SlideShare a Scribd company logo
A vne
 da cd
Ifr t nT e r i
nomai h oyn
     o
C P “ aN t e”
 VRi n us l
          hl
                                      CP
                                       VR
  T ti
   u rl
    oa                              J n 1 -82 1
                                     u e 31 0 0
                                    S nFa c c ,A
                                     a rn i oC
                                           s
Shape Matching with I-divergences

Anand Rangarajan
Shape Matching with I-Divergences



Groupwise Point-set Pattern Registration
Given N point-sets, which are denoted by {X p , p ∈ {1, ..., N}}, the
task of multiple point pattern matching or point-set registration is to
recover the spatial transformations which yield the best alignment of
all shapes.




                                                                          2/29
Problem Visualization




                        3/29
Problem Visualization




                        3/29
Group-wise Point-set Registration



Principal Technical Challenges
    Solving for nonrigid deformations between point-sets with
    unknown correspondence is a difficult problem.

    How do we align all the point-sets in a symmetric manner so
    that there is no bias toward any particular point-set?




                                                                  4/29
From point-sets to density functions




                                       5/29
From point-sets to density functions




                                       5/29
Group-wise Point-set Registration



From point-sets to density functions
    Point sets are represented by probability density functions.
    Intuitively, if these point sets are aligned properly, the
    corresponding density functions should be similar.




                                                                   6/29
Group-wise Point-set Registration



From point-sets to density functions
    Point sets are represented by probability density functions.
    Intuitively, if these point sets are aligned properly, the
    corresponding density functions should be similar.
Question: How do we measure the similarity between multiple
density functions?




                                                                   6/29
Divergence Measures



Kullback-Leibler divergence
                ˆ
                               p(x)
  DKL (p q) =       p(x) log        dx
                               q(x)

where p(x), q(x) are the probability
density functions.




                                                               7/29
Divergence Measures



Kullback-Leibler divergence            J divergence
                ˆ                      Given two probability density
                             p(x)      function p and q, the symmetric KL
  DKL (p q) =       p(x) log      dx
                             q(x)      divergence is defined as:

where p(x), q(x) are the probability            1
                                       J(p, q) = (DKL (p q) + DKL (q p))
density functions.                              2




                                                                       7/29
Motivating the JS divergence

                                     Modeling two shapes




                                         X                                    Y


                    N1         K1                                      N2         K2
         (1)              1                 (1)             (2)              1                (2)
p(X |θ         )=                    p(Xi |θa ),   p(Y |θ         )=                    p(Yj |θb )
                          K1                                                 K2
                    i=1        a=1                                     j=1        b=1

                                                                                                     8/29
Motivating the JS divergence


Modeling the overlay of two shapes with identity of origin




                                 X Y



        p(X ∪ Y |θ(1) , θ(2) ) = p(X |θ(1) )p(Y |θ(2) )


                                                             8/29
Motivating the JS divergence


Modeling the overlay of two shapes without identity of origin




                                       Z

                           N1                    N2
  p(Z |θ(1) , θ(2) ) =           p(Z |θ(1) ) +         p(Z |θ(2) )
                         N1 + N2               N1 + N2


                                                                     8/29
Likelihood Ratio

Which generative model do you prefer? The union of disparate
shapes where identity of origin is preserved or one combined
shape where the identity of origin is suppressed.
Likelihood ratio:
                                         N1         (1)      N2       (2)
              p(Z |θ(1) , θ(2) )       N1 +N2 p(Z |θ ) + N1 +N2 p(Z |θ )
log Λ = log                        =
            p(X ∪ Y |θ(1) , θ(2) )             p(X |θ(1) )p(Y |θ(2) )

Z is understood to arise from a convex combination of two
mixture models p(Z |θ(1) ) and p(Z |θ(2) ) where the weights of
each mixture are proportional to the number of points N1 and
N2 in each set.
Weak law of large numbers leads to Jensen-Shannon divergence.
                                                                    9/29
JS Divergence for multiple shapes



JS-divergence of shape densities
          JSπ (P1 , P2 , ..., Pn ) = H(    π i Pi ) −   πi H(Pi )      (1)
where π = {π1 , π2 , ..., πn |πi > 0, πi = 1} are the weights of the
probability densities Pi and H(Pi ) is the Shannon entropy.




                                                                         10/29
Atlas estimation


Formulation using JS-divergence

                                               N
                JSβ (P1 , P2 , ..., PN ) + λ         ||Lf i ||2
                                               i=1
                                                           N
             =H(       β i Pi ) −     βi H(Pi ) + λ               ||Lf i ||2 .
                                                          i=1

f i is the deformation function corresponding to point set X i ;
Pi = p(f i (X i )) is the probability density for deformed point-set.


