similarity between finite sets as the quotient of their intersection and their union. More effective for detecting things like document duplication. tsne = TSNEVisualizer(metric="jaccard") tsne.fit(docs, labels) tsne.poof()
  • 37. Jaccard Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 38. Hamming Distance Hamming distance between two strings is the number of positions at which the corresponding symbols are different. Measures minimum substitutions required to change one string into the other. tsne = TSNEVisualizer(metric="hamming") tsne.fit(docs, labels) tsne.poof()
  • 39. Hamming Distance Hobbies Corpus Ads Corpus Dresses Corpus
  • 40. Other Yellowbrick Text Visualizers