
Graphics and 
Image Processing 

J. D. Foley 
Editor 

Random Sample 
Consensus: A 
Paradigm for Model 
Fitting with 
Apphcatlons to Image 
Analysis and 
Automated 
Cartography 

Martin A. Fischler and Robert C. Bolles 
SRI International 

A new paradigm, Random Sample Consensus 
(RANSAC), for fitting a model to experimental data is 
introduced. RANSAC is capable of interpreting/ 
smoothing data containing a significant percentage of 
gross errors, and is thus ideally suited for applications 
in automated image analysis where interpretation is 
based on the data provided by error-prone feature 
detectors. A major portion of this paper describes the 
application of RANSAC to the Location Determination 
Problem (LDP): Given an image depicting a set of 
landmarks with known locations, determine that point 
in space from which the image was obtained. In 
response to a RANSAC requirement, new results are 
derived on the minimum number of landmarks needed 
to obtain a solution, and algorithms are presented for 
computing these minimum-landmark solutions in closed 
form. These results provide the basis for an automatic 
system that can solve the LDP under difficult viewing 
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and analysis conditions. Implementation details and 
computational examples are also presented. 
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analysis, camera calibration, image matching, location 
determination, automated cartography. 
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I. Introduction 

We introduce a new paradigm, Random Sample 
Consensus (RANSAC), for fitting a model to experimental 
data; and illustrate its use in scene analysis and auto- 
mated cartography. The application discussed, the loca- 
tion determination problem (LDP), is treated at a level 
beyond that of a mere example of the use of the RANSAC 
paradigm; new basic findings concerning the conditions 
under which the LDP can be solved are presented and 
a comprehensive approach to the solution of this problem 
that we anticipate will have near-term practical appli- 
cations is described. 

To a large extent, scene analysis (and, in fact, science 
in general) is concerned with the interpretation of sensed 
data in terms of a set of predefmed models. Conceptually, 
interpretation involves two distinct activities: First, there 
is the problem of finding the best match between the 
data and one of the available models (the classification 
problem); Second, there is the problem of computing the 
best values for the free parameters of the selected model 
(the parameter estimation problem). In practice, these 
two problems are not independent--a solution to the 
parameter estimation problem is often required to solve 
the classification problem. 

Classical techniques for parameter estimation, such 
as least squares, optimize (according to a specified ob- 
jective function) the fit of a functional description 
(model) to all of the presented data. These techniques 
have no internal mechanisms for detecting and rejecting 
gross errors. They are averaging techniques that rely on 
the assumption (the smoothing assumption) that the 
maximum expected deviation of any datum from the 
assumed model is a direct function of the size of the data 
set, and thus regardless of the size of the data set, there 
will always be enough good values to smooth out any 
gross deviations. 

In many practical parameter estimation problems the 
smoothing assumption does not hold; i.e., the data con- 
tain uncompensated gross errors. To deal with this situ- 
ation, several heuristics have been proposed. The tech- 
nique usually employed is some variation of first using 
all the data to derive the model parameters, then locating 
the datum that is farthest from agreement with the 
instantiated model, assuming that it is a gross error, 
deleting it, and iterating this process until either the 
maximum deviation is less then some preset threshold or 
until there is no longer sufficient data to proceed. 

It can easily be shown that a single gross error 
("poisoned point"), mixed in with a set of good data, can 
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Fig. 1. Failure of  Least Squares (and the "Throwing Out The Worst Residual" Heuristic), to Deal with an Erroneous Data Point. 

PROBLEM: Given the set of seven (x,y) pairs shown in the plot, find a best fit line, assuming that no valid datum 
deviates from this line by more than 0.8 units. 
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COMMENT: Six of the seven points are valid data and can be fit by the solid line. Using Least Squares (and the 
"throwing out the worst residual" heuristic), we terminate after four iterations with four remaining 
points, including the gross error at (10,2) fit by the dashed line. 
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cause the above heuristic to fail (for example, see Figure 
1). It is our  contention that averaging is not an appro- 
priate technique to apply to an unverified data set. 

In the following section we introduce the RANSAC 
paradigm, which is capable of  smoothing data that con- 
tain a significant percentage of  gross errors. This para- 
digm is particularly applicable to scene analysis because 
local feature detectors, which often make mistakes, are 
the source of  the data provided to the interpretation 
algorithms. Local feature detectors make two types of  
errors--classification errors and measurement  errors. 
Classification errors occur when a feature detector in- 
correctly identifies a portion of  an image as an occur- 
rence of  a feature. Measurement  errors occur when the 
feature detector correctly identifies the feature, but 
slightly miscalculates one of  its parameters (e.g., its image 
location). Measurement  errors generally follow a normal  
distribution, and therefore the smoothing assumption is 
applicable to them. Classification errors, however, are 
gross errors, having a significantly larger effect than 
measurement  errors, and do not average out. 

In the final sections of  this paper  the application of  
RANSAC tO the location determination problem is dis- 
cussed: 

Given a set of  "landmarks" ("control points"), whose locations are 
known in some coordinate frame, determine the location (relative to 
the coordinate frame of the landmarks) of that point in space from 
which an image of the landmarks was obtained. 

In response to a RANSAC requirement, some new 
results are derived on the min imum number  of  land- 
marks needed to obtain a solution, and then algorithms 
are presented for computing these min imum-landmark  
solutions in closed form. (Conventional techniques are 
iterative and require a good initial guess to assure con- 
vergence.) These results form the basis for an automatic 
system that can solve the LDP under severe viewing and 
analysis conditions. In particular, the system performs 
properly even if a significant number  of  landmarks are 
incorrectly located due to low visibility, terrain changes, 
or image analysis errors. Implementat ion details and 
experimental  results are presented to complete our de- 
scription of  the LDP application. 