                                                                                 11/29
Multiple shapes: JS divergence

JS divergence in a hypothesis testing framework:
    Construct a likelihood ratio between i.i.d. samples drawn from a
    mixture ( a πa Pa ) and i.i.d. samples drawn from a
    heterogeneous collection of densities (P1 , P2 , ..., PN ).

    The likelihood ratio is then
                              M      N
                              k=1    a=1 πa Pa (xk )
                      Λ=       N     Na
                                                     .
                                                a
                               a=1   ka =1 Pa (xka )

    Weak law of large numbers gives us the JS-divergence.

                                                                   12/29
Group-wise Registration Results
Experimental results on four 3D hippocampus point sets.




                                                          13/29
Shape matching via CDF I-divergences



Model each point-set by a cumulative distribution function
(CDF)
Quantify the distance among cdfs via an information-theoretic
measure [typically the cumulative residual entropy (CRE)]
Minimize the dis-similarity measure over the space of
coordinate transformation parameters




                                                                14/29
Havrda-Charvát CRE


HC-CRE: Let X be a random vector in R d , we define the HC-CRE
of X by
                 ˆ
     EH (X ) = −   (α − 1)−1 (P α (|X | > λ) − P(|X | > λ))d λ
                       d
                      R+

where X = {x1 , x2 , . . . , xd }, λ = {λ1 , λ2 , . . . , λd }, and |X | > λ
means |xi | > λi , R+ = {xi ∈ R d ; xi ≥ 0; i ∈ {1, 2, . . . , d }}.
                    d




                                                                               15/29
CDF-HC Divergence



CDF-HC Divergence : Given N cumulative probability distributions
Pk , k ∈ {1, . . . , N}, the CDF-JS divergence of the set {Pk } is
defined as

       HC (P1 , P2 , . . . , PN ) = EH (       πk Pk ) −       πk EH (Pk )
                                           k               k

where 0 ≤ πk ≤ 1,       k   πk = 1, and EH is the HC-CRE.




                                                                             16/29
CDF-HC Divergence


Let P =       k   πk Pk

     HC (P1 , P2 , . . . , PN )
                    ˆ                                        ˆ
              −1
   = −(α − 1) (            P α (X > λ)d λ−              πk         α
                                                                  Pk (Xk > λ)d λ)
                              d
                             R+                               d
                                                             R+
                                                    k
                   ˆ                         ˆ
                           2
   =          πk          Pk (Xk > λ)d λ −        P 2 (X > λ)d λ      (α = 2)
                     d
                    R+                        d
                                             R+
          k




                                                                                    17/29
Dirac Mixture Model

                                                                            Dk
                                                                       1
                                                         Pk (Xk > λ) =           H i (x, xi )
                                                                       Dk
                                                                            i

where H(x, xi ) is the Heaviside function (equal to 1 if all
components of x are greater than xi ).


   1
  0.5
    0

        0

            10

                 20

                      30

                           40
                                                                80
                                50                         60
                                     60             40
                                               20
                                          0
                                          70




                                                                                                18/29
CDF-JS, PDF-JS & CDF-HC

          Before Registraion                          CDF−JS                             PDF−JS                             CDF−HC
3.5                                     3.5                                3.5                                3.5

 3                                       3                                  3                                  3

2.5                                     2.5                                2.5                                2.5

 2                                       2                                  2                                  2

1.5                                     1.5                                1.5                                1.5

 1                                       1                                  1                                  1

0.5                                     0.5                                0.5                                0.5

 0                                       0                                  0                                  0

      0           1             2             0         1          2             0         1          2             0         1          2

           Before Registraion                         CDF−JS                             PDF−JS                             CDF−HC
  4                                       4                                  4                                  4


  2                                       2                                  2                                  2


  0                                       0                                  0                                  0
      0      2     4     6          8         0   2     4      6       8         0   2     4      6       8         0   2     4      6       8




                                                                                                                                                 19/29
2D Point-set Registration for CC

           Point Set 1                    Point Set 2                       Point Set 3


 0.2                            0.2                           0.2

 0.1                            0.1                           0.1
  0                              0                             0
−0.1                           −0.1
       0    0.2   0.4    0.6          0    0.2   0.4    0.6             0    0.2    0.4      0.6
           Point Set 4                    Point Set 5                       Point Set 6


 0.2                            0.2                           0.2

 0.1                            0.1                           0.1

  0                              0                             0
−0.1
       0    0.2   0.4    0.6          0    0.2    0.4   0.6             0    0.2    0.4      0.6
           Point Set 7                Before Registration               After Registration

 0.2                                                          0.2
                                0.2

 0.1                            0.1                           0.1

  0                              0
                                                               0
                               −0.1
       0    0.2    0.4   0.6          0    0.2   0.4    0.6         0       0.2    0.4    0.6




                                                                                                   20/29
With outliers



         Before Registration         After PDF−JS Registration               After CDF−HC Registration
                                                                       0.2
0.2                            0.2

