SlideShare a Scribd company logo
UNIT 1

INTRODUCTION
           ABOUT
               GRID COMPUTING
DEFINITION
 Grid computing is the federation of computer
 resources from multiple administrative domains to
 reach a common goal.

 “computataional of grid is a hardware and
 software infrastructure that provides
 independent pervasive and inexpensive access to
 high end computational capabilities”.
 What is Grid Computing?

 Who Needs It?

 An Illustrative Example

 Grid Users

 Current Grids
What is Grid Computing?
 Computational Grids
    Homogeneous (e.g., Clusters)
    Heterogeneous (e.g., with one-of-a-kind instruments)


 Cousins of Grid Computing


 Methods of Grid Computing
Computational Grids
 Each user A network of geographically distributed
  resources including computers, peripherals, switches,
  instruments, and data.

 should have a single login account to access all
  resources.

 Resources may be owned by diverse organizations.
Computational Grids
 Grids are typically managed by grid ware.


 Grid ware can be viewed as a special type of
 middleware that enable sharing and manage grid
 components based on user requirements and resource
 attributes (e.g., capacity, performance, availability…)
Cousins of Grid Computing
 Parallel Computing


 Distributed Computing


 Peer-to-Peer Computing


 Many others: Cluster Computing, Network
 Computing, Client/Server Computing, Internet
 Computing, etc...
Distributed Computing
 People often ask: Is Grid Computing a fancy new name
 for the concept of distributed computing?

 In general, the answer is “no.” Distributed Computing
 is most often concerned with distributing the load of a
 program across two or more processes.
PEER2PEER Computing
 Sharing of computer resources and services by direct
 exchange between systems.

 Computers can act as clients or servers depending on
 what role is most efficient for the network.
Methods of Grid Computing
 Distributed Supercomputing
 High-Throughput Computing
 On-Demand Computing
 Data-Intensive Computing
 Collaborative Computing
 Logistical Networking
Distributed Supercomputing
 Combining multiple high-capacity resources on a
 computational grid into a single, virtual distributed
 supercomputer.

 Tackle problems that cannot be solved on a single
 system.
High-Throughput Computing
 Uses the grid to schedule large numbers of loosely
 coupled or independent tasks, with the goal of putting
 unused processor cycles to work.
On-Demand Computing
 Uses grid capabilities to meet short-term requirements
 for resources that are not locally accessible.

 Models real-time computing demands.
Collaborative Computing
 Concerned primarily with enabling and enhancing
  human-to-human interactions.

 Applications are often structured in terms of a virtual
  shared space.
Logistical Networking
 Global scheduling and optimization of data
  movement.

 Contrasts with traditional networking, which does not
  explicitly model storage resources in the network.

 Called "logistical" because of the analogy it bears with
  the systems of warehouses, depots, and distribution
  channels.
Who Needs Grid Computing?
 A chemist may utilize hundreds of processors to screen
 thousands of compounds per hour.

 Teams of engineers worldwide pool resources to
 analyze terabytes of structural data.

 Meteorologists seek to visualize and analyze petabytes
 of climate data with enormous computational
 demands.
An Illustrative Example
 Tiffany Moisan, a NASA research scientist, collected
 microbiological samples in the tidewaters around
 Wallops Island, Virginia.

 She needed the high-performance microscope located
 at the National Center for Microscopy and Imaging
 Research (NCMIR), University of California, San
 Diego.
 She sent the samples to San Diego and used NPACI’s
 Telescience Grid and NASA’s Information Power Grid
 (IPG) to view and control the output of the
 microscope from her desk on Wallops Island. Thus, in
 addition to viewing the samples, she could move the
 platform holding them and make adjustments to the
 microscope.
CONT…..
 The microscope produced a huge dataset of images.
 This dataset was stored using a storage resource broker
  on NASA’s IPG.
 Moisan was able to run algorithms on this very dataset
  while watching the results in real time.
Grid Users
 Grid developers


 Tool developers


 Application developers


 End Users


 System Administrators
Grid Developers
 Very small group.


 Implementers of a grid “protocol” who provides the
 basic services required to construct a grid.
Tool Developers
 Implement the programming models used by
 application developers.

 Implement basic services similar to conventional
 computing services:
   User authentication/authorization
   Process management
   Data access and communication
Application Developers
 Construct grid-enabled applications for end-users who
 should be able to use these applications without
 concern for the underlying grid.

 Provide programming models that are appropriate for
 grid environments and services that programmers can
 rely on when developing (higher-level) applications.
System Administrators
 Balance local and global concerns.


 Manage grid components and infrastructure.