II. Random Sample Consensus 

The RANSAC procedure is opposite to that of  conven- 
tional smoothing techniques: Rather  than using as much 
of  the data as possible to obtain an initial solution and 
then attempting to eliminate the invalid data points, 
RANSAC uses as small an initial data set as feasible and 
enlarges this set with consistent data when possible. For 
example, given the task of  fitting an arc of  a circle to a 
set of  two-dimensional points, the RANSAC approach 
would be to select a set of  three points (since three points 
are required to determine a circle), compute the center 
and radius of  the implied circle, and count the number  
of  points that are close enough to that circle to suggest 

their compatibili ty with it (i.e., their deviations are small 
enough to be measurement  errors). I f  there are enough 
compatible points, RANSAC would employ a smoothing 
technique such as least squares, to compute an improved 
estimate for the parameters  of  the circle now that a set 
of  mutual ly consistent points has been identified. 

The RANSAC paradigm is more formally stated as 
follows: 

Given a model that requires a minimum of n data points to instantiate 
its free parameters, and a set of  data points P such that the number of 
points in P is greater than n [g(P) __- n], randomly select a subset SI of  
n data points from P and instantiate the model. Use the instantiated 
model M1 to determine the subset SI* of points in P that are within 
some error tolerance of  Ml.  The set SI* is called the consensus set of 
S1. 

If g (SI*) is greater than some threshold t, which is a function of the 
estimate of  the number of gross errors in P, use SI* to compute 
(possibly using least squares) a new model MI *. 

If  g (SI*) is less than t, randomly select a new subset $2 and repeat the 
above process. If, after some predetermined number of trials, no 
consensus set with t or more members has been found, either solve the 
model with the largest consensus set found, or terminate in failure. 

There are two obvious improvements to the above 
algorithm: First, if  there is a problem related rationale 
for selecting points to form the S's, use a deterministic 
selection process instead of  a random one; second, once 
a suitable consensus set S* has been found and a model 
M* instantiated, add any new points from P that are 
consistent with M* to S* and compute a new model on 
the basis of  this larger set. 

The RANSAC paradigm contains three unspecified 
parameters: (1) the error tolerance used to determine 
whether or not a point is compatible with a model, (2) 
the number  of  subsets to try, and (3) the threshold t, 
which is the number  of  compatible points used to imply 
that the correct model has been found. Methods are 
discussed for computing reasonable values for these pa- 
rameters in the following subsections. 

A. Error Tolerance For Establishing Datum/Model 
Compatibility 

The deviation of  a datum from a model is a function 
of  the error associated with the datum and the error 
associated with the model (which, in part, is a function 
of  the errors associated with the data used to instantiate 
the model). I f  the model is a simple function of  the data 
points, it may be practical to establish reasonable bounds 
on error tolerance analytically. However, this straight- 
forward approach is often unworkable; for such cases it 
is generally possible to estimate bounds on error toler- 
ance experimentally. Sample deviations can be produced 
by perturbing the data, computing the model, and mea- 
suring the implied errors. The error tolerance could then 
be set at one or two standard deviations beyond the 
measured average error. 

The expected deviation of  a da tum from an assumed 
model is generally a function of  the datum, and therefore 
the error tolerance should be different for each datum. 
However, the variation in error tolerances is usually 
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relatively small compared  to the size o f  a gross error. 
Thus,  a single error tolerance for all data  is often suffi- 
cient. 

B. The Maximum Number of Attempts to Find a Con- 
sensus Set 

The decision to stop selecting new subsets o f  P can 
be based u p o n  the expected number  o f  trials k required 
to select a subset o f  n good data  points. Let w be the 
probabil i ty that any  selected data  point  is within the 
error tolerance o f  the model.  Then  we have: 

E ( k )  = b + 2"(1 - b)*b + 3"(1 - b)2*b 

• . .  + i*(1 - b) i - l*b  + . . .  , 

E ( k )  = b*[l + 2*a + 3*a 2 . . .  + i*a i - 1  + . . . ] ,  

where E ( k )  is the expected value o f  k, b = w n, and 
a = (1 - b). 
A n  identi ty for the sum of  a geometr ic  series is 

a / ( 1  - a) = a + a 2 + a 3 . .  • + a i + . . . .  

Differentiat ing the above identity with respect to a, 
we have: 

1/(1 - a) 2 = 1 + 2*a + 3*a 2 . . .  + i*a i-1 + . . . .  

Thus,  

E ( k )  -= 1 /b  = w-"  

The following is a tabulat ion o f  some values o f  E ( k )  
for corresponding values o f  n and w: 

w n = l  2 3 4 5 6 

0.9 1.1 1.2 1.4 1.5 1.7 1.9 
0.8 1.3 1.6 2.0 2.4 3.0 3.8 
0.7 1.4 2.0 2.9 4.2 5.9 8.5 
0.6 1.7 2.8 4.6 7.7 13 21 
0.5 2.0 4.0 8.0 16 32 64 
0.4 2.5 6.3 16 39 98 244 
0.3 3.3 11 37 123 412 - -  
0.2 5.0 25 125 625 - -  - -  

In  general, we would  probably  want  to exceed E ( k )  
trials by  one or two s tandard deviations before we give 
up. Note  that  the s tandard deviat ion o f  k,  S D ( k ) ,  is given 
by:  

S D ( k )  = sqrt  [E(k 2) - E(k)2]. 