0.1                            0.1                                     0.1

 0                              0
                                                                        0
  0.2   0.4   0.6   0.8   1          0.4    0.6   0.8    1       1.2           0     0.2    0.4   0.6




                                                                                                         21/29
With different α values

          Initial Configuration                                       α=2

0.2
                                                          0.2
0.1
                                                          0.1
  0
                                                            0
            0.5              1                                  0   0.2 0.4 0.6

                  α=1.1                      α=1.3                   α=1.5                    α=1.7

0.2                               0.2                     0.2                     0.2
0.1                               0.1                     0.1                     0.1
  0                                 0                       0                       0
      0       0.2 0.4 0.6               0   0.2 0.4 0.6         0   0.2 0.4 0.6         0   0.2 0.4 0.6

                  α=1.9                       α=3                     α=4                     α=5

0.2                               0.2                     0.2                     0.2
0.1                               0.1                     0.1                     0.1
  0                                 0                       0                       0
      0      0.2 0.4 0.6                0   0.2 0.4 0.6         0   0.2 0.4 0.6         0   0.2 0.4 0.6




                                                                                                          22/29
3D Point-set Registration for Duck
         Point Set 1                Point Set 2                 Point Set 3

 150                    150                           150

 100                    100                           100


  50                       50                          50


   0                        0                           0
                                                                              0
       0 100 200 40 0       0 100 200          40 0
                                              60 20      0 100 200         40
                                                                          60
                                                                             20
               60 20

         Point Set 4            Before Registration         After Registration

 150                    150                           150

 100                    100
                                                      100

  50                       50
                                                       50

   0                        0
                       0                                0
   0 100
           200   604020     0 100 200         40 0
                                             60 20          0                 0
                                                                100 200 50        23/29
3D Registration of Hippocampi
                  Point Set 1                            Point Set 2                                 Point Set 3
         100 0                                   100 0                                       100 0
                           100                                     100                                          100
                                  200                                         200                                            200
                                   0                                           0                                              0
    50                                      50                                          50
                                  10                                          10                                             10
                                  20                                          20                                             20
0                                       0                                           0




                  Point Set 4                Point Sets Before Registration                  Point sets After Registration
          100 0                                  100 0                                          100 0

                            100                                        100                                         100
                                  200        50                                          50
    50                             0                                          200                                            200
                                                                              0                                              0
                                  10                                          5
                                                                                                                             10
                                  20    0                                     10
                                                                                    0
0                                                                             15                                             20




                                                                                                                                   24/29
Group-Wise Registration Assessment

The Kolmogorov-Smirnov (KS) statistic was computed to measure
the difference between the CDFs.
    With ground truth
                               N
                           1
                                     D(Fg , Fk )
                           N
                               k=1

    Without ground truth
                                     N
                             1
                        K=                 D(Fk , Fs )
                             N2
                                   k,s=1




                                                                25/29
KS statistic for comparison


                     Table: KS statistic
  KS-statistic         CDF-JS       PDF-JS    CDF-HC
  Olympic Logo          0.1103       0.1018    0.0324
Fish with outliers      0.1314       0.1267    0.0722


       Table: Average nearest neighbor distance
 ANN distance          CDF-JS       PDF-JS    CDF-HC
  Olympic Logo          0.0367       0.0307    0.0019
Fish with outliers      0.0970       0.0610    0.0446

                                                        26/29
KS statistic for comparison (contd.)


Table: Non-rigid group-wise registration assessment without ground truth
using KS statistics


                                 Before Registration     After Registration
      Corpus Callosum                  0.3226                  0.0635
 Corpus Callosum with outlier          0.3180                  0.0742
        Olympic Logo                   0.1559                  0.0308
             Fish                      0.1102                  0.0544
        Hippocampus                    0.2620                  0.0770
            Duck                       0.2287                  0.0160


                                                                           27/29
KS statistic for comparison (contd.)


Table: Non-rigid group-wise registration assessment without ground truth
using average nearest neighbor distance


                                 Before Registration     After Registration
      Corpus Callosum                  0.0291                  0.0029
 Corpus Callosum with outlier          0.0288                  0.0092
        Olympic Logo                   0.0825                  0.0022
             Fish                      0.1461                  0.0601
        Hippocampus                    13.7679                 3.1779
            Duck                       15.4725                 0.3280


                                                                           28/29
Discussion



I-divergences for shape matching avoid correspondence problem
Symmetric, unbiased registration and atlas estimation
Shape densities modeled as Gaussian mixtures, cumulatives
directly estimated
JS (pdf and cdf-based) and HC divergences used
Estimated atlas useful in model-based segmentation




                                                                29/29

More Related Content

What's hot (19)

PDF
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
zukun
 
PDF
Discrete Models in Computer Vision
Yap Wooi Hen
 
PDF
Chapter 2 pertubation
NBER
 
PDF
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm 2012
 
PDF
01 graphical models
zukun
 
PDF
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Tro07 sparse-solutions-talk
mpbchina
 