 Some tasks still not well delineated due to the high
 degree of sharing required.
ADVANTAGE
 Can solve larger, more complex problems in a shorter
 time

 Easier to collaborate with other organizations


 Make better use of existing hardware
DISADVANTAGE
 Grid software and standards are still evolving


 Learning curve to get started


 Non-interactive job submission
The grid- Present, Past, Future
 Number of derivatives in grid computing. Share resources and different
     architecture.
1.    Compute Grids
2.    Data Grids
3.    Science Grids
4.    Access Grids
5.    Knowledge Grids
6.    Cluster Grids
7.    Terra Grids
8.    Commodity Grids
1.   Compute Grids vendors:

        Grid Gain - Professional Open Source

        JPPF - Open Source



2.   Data Grids vendors:

      Oracle Coherence- Commercial

      GemStone- Commercial

      GigaSpaces – Commercial

      JBossCache - Professional Open Source

      EhCache- Open Source
Data
  Functional data requirements for Grid Computing applications are:

       •To integrate multiple distributed, heterogeneous, and independently
       managed data sources.

       •Data transfer mechanisms

       •Data caching and/or replication mechanisms to minimize network
       traffic.

       •Data discovery mechanisms

       •Data encryption and integrity

       •Backup/restore mechanisms and policies
Computation

Functional computational requirements for grid applications are:

      •Independent management of computing resources.

      •Intelligently and transparently select computing resources.

      •Availability, dynamic resource configuration,

      •Failure detection and failover mechanisms.

      •Secure resource management, access, and integrity.
Computational and Data Grids

Data requirements in the early grid solutions:

 Discover data.

 Databases, utilizing meta-data and other attributes of the data.

 The provisioning of computing facilities for high-speed data movement.

 Flexible data access and data filtering capabilities.
Current Grid Activities

 Sharing of resources can be different in present grid.

1.   Computing power

2.   Data

3.   Hardware

4.   Software

5.   Network services
Dynamic benefits of coordinated resource sharing in a virtual
organization.
The usage patterns found within each of the virtual organizations.




 A virtual organization for weather prediction. For example, this virtual
  organization requires resources such as weather prediction software
  applications to perform the mandatory environmental simulations associated
  with predicting weather.

 A virtual organization for financial modeling. For example, this virtual
  organization requires resources such as software modeling tools for
  performing a multitude of financial analytics, virtualized blades to run the
  above software, and access to data storage facilities for storing and
  accessing data.
Number of requirements for Grid Computing architecture

Three categories

1.   Resource categories

2.   Virtual organization

3.   Users/Applications
Providing facilities for the following scenarios:

 Dynamic discovery of computing resources, based on their capabilities        and

  functions.

 Immediate allocation and provisioning of these resources, based on          their

  availability and the user demands or requirements.

 The management of these resources to meet the required service level agreements

  (SLAs).

 The provisioning of multiple autonomic features for the resources, such as self-

  diagnosis, self-healing, self-configuring, and self-management.

 The provisioning of secure access methods to the resources, and bindings with the

  local security mechanisms based upon the autonomic control policies.
Virtual organization must be capable of providing facilities for:
 Virtual task forces, or groups, to solve specific problems associated with the virtual
   organization.

 Dynamic collection of resources from heterogeneous providers based upon users' needs and
   the sophistication levels of the problems.

 Dynamic identification and automatic problem resolution of a wide variety of troubles, with
   automation of event correlation, linking the specific problems to the required resource and
   service providers.

 The dynamic provisioning and management capabilities of the resources required meeting the
   SLAs.

 The formation of a secured federation (or governance model) and common management model
   for all of the resources respective to the virtual organization.

 The secure delegation of user credentials and identity mapping to the local domain(s).

 The management of resources, including utilization and allocation, to meet a budget and other
   economic criteria.
Users/applications typically found in Grid Computing environments must

  be able to perform the following characteristics:

 The clear and unambiguous identification of the problem

 The identification and mapping of the resources

 The ability to sustain the required levels of QoS, while adhering to the

  anticipated and necessary SLAs.

 The capability to collect feedback regarding resource status, including

  updates for the environment's respective applications.
GRID APPLICATIONS
 Grid computing applications can be aligned to have a
 common needs
   Application partitioning that involves breaking the
   problem into discrete pieces
   Discovery and scheduling of tasks and workflow
   Data communication distributing the problem data
   where and when it is required
   Provisioning and Distributing application codes to
   specific system nodes
Contd…