T h e n  
c o  

E ( k  "~) -_ ~ (b*i2*ai-1), 
i ~ O  

oz  c o  

---- ~ [ b * i * ( i -  1)*a i-1] + ~ (b*i*ai-~), 
i = 0  i = 0  

but  (using the geometr ic  series identity and two differ- 
entiations): 

o o  

2a/(1 - - a )  3 =  52 ( i * ( i - -  1)*ai-1). 
i ~ 0  

384 

Thus,  

E ( k  2) = (2 - b) / (be ) ,  

and  

S D ( k )  = [sqrt (1 -- w")]*(1/w"). 

Note  that generally S D ( k )  will be approximately  
equal  to E(k); thus, for example, i f (w  = 0.5) and (n --- 4), 
then E ( k )  -- 16 and S D ( k )  --- 15.5. This means  that one 
might  want  to try two or  three times the expected number  
o f  r a n d o m  selections implied by k (as tabulated above) 
to obtain  a consensus set o f  more  than t members.  

F r o m  a slightly different point  o f  view, if we want  to 
ensure with probabil i ty z that at least one o f  our  r a n d o m  
selections is an  error-free set o f  n data  points, then we 
must  expect to make  at least k selections (n data  points 
per selection), where 

( l - b )  k - - ( 1 -  z), 

k = [log(1 - z)] /[ log(1 - b)]. 

For  example, if  (w = 0.5) and (n = 4), then (b = 
1/16). To  obtain a 90 percent  assurance o f  making  at 
least one error-free selection, 

k = log(0.1)/ log(15/16) = 35.7. 

No te  that  if  w" << 1, then k ~ log o - z ) E ( k ) .  Thus  if  
z = 0.90 and w" << 1, then k ~ 2.3E(k); if  z = 0.95 and  
w" << 1, then k ~ 3.0E(k). 

C. A Lower Bound On the Size of an Acceptable Con- 
sensus Set 

The  threshold t, an unspecified parameter  in the 
formal  statement o f  the RANSAC paradigm,  is used as the 
basis for determining that  an n subset o f  P has been 
found  that  implies a sufficiently large consensus set to 
permit  the a lgor i thm to terminate.  Thus,  t must  be chosen 
large enough  to satisfy two purposes:  that  the correct 
mode l  has been found  for the data, and that  a sufficient 
n u m b e r  o f  mutua l ly  consistent points have been found  
to satisfy the needs o f  the final smooth ing  procedure  
(which computes  improved  estimates for the mode l  pa- 
rameters).  

To  ensure against the possibility o f  the final consen-  
sus set being compat ible  with an  incorrect model ,  and 
assuming that  y is the probabi l i ty  that  any  given data  
point  is within the error tolerance o f  an incorrect model ,  
we would  like .yt-n to be very small. While  there is no  
general  way  o f  precisely determining y, it is certainly 
reasonable to assume that  it is less than w (w is the 
a pr ior i  probabi l i ty  that  a given data  point  is within the 
error  tolerance o f  the correct model) .  Assuming y < 0.5, 
a value o f  t - n equal  to 5 will provide a better than  95 
percent  probabi l i ty  that  compatibi l i ty  with an incorrect 
mode l  will not  occur. 

To  satisfy the needs o f  the final smooth ing  procedure,  
the part icular  procedure  to be employed  must  be speci- 
fied. I f  least-squares smoothing  is to be used, there are 
m a n y  situations where formal  methods  can be invoked 
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to determine the number of  points required to produce 
a desired precision [ 10]. 

D. Example 
Let us apply RANSAC to the example described in 

Figure 1. A value of w (the probability that any selected 
data point is within the error tolerance of  the model) 
equal to 0.85 is consistent with the data, and a tolerance 
(to establish datum/model  compatibility) of  0.8 units 
was supplied as part of  the problem statement. The 
RANSAC-supplied model will be accepted without exter- 
nal smoothing of  the final consensus set; thus, we would 
like to obtain a consensus set that contains all seven data 
points. Since one of  these points is a gross error, it is 
obvious that we will not find a consensus set of  the 
desired size, and so we will terminate with the largest set 
we are able to find. The theory presented earlier indicates 
that if we take two data points at a time, compute the 
line through them and measure the deviations of  the 
remaining points from this line, we should expect to find 
a suitable consensus set within two or three trials; how- 
ever, because of  the limited amount of data, we might be 
willing to try all 21 ~combinations to find the largest 
consensus set. In either case, we easily find the consensus 
set containing the six valid data points and the line that 
they imply. 

III. The Location Determination Problem (LDP) 

A basic problem in image analysis is establishing a 
correspondence between the elements of two represen- 
tations of  a given scene. One variation of this problem, 
especially important in cartography, is determining the 
location in space from which an image or photograph 
was obtained by recognizing a set of landmarks (control 
points) appearing in the image (this is variously called 
the problem of determining the elements of  exterior 
camera orientation, or the camera calibration problem, 
or the image-to-database correspondence problem). It is 
routinely solved using a least-squares technique [ 11, 8] 
with a human operator interactively establishing the 
association between image points and the three-dimen- 
sional coordinates of  the corresponding control points. 
However, in a fully automated system, where the corre- 
spondences must be based on the decisions of  marginally 
competent feature detectors, least squares is often incap- 
able of dealing with the gross errors that may result; this 
consideration, discussed at length in Sec. II, is illustrated 
for the LDP in an example presented in Sec. IV. 