PDF
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
PDF
Dragisa Zunic - Classical computing with explicit structural rules - the *X c...
Dragisa Zunic
 
PDF
Parameter Uncertainty and Learning in Dynamic Financial Decisions
Daniel Bruggisser
 
PDF
The Black-Litterman model in the light of Bayesian portfolio analysis
Daniel Bruggisser
 
PDF
Elementary Landscape Decomposition of Combinatorial Optimization Problems
jfrchicanog
 
PDF
Gentle Introduction to Dirichlet Processes
Yap Wooi Hen
 
PDF
Lecture11
Bo Li
 
PDF
Paper Summary of Disentangling by Factorising (Factor-VAE)
준식 최
 
PDF
11.final paper -0047www.iiste.org call-for_paper-58
Alexander Decker
 
PDF
Description and retrieval of medical visual information based on language mod...
Antonio Foncubierta Rodriguez
 
PDF
Random Matrix Theory and Machine Learning - Part 4
Fabian Pedregosa
 
PDF
Au2419291933
IJMER
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: additional slides
zukun
 
Discrete Models in Computer Vision
Yap Wooi Hen
 
Chapter 2 pertubation
NBER
 
AlgoPerm2012 - 09 Vincent Pilaud
AlgoPerm 2012
 
01 graphical models
zukun
 
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
The Statistical and Applied Mathematical Sciences Institute
 
Tro07 sparse-solutions-talk
mpbchina
 
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
Dragisa Zunic - Classical computing with explicit structural rules - the *X c...
Dragisa Zunic
 
Parameter Uncertainty and Learning in Dynamic Financial Decisions
Daniel Bruggisser
 
The Black-Litterman model in the light of Bayesian portfolio analysis
Daniel Bruggisser
 
Elementary Landscape Decomposition of Combinatorial Optimization Problems
jfrchicanog
 
Gentle Introduction to Dirichlet Processes
Yap Wooi Hen
 
Lecture11
Bo Li
 
Paper Summary of Disentangling by Factorising (Factor-VAE)
준식 최
 
11.final paper -0047www.iiste.org call-for_paper-58
Alexander Decker
 
Description and retrieval of medical visual information based on language mod...
Antonio Foncubierta Rodriguez
 
Random Matrix Theory and Machine Learning - Part 4
Fabian Pedregosa
 
Au2419291933
IJMER
 

Viewers also liked (20)

PDF
ICCV2009: MAP Inference in Discrete Models: Part 6: Recent Advances in Convex...
zukun
 
PDF
Cvpr2010 open source vision software, intro and training part iv generic imag...
zukun
 
PDF
00 introduction
zukun
 
PDF
Fcv rep hoiem
zukun
 
PDF
CVPR2010: higher order models in computer vision: Part 4
zukun
 
PDF
Fcv taxo perona
zukun
 
PDF
ICCV2009: MAP Inference in Discrete Models: Part 2
zukun
 
PDF
NIPS2007: learning using many examples
zukun
 
PPT
Mit6870 orsu lecture11
zukun
 
PDF
Principal component analysis and matrix factorizations for learning (part 3) ...
zukun
 
PDF
CVPR2010: Semi-supervised Learning in Vision: Part 3: Algorithms and Applicat...
zukun
 
PDF
Principal component analysis and matrix factorizations for learning (part 2) ...
zukun
 
PPTX
A general survey of previous works on action recognition
zukun
 
PDF
ECCV2010: distance function and metric learning part 2
zukun
 
PDF
Cvpr2010 open source vision software, intro and training part vii point cloud...
zukun
 
PPSX
Power%20 point[1]
thiberge
 
PDF
Catalogueprofessionnel2011
thiberge
 
PDF
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 3: O...
zukun
 
PDF
Fcv rep todorovic
zukun
 
PPT
ECCV2008: MAP Estimation Algorithms in Computer Vision - Part 2
zukun
 
ICCV2009: MAP Inference in Discrete Models: Part 6: Recent Advances in Convex...
zukun
 
Cvpr2010 open source vision software, intro and training part iv generic imag...
zukun
 
00 introduction
zukun
 
Fcv rep hoiem
zukun
 
CVPR2010: higher order models in computer vision: Part 4
zukun
 
Fcv taxo perona
zukun
 
ICCV2009: MAP Inference in Discrete Models: Part 2
zukun
 
NIPS2007: learning using many examples
zukun
 
Mit6870 orsu lecture11
zukun
 
Principal component analysis and matrix factorizations for learning (part 3) ...
zukun
 
CVPR2010: Semi-supervised Learning in Vision: Part 3: Algorithms and Applicat...
zukun
 
Principal component analysis and matrix factorizations for learning (part 2) ...
zukun
 