   Results management assisting in the decision process of
    the environment
   Autonomic features such as self-configuration, self-
    optimization , self-recovery and self management
  Let us explore some of these Grid application and their
    usage pattern
Schedulers
 Responsible for management of jobs such as allocating
  the resource needed for any specific job , parallel
  execution of tasks, data management and service level
  management
 Schedulers form the hierarchical structures , with
  meta schedulers as the root and other schedulers as
  the leaves
 Meta schedulers or cluster schedulers for parallel
  execution
Scheduler embodies local , meta-
level and cluster schedulers
                               LOCAL
Diagram :                     SCHEDUL
                                 ER
                       JOB

               META    JOB      META
             SCHEDUL          SCHEDULE
    USER        ER                R

                        JOB
                               CLUSTER
                              SCHEDULE
                                  R
Contd…

 Jobs submitted to the grid computing applications are
  evaluated based on the ir service level requirement
 It involves the complex work flow management and
  data movement activities to occur on a regular basis
Contd…

 There are schedulers that must provide capabilities for
 areas such as
   Advanced resource reservation
   SLA validation and enforcement
   Monitoring job execution and status
   Rescheduling and corrective action
Resource Broker
 It providing the paring service between the service
  requester and service provider
 This paring enables the selection of best available
  resource
 It will collect the information from the respective
  resources and uses this information for paring purpose
Resource Broker
 Diagram:

                    RESOURCE BROKER
  SELECT RESOURCE                       INFORMATION

                                                   RESOURCE
                                                       1
  USER
                     SELECT SCHEDULER

         EXECUTE TASK                 INFORMATION

                        SCHEDULER                  RESOURCE
                                                       2
                                    EXECUTE TASK
Contd…

 Resource broker provides the feed back to the users on
  the available resource
 Resource broker may select the suitable scheduler for
  the execution of tasks
Contd…

 The paring process in a resource broker involves
 allocation and support functions such as
   Allocate appropriate resource for task execution
   Support users deadline and budget constraints for
    scheduling optimizations
Load balancing
 Load balancing features must always be integrated
  into any system in order to avoid processing delays and
  over commitment of resource
 Load balancing may be built in connection with
  resource broker and schedulers
 The level of load balancing involves partitioning of
  jobs ,identifying the resource and queueing of the jobs
Contd…

 Used to running the parallel jobs in parallel
 It support failure detection and management
 It redistribute the jobs to other resource if needed
Grid portals
 Grid portals are like the web portals
         grid portals provide the uniform access to the grid resources


 Grid portals provide
     1.     Resource access
     2.     Scheduling capabilities
     3.     monitoring statusinformation
Contd…

 some examples of grid portals capabilities are
     1.   Querying database
     2.   File transfer facilities
     3.   Manage job through job status feed back
     4.   Security management
     5.   Provide personalized solution
Integrated solutions
 It is the combination of existing advanced middleware
  and application functionalities combined to provide
  high performance results across the grid computing
  environment
 It support more complex utilization of grid such as the
  coordinated and optimized resource sharing,
  enhanced security management, cost optimization ,etc
 It achieves the level of flexibility utilizing
  infrastructure provided by application and
  middleware frame works
GRID INFRASTRUCTURE
 GRID infrastructure forms the core foundation for
 the successful grid applications
     Grid computing infrastructure component must
   address several potentially complicated areas in
   many stages of implementation , they are
  1.   Security
  2.   Resource management
  3.   Information services
  4.   Data management
Diagram:


              GRID APPLICATIONS
   G                                G
   R                                R
   I                                I
   D            RES    INF          D
                              DAT   M
   M            OUR     OR
                               A    I
   I             CE    MAT
   D   SECU            ION          D
                              MA    D
   D   RITY     MA            NAG
   L            NAG    SER          L
                              EME   E
   E            EME    VICE
                               NT   W
   W             NT      S
   A                                A
   R                                R
   E                                E

              HOSTING ENVIRONMENT
Security
 Heterogeneous nature of resources – complicated
  polices - complex security schemes
 These computing resources are hosted in differing
  security domains and Heterogeneous
   platforms
 Security requirements – data integrity , confidentiality
  and information privacy
Contd…

 The grid computing data exchange must be protected
  using secure communication channels including
  SSL/TLS
 Secure message exchange mechanisms such as WS-
  Security
 Security infrastructure – grid security infrastructure
  (GSI)
Resource management
    Resource management scenarios are
    1.   Resource discovery
    2.   Resource monitoring
    3.   Fault isolation
    4.   Resource provisioning
    5.   Resource monitoring
    6.   Autonomic capabilities
    7.   Service level management activities
Contd…



 Resource management area is the selection of correct
  resource from grid resource pool
 Fully based on SLA
Information services
 Providing valuable information respective to grid
    computing infrastructure resources
   Service are entirely depends on resource availability,
    capacity and utilization
   The information is valuable and mandatory feedback
    respective to resource managers
   Grid solutions are constructed to reflect portals
   Metrics are helpful in SLA
Data management
 Data forms the single most important asset in a grid
  computing system
 Data maybe – input to the resource – output from the
  resource
 Data must be near to the computation where it is used
 Data storage mechanisms – Storage Area Network
  (SAN) ,network file system, virtual database
contd…