In this section a new solution to the LDP is presented 
based on the RANSAC paradigm, which is unique in its 
ability to tolerate gross errors in the input data. We will 
first examine the conditions under which a solution to 
the LDP is possible and describe new results concerning 
this question; we then present a complete description of  
the RANSAC-based algorithm, and finally, describe exper- 
imental results obtained through use of the algorithm. 
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Fig. 2. Geometry of  the Location Determinat ion Problem. 
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The LDP is formally defined as follows: 

Given a set of  m control points, whose 3-dimensional coordinates are 
known ia some coordinate frame, and given an image in which some 
subset of  the m control points is visible, determine the location (relative 
to the coordinate system of  the control points) from which the image 
was obtained. 

We will initially assume that we know the corre- 
spondences between n image points and control points; 
later we consider the situation in which some of these 
correspondences are invalid. We will also assume that 
both the principal point in the image plane (where the 
optical axis of the camera pierces the image plane) and 
the focal length (distance from the center of perspective 
to the principal point in the image plane) of  the imaging 
system are known; thus (see Figure 2) we can easily 
compute the angle to any pair of  control points from the 
center of perspective (CP). Finally, we assume that the 
camera resides outside and above a convex hull enclosing 
the control points. 

We will later demonstrate (Appendix A) that if we 
can compute the lengths of the rays from the CP to three 
of  the control points then we can directly solve for the 
location of  the CP (and the orientation of  the image 
plane if desired). Thus, an equivalent but mathematically 
more concise statement of  the LDP is 

Given the relative spatial locations of  n control points, and given the 
angle to every pair of  control points from an additional point called 
the Center of  Perspective (CP), find the lengths of  the line segments 
("legs") joining the CP to each of  the control points. We call this the 
"perspective-n-point" problem (PnP). 

In order to apply the RANSAC paradigm, we wish to 
determine the smallest value of  n for which it is possible 
to solve the PnP problem. 
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Fig. 3. Geometry of the P2P Problem. 
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Fig. 4. Geometry of the P3P Problem (L is the Center of Perspective). 
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A. S o l u t i o n  o f  the  P e r s p e c t i v e - n - P o i n t  P r o b l e m  
The PIP problem (n = 1) provides no constraining 

information, and thus an infinity of  solutions is possible. 
The P2P problem (n = 2), illustrated in Figure 3, also 
admits an infinity of  solutions; the CP can reside any- 
where on a circle of  diameter R a b / s i n ( O a b ) ,  rotated in 
space about the chord ( l ine) joining the two control 
points A and B. 

The P3P problem (n = 3) requires that we determine 
the lengths of  the three legs of  a tetrahedron, given the 
base dimensions and the face angles of  the opposing 
trihedral angle (see Figure 4). The solution to this prob- 
lem is implied by the three equations [A*]: 

( R a b )  2 = a 2 + b 2 - 2 * a * b * [ c o s ( O a b ) ]  

( R a c )  2 --- a 2 + c 2 - 2*a'c* [ c o s ( O a c ) ]  [,4*] 

( R b c )  2 - -  b 2 + c 2 - 2*b'c* [cos(Sbc)] 

It is known that n independent polynomial equations, 
in n unknowns, can have no more solutions than the 
product of their respective degrees [2]. Thus, the system 
A* can have a maximum of  eight solutions. However, 
because every term in the system A* is either a constant 
or of  second degree, for every real positive solution there 
is a geometrically isomorphic negative solution, Thus, 
there are at most four positive solutions to A*, and in 
Figure 5 we show an example demonstrating that the 
upper bound of  four solutions is attainable. 
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In Appendix A we derive an explicit algebraic solu- 
tion for the system A*. This is accomplished by reducing 
A* to a biquadratic (quartic) polynomial in one unknown 
representing the ratio of  two legs of  the tetrahedron, and 
then directly solving this equation (we also present a 
very simple iterative method for obtaining the solutions 
from the given problem data). 

For  the case n = 4, when all four control points lie in 
a common plane (not containing the CP, and such that 
no more than two of  the control points lie on any single 
line), we provide a technique in Appendix B that will 
always produce a unique solution. Surprisingly, when all 
four control points do not lie in the same plane, a unique 
solution cannot always be assured; for example, Figure 
6 shows that at least two solutions are possible for the 
P4P problem with the control points in "general posi- 
tion." 

To solve for the location of  the CP in the case of  four 
nonplanar control points, we can use the algorithm 
presented in Appendix A on two distinct subsets of  the 
control points taken three at a time; the solution(s) 
common to both subsets locate the CP to within the 
ambiguity inherent in the given information. 

The approach used to construct the example shown 
in Figure 6 can be extended to any number of  additional 
points. It is based on the principle depicted in Figure 3: 
If  the CP and any number of  control points lie on the 
same circle, then the angle between any pair of  control 
points and the CP will be independent of the location on 
the circle of  the CP (and hence the location of  the CP 
cannot be determined). Thus, we are able to construct 
the example shown in Figure 7, in which five control 
points in general position imply two solutions to the P5P 
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Fig. 5. An Example Showing Four Distinct Solutions to a P3P Problem. 
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Consider  the tet rahedron in Figure 5(a). The base 
ABC is an equilateral tr iangle and the " l e g s "  (i.e., LA, 
LB, and LC) are all equal. Therefore, the three face 
angles at L (i.e., <ALB, <ALC, and <BLC) are all 
equal. By the law of cosines we have: 

Cos(o~) = 5 / 8 .  

This te t rahedron def ines one solution to a P3P prob- 
lem. A second solution is shown in Figure 5(b). It is 
obtained from the first by rotating L about BC. It is 
necessary to verify that the length of L'A can be 1, 
given the rigid tr iangle ABC and the angle alpha. From 
the law of cosines we have: 

(2*  ~/-~)2 _- 4 2 + (L,A)2 _ 2*4* (L 'A)* (5 /8)  

which reduces to: 

( L ' A -  1) * ( L ' A - 4 ) = O .  