A general survey of previous works on action recognition
zukun
 
ECCV2010: distance function and metric learning part 2
zukun
 
Cvpr2010 open source vision software, intro and training part vii point cloud...
zukun
 
Power%20 point[1]
thiberge
 
Catalogueprofessionnel2011
thiberge
 
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 3: O...
zukun
 
Fcv rep todorovic
zukun
 
ECCV2008: MAP Estimation Algorithms in Computer Vision - Part 2
zukun
 
Ad

Similar to CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Divergences (20)

PDF
Bayesian Methods for Machine Learning
butest
 
PDF
icml2004 tutorial on bayesian methods for machine learning
zukun
 
PDF
Cluster analysis
Hohai university
 
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
PDF
Fuzzy directed divergence and image segmentation
Surender Singh
 
PDF
Computation of the marginal likelihood
BigMC
 
PDF
Basics of probability in statistical simulation and stochastic programming
SSA KPI
 
PDF
Cluster Analysis
SSA KPI
 
PDF
Image denoising
Yap Wooi Hen
 
PDF
Ann chapter-3-single layerperceptron20021031
frdos
 
PDF
Engr 371 final exam april 1999
amnesiann
 
PDF
On the Jensen-Shannon symmetrization of distances relying on abstract means
Frank Nielsen
 
PDF
ma112011id535
matsushimalab
 
PPT
Pr1
shivangi70
 
PDF
Challenges in predicting weather and climate extremes
IC3Climate
 
PPTX
study Accelerating Spatially Varying Gaussian Filters
Chiamin Hsu
 
PDF
Kernel Entropy Component Analysis in Remote Sensing Data Clustering.pdf
grssieee
 
PDF
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
zukun
 
PPT
ECCV2010: distance function and metric learning part 1
zukun
 
PDF
Transformation of random variables
Tarun Gehlot
 
Bayesian Methods for Machine Learning
butest
 
icml2004 tutorial on bayesian methods for machine learning
zukun
 
Cluster analysis
Hohai university
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
Fuzzy directed divergence and image segmentation
Surender Singh
 
Computation of the marginal likelihood
BigMC
 
Basics of probability in statistical simulation and stochastic programming
SSA KPI
 
Cluster Analysis
SSA KPI
 
Image denoising
Yap Wooi Hen
 
Ann chapter-3-single layerperceptron20021031
frdos
 
Engr 371 final exam april 1999
amnesiann
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
Frank Nielsen
 
ma112011id535
matsushimalab
 
Challenges in predicting weather and climate extremes
IC3Climate
 
study Accelerating Spatially Varying Gaussian Filters
Chiamin Hsu
 
Kernel Entropy Component Analysis in Remote Sensing Data Clustering.pdf
grssieee
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 4: Isocontours, Registration
zukun
 
ECCV2010: distance function and metric learning part 1
zukun
 
Transformation of random variables
Tarun Gehlot
 
Ad

More from zukun (20)

PDF
My lyn tutorial 2009
zukun
 
PDF
ETHZ CV2012: Tutorial openCV
zukun
 
PDF
ETHZ CV2012: Information
zukun
 
PDF
Siwei lyu: natural image statistics
zukun
 
PDF
Lecture9 camera calibration
zukun
 
PDF
Brunelli 2008: template matching techniques in computer vision
zukun
 
PDF
Modern features-part-4-evaluation
zukun
 
PDF
Modern features-part-3-software
zukun
 
PDF
Modern features-part-2-descriptors
zukun
 
PDF
Modern features-part-1-detectors
zukun
 
PDF
Modern features-part-0-intro
zukun
 
PDF
Lecture 02 internet video search
zukun
 
PDF
Lecture 01 internet video search
zukun
 
PDF
Lecture 03 internet video search
zukun
 
PDF
Icml2012 tutorial representation_learning
zukun
 
PPT
Advances in discrete energy minimisation for computer vision
zukun
 
PDF
Gephi tutorial: quick start
zukun
 
PDF
EM algorithm and its application in probabilistic latent semantic analysis
zukun
 
PDF
Object recognition with pictorial structures
zukun
 
PDF
Iccv2011 learning spatiotemporal graphs of human activities
zukun
 
My lyn tutorial 2009
zukun
 
ETHZ CV2012: Tutorial openCV
zukun
 
ETHZ CV2012: Information
zukun
 
Siwei lyu: natural image statistics
zukun
 
Lecture9 camera calibration
zukun
 
Brunelli 2008: template matching techniques in computer vision
zukun
 
Modern features-part-4-evaluation
zukun
 
Modern features-part-3-software
zukun
 
Modern features-part-2-descriptors
zukun
 
Modern features-part-1-detectors
zukun
 
Modern features-part-0-intro
zukun
 
Lecture 02 internet video search
zukun
 
Lecture 01 internet video search
zukun
 
Lecture 03 internet video search
zukun
 
Icml2012 tutorial representation_learning
zukun
 
Advances in discrete energy minimisation for computer vision
zukun
 
Gephi tutorial: quick start
zukun
 
EM algorithm and its application in probabilistic latent semantic analysis
zukun
 
Object recognition with pictorial structures
zukun
 
Iccv2011 learning spatiotemporal graphs of human activities
zukun
 

Recently uploaded (20)