 Developers and providers must factor into decision
  are related to selecting the most appropriate data
  management mechanism for grid computing
  infrastructure
This includes size of –
1. data repositories
2. resource geographical distribution
3. security requirements
4. schemes for replication
5. caching facilities

More Related Content

What's hot (20)

PPT
Introduction to Google App Engine
rajdeep
 
PPTX
Azure Networking (1).pptx
Razith2
 
PPTX
Data Parallel and Object Oriented Model
Nikhil Sharma
 
ODP
Distributed shared memory shyam soni
Shyam Soni
 
PPT
Use Case Diagram
Kumar
 
PPTX
Multi Cloud Architecture Approach
Maganathin Veeraragaloo
 
PPTX
Cloud sim
Khyati Rajput
 
PPT
Grid Computing
Senthil Kumar
 
PPTX
Software Architecture Patterns
Assaf Gannon
 
PDF
GRID COMPUTING PRESENTATION
Ashok Mannai
 
PDF
Serverless and Design Patterns In GCP
Oliver Fierro
 
PPT
Distributed Deadlock Detection.ppt
Babar Kamran Ahmed (LION)
 
PPTX
Grid Computing
abhiritva
 
PPTX
Azure Cloud PPT
Aniket Kanitkar
 
PDF
Service-Oriented Architecture (SOA)
WSO2
 
PPTX
Overview of UML Diagrams
Manish Kumar
 
PPTX
Third party cloud services cloud computing
SohailAliMalik
 
DOCX
Cloud Analytics
Ahmed Banafa
 
PDF
Cloud governance - theory and tools
Antti Arnell
 
Introduction to Google App Engine
rajdeep
 
Azure Networking (1).pptx
Razith2
 
Data Parallel and Object Oriented Model
Nikhil Sharma
 
Distributed shared memory shyam soni
Shyam Soni
 
Use Case Diagram
Kumar
 
Multi Cloud Architecture Approach
Maganathin Veeraragaloo
 
Cloud sim
Khyati Rajput
 
Grid Computing
Senthil Kumar
 
Software Architecture Patterns
Assaf Gannon
 
GRID COMPUTING PRESENTATION
Ashok Mannai
 
Serverless and Design Patterns In GCP
Oliver Fierro
 
Distributed Deadlock Detection.ppt
Babar Kamran Ahmed (LION)
 
Grid Computing
abhiritva
 
Azure Cloud PPT
Aniket Kanitkar
 
Service-Oriented Architecture (SOA)
WSO2
 
Overview of UML Diagrams
Manish Kumar
 
Third party cloud services cloud computing
SohailAliMalik
 
Cloud Analytics
Ahmed Banafa
 
Cloud governance - theory and tools
Antti Arnell
 

Viewers also liked (9)

PPTX
PaaS - google app engine
J Singh
 
PDF
Platform as a service google app engine
Deepu S Nath
 
PDF
Distributed Computing with Apache Hadoop: Technology Overview
Konstantin V. Shvachko
 
PDF
5. the grid implementing production grid
Dr Sandeep Kumar Poonia
 
PDF
Hadoop Architecture and HDFS
Edureka!
 
PDF
Google app engine
Suraj Mehta
 
PDF
1. GRID COMPUTING
Dr Sandeep Kumar Poonia
 
PDF
Hadoop Overview & Architecture
EMC
 
PPT
Hadoop architecture (Delhi Hadoop User Group Meetup 10 Sep 2011)
Hari Shankar Sreekumar
 
PaaS - google app engine
J Singh
 
Platform as a service google app engine
Deepu S Nath
 
Distributed Computing with Apache Hadoop: Technology Overview
Konstantin V. Shvachko
 
5. the grid implementing production grid
Dr Sandeep Kumar Poonia
 
Hadoop Architecture and HDFS
Edureka!
 