Therefore, L'A can be ei ther 1 or 4. Figure 5(a) 
i l lustrates the L'A = 4 case and Figure 5(b) i l lustrates 
the L'A = 1 case. 

Notice that reposit ioning the base tr iangle so that 
its vert ices move to di f ferent locations on the legs is 
equivalent  to reposit ioning L. Figure 5(c) shows the 
posit ion of the base tr iangle that cor responds to the 
second solution. 

Since the tet rahedron in Figure 5(a) is threefold 
rotat ionally symmetric, two more solut ions can be 
obtained by rotating the tr iangle about AB and AC. 

(c) 
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Fig. 6. An Example of a P4P Problem with Two Solutions. 
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Figure 6(a) specifies a P4P problem and demon- 
strates one solution. A second solution can be 
achieved by rotating the base about BC so that A is 
posit ioned at a different point on its leg (see Figure 
6(b)). To verify that this is a valid solution consider the 
plane X -- O, which is normal to BC and contains the 
points, L, A, and D. Figure 6(c) shows the important 
features in this plane. The cosine of alpha is 1 1 9 /  
1 69. A rotation of beta about BC reposit ions A at A'. 
The law of cosines can be used to verify the position 
of A'. 

To complete this solution it is necessary to verify 
that the rotated position of D is on LD. Consider the 
point D' in Figure 6(c). It is at the same distance from 
P as D is and by the law of cosines we can show that 
gamma equals beta. Therefore, D', which is on LD, is 
the rotated position of D. The points A', B, C, and D' 
form the second solution to the problem. 

(c) 

problem. While the same technique will work for six or 
more control points, four or more of  these points must 
now lie in the same plane and are thus no longer in 
general position. 

To prove that six (or more) control points in general 
position will always produce a unique solution to the 
P6P problem, we note that for this case we can always 

388 

solve for the 12 coefficients of  the 3 x 4 matrix T that 
specifies the mapping  (in homogeneous coordinates) 
from 3-space to 2-space; each of  the six correspondences 
provides three new equations and introduces one addi- 
tional unknown (the homogeneous coordinate scale fac- 
tor). Thus, for six control points, we have 18 linear 
equations to solve for the 18 unknowns (actually, it can 
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be shown that, at most, 17 of  the unknowns are indepen- 
dent). Given the transformation matrix T, we can con- 
struct an additional (synthetic) control point lying in a 
common plane with three of  the given control points and 
compute its location in the image plane; the technique 
described in Appendix B can now be used to find a 
unique solution. 

IV. Implementation Details and Experimental Results 

A. The R A N S A c / L D  Algorithm 
T h e  R A N S A C / L D  algorithm accepts as input the fol- 

lowing data: 

(l)  A list L of  m 6- tuples--each 6-tuple containing the 3-D spatial 
coordinates of  a control point, its corresponding 2-D image plane 
coordinates, and an optional number  giving the expected error 
(in pixels) of  the given location in the image plane. 

(2) The focal length of the imaging system and the image plane 
coordinates o f  the principal point. 

(3) The probability (1 - w) that a 6-tuple contains a gross mismatch.  

(4) A "confidence" number  G which is used to set the internal 
thresholds for acceptance of  intermediate results contributing to 
a solution, m confidence number  of  one forces very conservative 
behavior on the algorithm; a confidence number  of  zero will call 
almost anything a valid solution. 

Fig. 7. An Example of  a P5P Problem with Two Solutions. 
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This example is the same as the P4P example 
described in Figure 6 except that a fifth control point, 
E, has been added. The initial position for E and its 
rotated position, E', are shown in Figure 7. The points 
E and E' were constructed to be the mirror images of 
A' and A about the line LP; therefore, a rotation of 
alpha about P repositions E at E'. One solution of the 
P5P problem is formed by points A, B, C, and D 
(shown in Figure 6(a)) plus point E. The second solu- 
tion is formed by points A', B, C, D', and E'. Conse- 
quently there are two different positions of L such that 
all five points lie on their appropriate legs. 
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T h e  R A N S A C / L D  algorithm produces as output the 
following information: 

( l)  The 3-D spatial coordinates o f  the lens center (i.e., the Center of  
Perspective), and an estimate of  the corresponding error. 

(2) The spatial orientation of  the image plane. 

T h e  R A N S A c / L D  algorithm operates as follows: 

(1) Three 6-tuples are selected from list L by a quasirandom method 
that ensures a reasonable spatial distribution for the correspond- 
ing control points. This initial selection is called S I. 

(2) The CP (called CPl)  corresponding to selection S1 is determined 
using the closed-form solution provided in Appendix A; multiple 
solutions are treated as if they were obtained from separate 
selections in the following steps. 

(3) The  error in the derived location of  CP 1 is estimated by perturbing 
the given image plane coordinates of  the three selected control 
points (either by the amount  specified in the 6-tuples or by a 
default value of  one pixel), and recomputing the effect this would 
have on the location of  the CPl .  

(4) Given the error estimate for the CP1, we use the technique 
described in [1] to determine error ellipses (dimensions based 
upon the supplied confidence number)  in the image plane for 
each of  the control points specified in list L; if the associated 
image coordinates reside within the corresponding error ellipse, 
then the 6-tuple is appended to the consensus set S I /CPI .  

(5) If  the size of  S l / C P l  equals or exceeds some threshold value t 
(nominally equal to a value between 7 and row), then the consen- 
sus set S1/CPI  is supplied to a least-squares routine (see [ l]  or 
[7]) for final determination of  the CP location and image plane 
orientation. 1 Otherwise, the above steps are repeated with a new 
random selection $2, $3 . . . .  