PPTX
Latest Features in Odoo 18 - Odoo slides
Celine George
 
PPTX
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
PPTX
PPT on the Development of Education in the Victorian England
Beena E S
 
PPTX
nutriquiz grade 4.pptx...............................................
ferdinandsanbuenaven
 
PDF
1, 2, 3… E MAIS UM CICLO CHEGA AO FIM!.pdf
Colégio Santa Teresinha
 
PPTX
Blanket Order in Odoo 17 Purchase App - Odoo Slides
Celine George
 
PPTX
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
PPTX
LEGAL ASPECTS OF PSYCHIATRUC NURSING.pptx
PoojaSen20
 
PPTX
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
PPTX
ROLE OF ANTIOXIDANT IN EYE HEALTH MANAGEMENT.pptx
Subham Panja
 
PPTX
Accounting Skills Paper-I, Preparation of Vouchers
Dr. Sushil Bansode
 
PPTX
How to Manage Promotions in Odoo 18 Sales
Celine George
 
PPTX
Presentation: Climate Citizenship Digital Education
Karl Donert
 
PDF
Zoology (Animal Physiology) practical Manual
raviralanaresh2
 
PPTX
Gall bladder, Small intestine and Large intestine.pptx
rekhapositivity
 
PPTX
How to Configure Storno Accounting in Odoo 18 Accounting
Celine George
 
PPTX
How to Define Translation to Custom Module And Add a new language in Odoo 18
Celine George
 
PPTX
Capitol Doctoral Presentation -July 2025.pptx
CapitolTechU
 
PPTX
CLEFT LIP AND PALATE: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
PDF
Federal dollars withheld by district, charter, grant recipient
Mebane Rash
 
Latest Features in Odoo 18 - Odoo slides
Celine George
 
How to Configure Access Rights of Manufacturing Orders in Odoo 18 Manufacturing
Celine George
 
PPT on the Development of Education in the Victorian England
Beena E S
 
nutriquiz grade 4.pptx...............................................
ferdinandsanbuenaven
 
1, 2, 3… E MAIS UM CICLO CHEGA AO FIM!.pdf
Colégio Santa Teresinha
 
Blanket Order in Odoo 17 Purchase App - Odoo Slides
Celine George
 
ASRB NET 2023 PREVIOUS YEAR QUESTION PAPER GENETICS AND PLANT BREEDING BY SAT...
Krashi Coaching
 
LEGAL ASPECTS OF PSYCHIATRUC NURSING.pptx
PoojaSen20
 
Optimizing Cancer Screening With MCED Technologies: From Science to Practical...
i3 Health
 
ROLE OF ANTIOXIDANT IN EYE HEALTH MANAGEMENT.pptx
Subham Panja
 
Accounting Skills Paper-I, Preparation of Vouchers
Dr. Sushil Bansode
 
How to Manage Promotions in Odoo 18 Sales
Celine George
 
Presentation: Climate Citizenship Digital Education
Karl Donert
 
Zoology (Animal Physiology) practical Manual
raviralanaresh2
 
Gall bladder, Small intestine and Large intestine.pptx
rekhapositivity
 
How to Configure Storno Accounting in Odoo 18 Accounting
Celine George
 
How to Define Translation to Custom Module And Add a new language in Odoo 18
Celine George
 