Google app engine
Suraj Mehta
 
1. GRID COMPUTING
Dr Sandeep Kumar Poonia
 
Hadoop Overview & Architecture
EMC
 
Hadoop architecture (Delhi Hadoop User Group Meetup 10 Sep 2011)
Hari Shankar Sreekumar
 
Ad

Similar to Unit i introduction to grid computing (20)

PPT
Gridcomputingppt
navjasser
 
PPT
All about GridComputing-an introduction (2).ppt
lagoki2767
 
PPT
GridComputing-an introduction.ppt
NileshkuGiri
 
PPT
Inroduction to grid computing by gargi shankar verma
gargishankar1981
 
DOC
Grid computing 12
Dhamu Harker
 
PPTX
3 - Grid Computing.pptx
RiazSalim1
 
PPTX
Introduction of grid computing
Pooja Dixit
 
PPT
Grid computing
Dikshita_Viradia
 
PPTX
Grid computing
Tapas Palei
 
PDF
Bt9002 grid computing 1
Techglyphs
 
PPT
Grid and cluster_computing_chapter1
Bharath Kumar
 
PPT
Grid Computing
Alan Leewllyn Bivera
 
PPTX
Grid computing
ASHIK MAHMUD
 
PPTX
cloud computing1234567891234567891223 .pptx
A1Creators
 
PPT
Grid computing by vaishali sahare [katkar]
vaishalisahare123
 
PPTX
Grid Computing and it's applications.PPTX
ImXaib
 
PPTX
Introduction to Grid Computing
abhijeetnawal
 
PPT
Grid Computing
sharmili priyadarsini
 
PPTX
Grid computing
Megha yadav
 
PPT
Grid Computing - Collection of computer resources from multiple locations
Dibyadip Das
 
Gridcomputingppt
navjasser
 
All about GridComputing-an introduction (2).ppt
lagoki2767
 
GridComputing-an introduction.ppt
NileshkuGiri
 
Inroduction to grid computing by gargi shankar verma
gargishankar1981
 
Grid computing 12
Dhamu Harker
 
3 - Grid Computing.pptx
RiazSalim1
 
Introduction of grid computing
Pooja Dixit
 
Grid computing
Dikshita_Viradia
 
Grid computing
Tapas Palei
 
Bt9002 grid computing 1
Techglyphs
 
Grid and cluster_computing_chapter1
Bharath Kumar
 
Grid Computing
Alan Leewllyn Bivera
 
Grid computing
ASHIK MAHMUD
 
cloud computing1234567891234567891223 .pptx
A1Creators
 
Grid computing by vaishali sahare [katkar]
vaishalisahare123
 
Grid Computing and it's applications.PPTX
ImXaib
 
Introduction to Grid Computing
abhijeetnawal
 
Grid Computing
sharmili priyadarsini
 
Grid computing
Megha yadav
 
Grid Computing - Collection of computer resources from multiple locations
Dibyadip Das
 
Ad

Recently uploaded (20)

PDF
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
PDF
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
PDF
Biological Bilingual Glossary Hindi and English Medium
World of Wisdom
 
PPTX
How to Set Maximum Difference Odoo 18 POS
Celine George
 
PDF
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
PPTX
CATEGORIES OF NURSING PERSONNEL: HOSPITAL & COLLEGE
PRADEEP ABOTHU
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PPTX
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
PDF
Stokey: A Jewish Village by Rachel Kolsky
History of Stoke Newington
 
PDF
Women's Health: Essential Tips for Every Stage.pdf
Iftikhar Ahmed
 
PPTX
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
PDF
Lesson 2 - WATER,pH, BUFFERS, AND ACID-BASE.pdf
marvinnbustamante1
 
PDF
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PDF
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
PPTX
grade 5 lesson matatag ENGLISH 5_Q1_PPT_WEEK4.pptx
SireQuinn
 
PPTX
How to Handle Salesperson Commision in Odoo 18 Sales
Celine George
 
PPT
Talk on Critical Theory, Part One, Philosophy of Social Sciences
Soraj Hongladarom
 
PDF
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
PPTX
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
ARAL_Orientation_Day-2-Sessions_ARAL-Readung ARAL-Mathematics ARAL-Sciencev2.pdf
JoelVilloso1
 
Biological Bilingual Glossary Hindi and English Medium
World of Wisdom
 
How to Set Maximum Difference Odoo 18 POS
Celine George
 
The dynastic history of the Chahmana.pdf
PrachiSontakke5
 
CATEGORIES OF NURSING PERSONNEL: HOSPITAL & COLLEGE
PRADEEP ABOTHU
 
Dimensions of Societal Planning in Commonism
StefanMz
 
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
Stokey: A Jewish Village by Rachel Kolsky
History of Stoke Newington
 
Women's Health: Essential Tips for Every Stage.pdf
Iftikhar Ahmed
 
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
Lesson 2 - WATER,pH, BUFFERS, AND ACID-BASE.pdf
marvinnbustamante1
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - GLOBAL SUCCESS - CẢ NĂM - NĂM 2024 (VOCABULARY, ...
Nguyen Thanh Tu Collection
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
LAW OF CONTRACT ( 5 YEAR LLB & UNITARY LLB)- MODULE-3 - LEARN THROUGH PICTURE
APARNA T SHAIL KUMAR
 
grade 5 lesson matatag ENGLISH 5_Q1_PPT_WEEK4.pptx
SireQuinn
 
How to Handle Salesperson Commision in Odoo 18 Sales
Celine George
 
Talk on Critical Theory, Part One, Philosophy of Social Sciences
Soraj Hongladarom
 