(6) If  the number  of  iterations of  the above steps exceeds k = [log 
(l - G)]/[log(1 - w3)], then the largest consensus set found so 
far is used to compute the final solution (or we terminate in failure 
if this largest consensus set contains fewer than six members).  

B. Experimental Results 
To demonstrate the validity of  our theoretical results, 

we performed three experiments. In the first experiment 
we found a specific LDP in which the common least- 
squares pruning heuristic failed, and showed that RANSAC 
successfully solved this problem. In the second experi- 
ment, we applied RANSAC to 50 synthetic problems in 
order to check the reliability of  the approach over a wide 
range of  parameter values. In the third experiment we 
used standard feature detection techniques to locate 
landmarks in an aerial image and then used RANSAC to 
determine the position and orientation of  the camera. 

C. A Location Determination Problem Example of a 
Least Squares Pruning Error 

The LDP in this experiment was based upon 20 
landmarks and their locations in an image. Five of  the 
20 correspondences were gross errors; that is, their given 
locations in the image were further than 10 pixels from 
their actual locations. The image locations for the good 

1 An alternative to least squares would be to average the param- 
eters computed from random triples in the consensus set that fall 
within (say) the center 50 percent of  the associated histogram. 
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correspondences were normally distributed about their 
actual locations with a standard deviation of  one pixel. 

The heuristic to prune gross errors was the following: 

* Use all of  the correspondences to instantiate a model. 
* On the basis of  that model, delete the correspondence 

that has the largest deviation from its predicted image 
location. 

* Instantiate a new model without that correspondence. 
* If  the new model implies a normalized error for the 

deleted correspondence that is larger than three stan- 
dard deviations, assume that it is a gross error, leave it 
out, and continue deleting correspondences. Otherwise, 
assume that it is a good correspondence and return the 
model that included it as the solution to the problem. 

This heuristic successfully deleted two of  the gross 
errors; but after deleting a third, it decided that the new 
model did not imply a significantly large error, so it 
returned a solution based upon 18 correspondences, three 
of  which were gross errors. When RANSAC was applied 
to this problem, it located the correct solution on the 
second triple of  selected points. The final consensus set 
contained all of  the good correspondences and none of  
the gross errors. 

D. 50 Synthetic Location Determination Problems 
In this experiment RANSAC was applied to 50 syn- 

thetic LDPs. Each problem was based upon 30 land- 
mark-to-image correspondences. A range of  probabilities 
were used to determine the number of  gross errors in the 
problems; the image location of  a gross error was at least 
10 pixels from its actual location. The location of  a good 
correspondence was distributed about its actual location 
with a normal distribution having a standard deviation 
of  one pixel. Two different camera positions were used--  
one looking straight down on the landmarks and one 
looking at them from an oblique angle. The RANSAC 
algorithm described earlier in this section was applied to 
these problems; however, the simple iterative technique 
described in Appendix A was used to locate solutions to 
the P3P problems in place of  the closed form method 
also described in that appendix, and a second least- 
squares fit was used to extend the final consensus set (as 
suggested in Sec. II of  this paper). Table I summarizes 
the results for ten typical problems (RANSAC successfully 
avoided including a gross error in its final consensus set 
in all o f  the problems); in five of  these problems the 
probability of  a good correspondence was 0.8, and in the 
other five problems, it was 0.6. The execution time for 
the current program is approximately 1 sec for each 
camera position considered. 

E. A "Real" Location Determination Problem 
Cross correlation was used to locate 25 landmarks in 

an aerial image taken from approximately 4,000 ft with 
a 6 in. lens. The image was digitized on a grid of  2,000 
x 2,000 pixels, which implies a ground resolution of  
approximately 2 ft per pixel. Three gross errors were 

Table I. Typical Experimental Results Using RANSAC. 

No. of No. of 
Correspondences No. of Camera 

No. of  Good in Final Triples Positions 
Correspondences Consensus Set Considered Considered 

w = 0 . 8  
22 19 6 10 
23 23 1 3 
19 19 2 3 
25 25 1 2 
24 23 3 8 

w =  0.6 
21 20 11 2l 
17 17 1 1 
17 16 6 8 
18 16 9 21 
21 18 9 15 

made by the correlation feature detector. When RANSAC 
was applied to this problem, it located a consensus set of 
17 on the first triple selected and then extended that set 
to include all 22 good correspondences after the initial 
least-squares fit. The final standard deviations about the 
camera parameters were as follows: 

X: 0.1 ft Heading: 0.01 ° 
Y: 6.4 ft Pitch: 0. l0 ° 
Z: 2.1 ft Roll: 0.12 ° 

V. Concluding Comments 

In this paper we have introduced a new paradigm, 
Random Sample Consensus (RANSAC), for fitting a model 
to experimental data. RANSAC is capable of  interpreting/ 
smoothing data containing a significant percentage of  
gross errors, and thus is ideally suited for applications in 
automated image analysis where interpretation is based 
on the data provided by error-prone feature detectors. 