Capitol Doctoral Presentation -July 2025.pptx
CapitolTechU
 
CLEFT LIP AND PALATE: NURSING MANAGEMENT.pptx
PRADEEP ABOTHU
 
Federal dollars withheld by district, charter, grant recipient
Mebane Rash
 

CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Divergences

  • 1. A vne da cd Ifr t nT e r i nomai h oyn o C P “ aN t e” VRi n us l hl CP VR T ti u rl oa J n 1 -82 1 u e 31 0 0 S nFa c c ,A a rn i oC s Shape Matching with I-divergences Anand Rangarajan
  • 2. Shape Matching with I-Divergences Groupwise Point-set Pattern Registration Given N point-sets, which are denoted by {X p , p ∈ {1, ..., N}}, the task of multiple point pattern matching or point-set registration is to recover the spatial transformations which yield the best alignment of all shapes. 2/29
  • 5. Group-wise Point-set Registration Principal Technical Challenges Solving for nonrigid deformations between point-sets with unknown correspondence is a difficult problem. How do we align all the point-sets in a symmetric manner so that there is no bias toward any particular point-set? 4/29
  • 6. From point-sets to density functions 5/29
  • 7. From point-sets to density functions 5/29
  • 8. Group-wise Point-set Registration From point-sets to density functions Point sets are represented by probability density functions. Intuitively, if these point sets are aligned properly, the corresponding density functions should be similar. 6/29
  • 9. Group-wise Point-set Registration From point-sets to density functions Point sets are represented by probability density functions. Intuitively, if these point sets are aligned properly, the corresponding density functions should be similar. Question: How do we measure the similarity between multiple density functions? 6/29
  • 10. Divergence Measures Kullback-Leibler divergence ˆ p(x) DKL (p q) = p(x) log dx q(x) where p(x), q(x) are the probability density functions. 7/29
  • 11. Divergence Measures Kullback-Leibler divergence J divergence ˆ Given two probability density p(x) function p and q, the symmetric KL DKL (p q) = p(x) log dx q(x) divergence is defined as: where p(x), q(x) are the probability 1 J(p, q) = (DKL (p q) + DKL (q p)) density functions. 2 7/29
  • 12. Motivating the JS divergence Modeling two shapes X Y N1 K1 N2 K2 (1) 1 (1) (2) 1 (2) p(X |θ )= p(Xi |θa ), p(Y |θ )= p(Yj |θb ) K1 K2 i=1 a=1 j=1 b=1 8/29
  • 13. Motivating the JS divergence Modeling the overlay of two shapes with identity of origin X Y p(X ∪ Y |θ(1) , θ(2) ) = p(X |θ(1) )p(Y |θ(2) ) 8/29
  • 14. Motivating the JS divergence Modeling the overlay of two shapes without identity of origin Z N1 N2 p(Z |θ(1) , θ(2) ) = p(Z |θ(1) ) + p(Z |θ(2) ) N1 + N2 N1 + N2 8/29
  • 15. Likelihood Ratio Which generative model do you prefer? The union of disparate shapes where identity of origin is preserved or one combined shape where the identity of origin is suppressed. Likelihood ratio: N1 (1) N2 (2) p(Z |θ(1) , θ(2) ) N1 +N2 p(Z |θ ) + N1 +N2 p(Z |θ ) log Λ = log = p(X ∪ Y |θ(1) , θ(2) ) p(X |θ(1) )p(Y |θ(2) ) Z is understood to arise from a convex combination of two mixture models p(Z |θ(1) ) and p(Z |θ(2) ) where the weights of each mixture are proportional to the number of points N1 and N2 in each set. Weak law of large numbers leads to Jensen-Shannon divergence. 9/29
  • 16. JS Divergence for multiple shapes JS-divergence of shape densities JSπ (P1 , P2 , ..., Pn ) = H( π i Pi ) − πi H(Pi ) (1) where π = {π1 , π2 , ..., πn |πi > 0, πi = 1} are the weights of the probability densities Pi and H(Pi ) is the Shannon entropy. 10/29
  • 17. Atlas estimation Formulation using JS-divergence N JSβ (P1 , P2 , ..., PN ) + λ ||Lf i ||2 i=1 N =H( β i Pi ) − βi H(Pi ) + λ ||Lf i ||2 . i=1 f i is the deformation function corresponding to point set X i ; Pi = p(f i (X i )) is the probability density for deformed point-set. 11/29
  • 18. Multiple shapes: JS divergence JS divergence in a hypothesis testing framework: Construct a likelihood ratio between i.i.d. samples drawn from a mixture ( a πa Pa ) and i.i.d. samples drawn from a heterogeneous collection of densities (P1 , P2 , ..., PN ). The likelihood ratio is then M N k=1 a=1 πa Pa (xk ) Λ= N Na . a a=1 ka =1 Pa (xka ) Weak law of large numbers gives us the JS-divergence. 12/29
  • 19. Group-wise Registration Results Experimental results on four 3D hippocampus point sets. 13/29
  • 20. Shape matching via CDF I-divergences Model each point-set by a cumulative distribution function (CDF) Quantify the distance among cdfs via an information-theoretic measure [typically the cumulative residual entropy (CRE)] Minimize the dis-similarity measure over the space of coordinate transformation parameters 14/29