ARAL-Orientation_Morning-Session_Day-11.pdf
JoelVilloso1
 
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 

Unit i introduction to grid computing

  • 1. UNIT 1 INTRODUCTION ABOUT GRID COMPUTING
  • 2. DEFINITION  Grid computing is the federation of computer resources from multiple administrative domains to reach a common goal.  “computataional of grid is a hardware and software infrastructure that provides independent pervasive and inexpensive access to high end computational capabilities”.
  • 3.  What is Grid Computing?  Who Needs It?  An Illustrative Example  Grid Users  Current Grids
  • 4. What is Grid Computing?  Computational Grids  Homogeneous (e.g., Clusters)  Heterogeneous (e.g., with one-of-a-kind instruments)  Cousins of Grid Computing  Methods of Grid Computing
  • 5. Computational Grids  Each user A network of geographically distributed resources including computers, peripherals, switches, instruments, and data.  should have a single login account to access all resources.  Resources may be owned by diverse organizations.
  • 6. Computational Grids  Grids are typically managed by grid ware.  Grid ware can be viewed as a special type of middleware that enable sharing and manage grid components based on user requirements and resource attributes (e.g., capacity, performance, availability…)
  • 7. Cousins of Grid Computing  Parallel Computing  Distributed Computing  Peer-to-Peer Computing  Many others: Cluster Computing, Network Computing, Client/Server Computing, Internet Computing, etc...
  • 8. Distributed Computing  People often ask: Is Grid Computing a fancy new name for the concept of distributed computing?  In general, the answer is “no.” Distributed Computing is most often concerned with distributing the load of a program across two or more processes.
  • 9. PEER2PEER Computing  Sharing of computer resources and services by direct exchange between systems.  Computers can act as clients or servers depending on what role is most efficient for the network.
  • 10. Methods of Grid Computing  Distributed Supercomputing  High-Throughput Computing  On-Demand Computing  Data-Intensive Computing  Collaborative Computing  Logistical Networking
  • 11. Distributed Supercomputing  Combining multiple high-capacity resources on a computational grid into a single, virtual distributed supercomputer.  Tackle problems that cannot be solved on a single system.
  • 12. High-Throughput Computing  Uses the grid to schedule large numbers of loosely coupled or independent tasks, with the goal of putting unused processor cycles to work.
  • 13. On-Demand Computing  Uses grid capabilities to meet short-term requirements for resources that are not locally accessible.  Models real-time computing demands.
  • 14. Collaborative Computing  Concerned primarily with enabling and enhancing human-to-human interactions.  Applications are often structured in terms of a virtual shared space.
  • 15. Logistical Networking  Global scheduling and optimization of data movement.  Contrasts with traditional networking, which does not explicitly model storage resources in the network.  Called "logistical" because of the analogy it bears with the systems of warehouses, depots, and distribution channels.
  • 16. Who Needs Grid Computing?  A chemist may utilize hundreds of processors to screen thousands of compounds per hour.  Teams of engineers worldwide pool resources to analyze terabytes of structural data.  Meteorologists seek to visualize and analyze petabytes of climate data with enormous computational demands.
  • 17. An Illustrative Example  Tiffany Moisan, a NASA research scientist, collected microbiological samples in the tidewaters around Wallops Island, Virginia.  She needed the high-performance microscope located at the National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego.
  • 18.  She sent the samples to San Diego and used NPACI’s Telescience Grid and NASA’s Information Power Grid (IPG) to view and control the output of the microscope from her desk on Wallops Island. Thus, in addition to viewing the samples, she could move the platform holding them and make adjustments to the microscope.
  • 19. CONT…..  The microscope produced a huge dataset of images.  This dataset was stored using a storage resource broker on NASA’s IPG.  Moisan was able to run algorithms on this very dataset while watching the results in real time.
  • 20. Grid Users  Grid developers  Tool developers  Application developers  End Users  System Administrators
  • 21. Grid Developers  Very small group.  Implementers of a grid “protocol” who provides the basic services required to construct a grid.
  • 22. Tool Developers  Implement the programming models used by application developers.  Implement basic services similar to conventional computing services:  User authentication/authorization  Process management  Data access and communication
  • 23. Application Developers  Construct grid-enabled applications for end-users who should be able to use these applications without concern for the underlying grid.  Provide programming models that are appropriate for grid environments and services that programmers can rely on when developing (higher-level) applications.
  • 24. System Administrators  Balance local and global concerns.  Manage grid components and infrastructure.  Some tasks still not well delineated due to the high degree of sharing required.
  • 25. ADVANTAGE  Can solve larger, more complex problems in a shorter time  Easier to collaborate with other organizations  Make better use of existing hardware