A major portion of  this paper describes the applica- 
tion of  RANSAC to the Location Determination Problem 
(LDP): Given an image depicting a set of  landmarks 
with known locations, determine that point in space from 
which the image was obtained. Most of the results we 
presented concerning solution techniques and the ge- 
ometry of  the LDP problem are either new or not 
generally known. The current photogrammetric litera- 
ture offers no analytic solution other than variants of  
least squares and the Church method for solving per- 
spective-n-point problems. The Church method, which 
provides an iterative solution for the P3P problem 
[3, 11], is presented without any indication that more 
than one physically real solution is possible; there is 
certainly no indication that anyone realizes that physi- 
cally real multiple solutions are possible for more than 
three control points in general position. (It should be 
noted that because the multiple solutions can be arbi- 
trarily close together, even when an iterative technique 
is initialized to a value close to the correct solution there 
is no assurance that it will converge to the desired value.) 
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In the section on the LDP problem (and associated 
appendices) we have completely characterized the P3P 
problem and provided a closed-form solution. We have 
shown that multiple physically real solutions can exist 
for the P4P and P5P problems, but also demonstrated 
that a unique solution is assured when four of  the control 
points reside on a common plane (solution techniques 
are provided for each of  these cases). The issue of  
determining the maximum number of  solutions possible 
for the P4P and P5P problems remains open, but we 
have shown that a unique solution exists for the P6P 
problem when the control points are in general position. 

Appendix A. An Analytic Solution for the Perspective- 
3-Point Problem 

The main body of  this paper established that P3P 
problems can have as many as four solutions. In this 
appendix a closed form expression for obtaining these 
solutions is derived. Our approach involves three steps: 
(1) Find the lengths of  the legs of  the ("perspective") 
tetrahedron given the base (defined by the three control 
points) and the face angles of  the opposing trihedral 
angle (the three angles to the three pairs of  control points 
as viewed from the CP); (2) Locate the CP with respect 
to the 3-D reference frame in which, the control points 
were originally specified; (3) Compute the orientation of  
the image plane with respect to the reference frame. 

I. A Solution for the Perspective Tetrahedron (see Figure 
4) 

Given the lengths of  the three sides of  the base of  a 
tetrahedron (Rab, Rac, Rbc), and given the correspond- 
ing face angles of  the opposing trihedral angle (Oab, Oac, 
Obc), find the lengths of  the three remaining sides of  the 
tetrahedron (a, b, c). 

A solution to the above problem can be obtained by 
simultaneously solving the system of  equations: 

(Rab) 2 -~ a 2 + b 2 - 2*a'b* cos(Oab), (A1) 
(Rat)  2 = a 2 + c 2 - 2*a'c* cos(Oae), (A2) 
(Rbc) 2 -- b 2 + c 2 - 2*b'c* cos(Obc). (A3) 

We now proceed as follows: 

Let b = x*a and c -- y ' a ,  (A4) 
(Rat )  2 = a 2 + (y2)*(a2) - 2*(a2)*y * cos(Oat), (A5) 
(Rab) 2 = a 2 + (x2)*(a 2) - 2*(a2)*x * cos(Oab), (A6) 
(Rbc) 2 = (x2)*(a 2) + (yZ)*(a2) (A7) 

- 2*(aZ)*x*y * cos(Obc). 

From Eqs. (A5) and (A7) 

[(Rbc)2],[l  + (y2) _ 2*y* cos(Oae)] 
= [(Rac)Z]*[(x 2) + (y~) - 2*x 'y* cos(Obe)]. (A8) 

From Eqs. (A6) and (A7) 

[(Rbc)2]*[1 + (x 2) - 2*x* cos(Oab)] 
= [(Rab)Z],[(x z) + (y2) _ 2*x 'y* cos(Obc)], (A9) 

(Rbc) 2 (Rbc) 2 
Let (Rac)2 = K1 and (Rab)------- ~ - K2.  (A10) 

From Eqs. (A8) and (A9) 

0 = (y~)*[1 - K1] + 2*y*[Kl* cos(0ac) 
- x* cos(Obc)] + [(x ~) - KI]. (AI 1) 

From Eqs. (A9) and (AI0) 

0 = (y2) + 2*y*[-x*  cos(Obc)] 
+ [(x2)*(1 - K2) + 2*x 'K2* cos(0ab) - K2]. (A12) 

Equations (A11) and (A12) have the form: 

0 = m * ( y  z) + p * y  + q, (A13) 
0 = m ' * ( y  2) + p '*y  + q'. (A14) 

Multiplying Eqs. (A13) and (A14) by m' and m, respec- 
tively, and subtracting, 

0 = [p*m' - p ' * m ] * y  + [m'*q - m*q']. (A15) 

Multiplying Eqs. (A13) and (A14) by q' and q, respec- 
tively, substracting, and dividing by y, 

0 = [m'*q - m*q']*(y z) + [p'*q - p * q ' ] * y ,  
0 = [ m ' * q -  m*q']*y + [ p ' * q - p * q ' ] .  (A16) 

Assuming m'*q # m*q', 

[(x 2) - K1] # [(x2)*(l - K1)*(1 - K2) + 
2*x'K2*(1 - K1)* cos(Oab) - (1 - KI)*K2], 

then Eqs. (A15) and (A16) are equivalent to Eqs. (A13) 
and (A14). We now multiply Eqs. (Al5) by (m'*q - 
m*q') ,  and Eq. (Al6) by (p*m'  - p ' * m ) ,  and subtract to 
obtain 

0 = (m'*q - m*q') 2 
- [ p * m ' - p ' * m ] * [ p ' * q  - p * q ' ] .  (A17) 

Expanding Eq. (A17) and grouping terms we obtain a 
biquadratic (quartic) polynomial in x: 

0 = G4*(x 4) + G3*(x 3) + G2*(x 2) + Gl*(x) 
+ GO, (A 18) 

where 

G4 = (KI*K2 - K1 - K2) 2 
- 4*Kl*K2*[cos(0bc)2], (A19) 