  • 21. Havrda-Charvát CRE HC-CRE: Let X be a random vector in R d , we define the HC-CRE of X by ˆ EH (X ) = − (α − 1)−1 (P α (|X | > λ) − P(|X | > λ))d λ d R+ where X = {x1 , x2 , . . . , xd }, λ = {λ1 , λ2 , . . . , λd }, and |X | > λ means |xi | > λi , R+ = {xi ∈ R d ; xi ≥ 0; i ∈ {1, 2, . . . , d }}. d 15/29
  • 22. CDF-HC Divergence CDF-HC Divergence : Given N cumulative probability distributions Pk , k ∈ {1, . . . , N}, the CDF-JS divergence of the set {Pk } is defined as HC (P1 , P2 , . . . , PN ) = EH ( πk Pk ) − πk EH (Pk ) k k where 0 ≤ πk ≤ 1, k πk = 1, and EH is the HC-CRE. 16/29
  • 23. CDF-HC Divergence Let P = k πk Pk HC (P1 , P2 , . . . , PN ) ˆ ˆ −1 = −(α − 1) ( P α (X > λ)d λ− πk α Pk (Xk > λ)d λ) d R+ d R+ k ˆ ˆ 2 = πk Pk (Xk > λ)d λ − P 2 (X > λ)d λ (α = 2) d R+ d R+ k 17/29
  • 24. Dirac Mixture Model Dk 1 Pk (Xk > λ) = H i (x, xi ) Dk i where H(x, xi ) is the Heaviside function (equal to 1 if all components of x are greater than xi ). 1 0.5 0 0 10 20 30 40 80 50 60 60 40 20 0 70 18/29
  • 25. CDF-JS, PDF-JS & CDF-HC Before Registraion CDF−JS PDF−JS CDF−HC 3.5 3.5 3.5 3.5 3 3 3 3 2.5 2.5 2.5 2.5 2 2 2 2 1.5 1.5 1.5 1.5 1 1 1 1 0.5 0.5 0.5 0.5 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1 2 Before Registraion CDF−JS PDF−JS CDF−HC 4 4 4 4 2 2 2 2 0 0 0 0 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 19/29
  • 26. 2D Point-set Registration for CC Point Set 1 Point Set 2 Point Set 3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 −0.1 −0.1 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 Point Set 4 Point Set 5 Point Set 6 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 −0.1 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 Point Set 7 Before Registration After Registration 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 −0.1 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 20/29
  • 27. With outliers Before Registration After PDF−JS Registration After CDF−HC Registration 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 21/29
  • 28. With different α values Initial Configuration α=2 0.2 0.2 0.1 0.1 0 0 0.5 1 0 0.2 0.4 0.6 α=1.1 α=1.3 α=1.5 α=1.7 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 α=1.9 α=3 α=4 α=5 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 22/29
  • 29. 3D Point-set Registration for Duck Point Set 1 Point Set 2 Point Set 3 150 150 150 100 100 100 50 50 50 0 0 0 0 0 100 200 40 0 0 100 200 40 0 60 20 0 100 200 40 60 20 60 20 Point Set 4 Before Registration After Registration 150 150 150 100 100 100 50 50 50 0 0 0 0 0 100 200 604020 0 100 200 40 0 60 20 0 0 100 200 50 23/29
  • 30. 3D Registration of Hippocampi Point Set 1 Point Set 2 Point Set 3 100 0 100 0 100 0 100 100 100 200 200 200 0 0 0 50 50 50 10 10 10 20 20 20 0 0 0 Point Set 4 Point Sets Before Registration Point sets After Registration 100 0 100 0 100 0 100 100 100 200 50 50 50 0 200 200 0 0 10 5 10 20 0 10 0 0 15 20 24/29
  • 31. Group-Wise Registration Assessment The Kolmogorov-Smirnov (KS) statistic was computed to measure the difference between the CDFs. With ground truth N 1 D(Fg , Fk ) N k=1 Without ground truth N 1 K= D(Fk , Fs ) N2 k,s=1 25/29
  • 32. KS statistic for comparison Table: KS statistic KS-statistic CDF-JS PDF-JS CDF-HC Olympic Logo 0.1103 0.1018 0.0324 Fish with outliers 0.1314 0.1267 0.0722 Table: Average nearest neighbor distance ANN distance CDF-JS PDF-JS CDF-HC Olympic Logo 0.0367 0.0307 0.0019 Fish with outliers 0.0970 0.0610 0.0446 26/29
  • 33. KS statistic for comparison (contd.) Table: Non-rigid group-wise registration assessment without ground truth using KS statistics Before Registration After Registration Corpus Callosum 0.3226 0.0635 Corpus Callosum with outlier 0.3180 0.0742 Olympic Logo 0.1559 0.0308 Fish 0.1102 0.0544 Hippocampus 0.2620 0.0770 Duck 0.2287 0.0160 27/29
  • 34. KS statistic for comparison (contd.) Table: Non-rigid group-wise registration assessment without ground truth using average nearest neighbor distance Before Registration After Registration Corpus Callosum 0.0291 0.0029 Corpus Callosum with outlier 0.0288 0.0092 Olympic Logo 0.0825 0.0022 Fish 0.1461 0.0601 Hippocampus 13.7679 3.1779 Duck 15.4725 0.3280 28/29
  • 35. Discussion I-divergences for shape matching avoid correspondence problem Symmetric, unbiased registration and atlas estimation Shape densities modeled as Gaussian mixtures, cumulatives directly estimated JS (pdf and cdf-based) and HC divergences used Estimated atlas useful in model-based segmentation 29/29