  • 26. DISADVANTAGE  Grid software and standards are still evolving  Learning curve to get started  Non-interactive job submission
  • 27. The grid- Present, Past, Future  Number of derivatives in grid computing. Share resources and different architecture. 1. Compute Grids 2. Data Grids 3. Science Grids 4. Access Grids 5. Knowledge Grids 6. Cluster Grids 7. Terra Grids 8. Commodity Grids
  • 28. 1. Compute Grids vendors:  Grid Gain - Professional Open Source  JPPF - Open Source 2. Data Grids vendors:  Oracle Coherence- Commercial  GemStone- Commercial  GigaSpaces – Commercial  JBossCache - Professional Open Source  EhCache- Open Source
  • 29. Data Functional data requirements for Grid Computing applications are: •To integrate multiple distributed, heterogeneous, and independently managed data sources. •Data transfer mechanisms •Data caching and/or replication mechanisms to minimize network traffic. •Data discovery mechanisms •Data encryption and integrity •Backup/restore mechanisms and policies
  • 30. Computation Functional computational requirements for grid applications are: •Independent management of computing resources. •Intelligently and transparently select computing resources. •Availability, dynamic resource configuration, •Failure detection and failover mechanisms. •Secure resource management, access, and integrity.
  • 31. Computational and Data Grids Data requirements in the early grid solutions:  Discover data.  Databases, utilizing meta-data and other attributes of the data.  The provisioning of computing facilities for high-speed data movement.  Flexible data access and data filtering capabilities.
  • 32. Current Grid Activities  Sharing of resources can be different in present grid. 1. Computing power 2. Data 3. Hardware 4. Software 5. Network services
  • 33. Dynamic benefits of coordinated resource sharing in a virtual organization.
  • 34. The usage patterns found within each of the virtual organizations.  A virtual organization for weather prediction. For example, this virtual organization requires resources such as weather prediction software applications to perform the mandatory environmental simulations associated with predicting weather.  A virtual organization for financial modeling. For example, this virtual organization requires resources such as software modeling tools for performing a multitude of financial analytics, virtualized blades to run the above software, and access to data storage facilities for storing and accessing data.
  • 35. Number of requirements for Grid Computing architecture Three categories 1. Resource categories 2. Virtual organization 3. Users/Applications
  • 36. Providing facilities for the following scenarios:  Dynamic discovery of computing resources, based on their capabilities and functions.  Immediate allocation and provisioning of these resources, based on their availability and the user demands or requirements.  The management of these resources to meet the required service level agreements (SLAs).  The provisioning of multiple autonomic features for the resources, such as self- diagnosis, self-healing, self-configuring, and self-management.  The provisioning of secure access methods to the resources, and bindings with the local security mechanisms based upon the autonomic control policies.
  • 37. Virtual organization must be capable of providing facilities for:  Virtual task forces, or groups, to solve specific problems associated with the virtual organization.  Dynamic collection of resources from heterogeneous providers based upon users' needs and the sophistication levels of the problems.  Dynamic identification and automatic problem resolution of a wide variety of troubles, with automation of event correlation, linking the specific problems to the required resource and service providers.  The dynamic provisioning and management capabilities of the resources required meeting the SLAs.  The formation of a secured federation (or governance model) and common management model for all of the resources respective to the virtual organization.  The secure delegation of user credentials and identity mapping to the local domain(s).  The management of resources, including utilization and allocation, to meet a budget and other economic criteria.
  • 38. Users/applications typically found in Grid Computing environments must be able to perform the following characteristics:  The clear and unambiguous identification of the problem  The identification and mapping of the resources  The ability to sustain the required levels of QoS, while adhering to the anticipated and necessary SLAs.  The capability to collect feedback regarding resource status, including updates for the environment's respective applications.
  • 39. GRID APPLICATIONS  Grid computing applications can be aligned to have a common needs  Application partitioning that involves breaking the problem into discrete pieces  Discovery and scheduling of tasks and workflow  Data communication distributing the problem data where and when it is required  Provisioning and Distributing application codes to specific system nodes
  • 40. Contd…  Results management assisting in the decision process of the environment  Autonomic features such as self-configuration, self- optimization , self-recovery and self management Let us explore some of these Grid application and their usage pattern
  • 41. Schedulers  Responsible for management of jobs such as allocating the resource needed for any specific job , parallel execution of tasks, data management and service level management  Schedulers form the hierarchical structures , with meta schedulers as the root and other schedulers as the leaves  Meta schedulers or cluster schedulers for parallel execution
  • 42. Scheduler embodies local , meta- level and cluster schedulers LOCAL Diagram : SCHEDUL ER JOB META JOB META SCHEDUL SCHEDULE USER ER R JOB CLUSTER SCHEDULE R
  • 43. Contd…  Jobs submitted to the grid computing applications are evaluated based on the ir service level requirement  It involves the complex work flow management and data movement activities to occur on a regular basis
  • 44. Contd…  There are schedulers that must provide capabilities for areas such as  Advanced resource reservation  SLA validation and enforcement  Monitoring job execution and status  Rescheduling and corrective action
  • 45. Resource Broker  It providing the paring service between the service requester and service provider  This paring enables the selection of best available resource  It will collect the information from the respective resources and uses this information for paring purpose
  • 46. Resource Broker Diagram: RESOURCE BROKER SELECT RESOURCE INFORMATION RESOURCE 1 USER SELECT SCHEDULER EXECUTE TASK INFORMATION SCHEDULER RESOURCE 2 EXECUTE TASK
  • 47. Contd…  Resource broker provides the feed back to the users on the available resource  Resource broker may select the suitable scheduler for the execution of tasks
  • 48. Contd…  The paring process in a resource broker involves allocation and support functions such as  Allocate appropriate resource for task execution  Support users deadline and budget constraints for scheduling optimizations
  • 49. Load balancing  Load balancing features must always be integrated into any system in order to avoid processing delays and over commitment of resource  Load balancing may be built in connection with resource broker and schedulers  The level of load balancing involves partitioning of jobs ,identifying the resource and queueing of the jobs
  • 50. Contd…  Used to running the parallel jobs in parallel  It support failure detection and management  It redistribute the jobs to other resource if needed
  • 51. Grid portals  Grid portals are like the web portals  grid portals provide the uniform access to the grid resources  Grid portals provide 1. Resource access 2. Scheduling capabilities 3. monitoring statusinformation
  • 52. Contd…  some examples of grid portals capabilities are 1. Querying database 2. File transfer facilities 3. Manage job through job status feed back 4. Security management 5. Provide personalized solution
  • 53. Integrated solutions  It is the combination of existing advanced middleware and application functionalities combined to provide high performance results across the grid computing environment  It support more complex utilization of grid such as the coordinated and optimized resource sharing, enhanced security management, cost optimization ,etc  It achieves the level of flexibility utilizing infrastructure provided by application and middleware frame works
  • 54. GRID INFRASTRUCTURE  GRID infrastructure forms the core foundation for the successful grid applications Grid computing infrastructure component must address several potentially complicated areas in many stages of implementation , they are 1. Security 2. Resource management 3. Information services 4. Data management
  • 55. Diagram: GRID APPLICATIONS G G R R I I D RES INF D DAT M M OUR OR A I I CE MAT D SECU ION D MA D D RITY MA NAG L NAG SER L EME E E EME VICE NT W W NT S A A R R E E HOSTING ENVIRONMENT
  • 56. Security  Heterogeneous nature of resources – complicated polices - complex security schemes  These computing resources are hosted in differing security domains and Heterogeneous platforms  Security requirements – data integrity , confidentiality and information privacy
  • 57. Contd…  The grid computing data exchange must be protected using secure communication channels including SSL/TLS  Secure message exchange mechanisms such as WS- Security  Security infrastructure – grid security infrastructure (GSI)
  • 58. Resource management  Resource management scenarios are 1. Resource discovery 2. Resource monitoring 3. Fault isolation 4. Resource provisioning 5. Resource monitoring 6. Autonomic capabilities 7. Service level management activities
  • 59. Contd…  Resource management area is the selection of correct resource from grid resource pool  Fully based on SLA
  • 60. Information services  Providing valuable information respective to grid computing infrastructure resources  Service are entirely depends on resource availability, capacity and utilization  The information is valuable and mandatory feedback respective to resource managers  Grid solutions are constructed to reflect portals  Metrics are helpful in SLA
  • 61. Data management  Data forms the single most important asset in a grid computing system  Data maybe – input to the resource – output from the resource  Data must be near to the computation where it is used  Data storage mechanisms – Storage Area Network (SAN) ,network file system, virtual database
  • 62. contd…  Developers and providers must factor into decision are related to selecting the most appropriate data management mechanism for grid computing infrastructure This includes size of – 1. data repositories 2. resource geographical distribution 3. security requirements 4. schemes for replication 5. caching facilities