G3 = 4 * [ K l * K 2  - K1 - K2]*K2*(1 - K1)* 
cos(Oab) + 4*Kl* cos(Obc)*[(Kl*K2 

+ K2 - K1)* cos(Oac) 
+ 2"K2" cos(Oab)* cos(Obc)], (A20) 

G2 = [2"K2"(1 - K1) cos(Oab)] 2 
+ 2*[Kl*K2 + K1 - K2]*[KI*K2 - KI 
- K2] + 4*KI*[(K1 - K2)* (cos(Obc) 2) 
+ (1 - K2)*KI* (cos(Oac) 2) 
- 2"K2"(1 + K1)* cos(Oab)* cos(Oac)* 

cos(Obc) ], (A21) 

G1 = 4*(Kl*K2 + K1 - K2)*K2*(I - KI)* 
cos(Sab) + 4*KI*[ (KI*K2  - K1 
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+ K2)* cos(Oac)* cos(Obc) (A22) 

+ 2*Kl*K2*  cos(Oab)* (cos(Oac)2)], 

GO = ( K I * K 2  + K1 - K2) 2 - 4*(K12)*K2 * (A23) 
(cos(Oac)2). 

Roots  o f  Eq. (A18) can  be found  in closed form [5], or  
by  i tera t ive  techniques  [4]. F o r  each  posi t ive real  root  o f  
Eq. (A18), we de te rmine  a single posi t ive real  va lue  for 
each  o f  the sides a and  b. F r o m  Eq. (A6) we have  

Rab 
(A24) 

a = S Q R T  [(x 2) - 2*x* cos(Oab) + 1] '  

and  f rom Eq. (A4) we ob ta in  

b = a*x. (A25) 

I f  m '*q  ~ m*q', then  f rom Eq. (A16) we have  

P'*q - P*q' (A26) 
Y - m*q'  - m'*q"  

I f  m'*q = m*q', then  Eq. (A26) is unde f ined  and  we 
ob t a in  two values  o f y  f rom Eq. (A5): 

y = cos(Oac) 
I ( R a c ) 2 - ( a Z ) ' l  (A27) ++_ S Q R T  (cos(Oac)) z + -(a~ " 

F o r  each  real  posi t ive va lue  o f  y,  we ob ta in  a value  o f  c 
f rom Eq. (A4): 

c = y*a (A28) 

W h e n  values  o f y  are ob t a ined  f rom Eq. (A5) ra ther  than  
Eq. (A26), the  resul t ing solut ions  can be inval id;  they  
mus t  be shown to sat isfy Eq. (A3) before  they  are  

accepted.  
It should  be no ted  that  because  each  root  o f  Eq. 

(A 18) can  conce ivab ly  lead  to two dis t inct  solutions,  the  
existence o f  the b iquad ra t i c  does  not  by  i tself  imp ly  a 
m a x i m u m  o f  four  solu t ions  to the  P3P p rob lem;  some 
add i t i ona l  a rgument ,  such as the  one given in the m a i n  
b o d y  o f  this paper ,  is necessary  to es tabl ish  the  u p p e r  
b o u n d  o f  four  solutions.  

2. Example 
F o r  the perspect ive  t e t r ahed ron  shown in F igu re  5, 

we have  the fo l lowing parameters :  

Rab = Rac = Rbc = 2*SQRT(3) ,  
cos( Oab ) = cos( Oac) = cos( Obc) o 

= (a ~) + (b 2) - (Rab) 2 _ 20 

2*a*b 32" 

Subs t i tu t ing  these values  into Eqs. (AI9 )  t h rough  (A23), 
we ob ta in  the  coefficients o f  the  b iquad ra t i c  de f ined  in 
Eq. (AI8) :  

[ -0 .5625,  3.515625, -5 .90625 ,  3.515625, -0 .5625]  

The  roots  o f  the above  equa t ion  are 

[1, 1, 4, 0.25] 

F o r  each root  

Root a b y c 

1 4 4 1 4 
1 4 4 0.25 1 
4 1 4 4 4 
0.25 4 1 1 4 

3. An lterative Solution for the Perspective Tetrahedron 
(see Figure 8) 
A simple  way  to locate  solut ions  to P3P prob lems ,  

which  is somet imes  an  adequa t e  subst i tu te  for  the  more  
invo lved  p rocedure  descr ibed  in the p reced ing  subsec- 
t ion,  is to sl ide one  ver tex  o f  the  con t ro l -po in t  t r iangle  
down  its leg o f  the  t e t r ahed ron  and  look  for pos i t ions  o f  
the  t r iangle  in which  the o ther  two vert ices lie on  the i r  
respect ive legs. I f  ver tex A is at a d is tance  a f rom L (L 
is the  center  o f  perspect ive) ,  the lengths  o f  the sides Rab 
and  Rac restr ict  the t r iangle  to four  poss ible  posi t ions.  
G i v e n  the ang le  be tween  legs LA and  LB,  c ompu te  the  
d i s tance  o f  po in t  A f rom the l ine L B  and  then  compu te  
po in ts  B1 and  B2 on L B  that  are  the p rope r  d is tance  
f rom A to insert  a l ine segment  o f  length  Rab. Similar ly ,  
we c ompu te  at  most  two loca t ions  for  C on  its leg. Thus ,  
g iven  a pos i t ion  for A we have  found  at  most  four  
pos i t ions  for  a t r iangle  tha t  has one  side o f  length  Rab 
and  one  o f  length  Rac. The  lengths  o f  the th i rd  sides 
( B C )  o f  the four  t r iangles  vary  non l inea r ly  as po in t  A is 
m o v e d  down  its leg. Solut ions  to the  p r o b l e m  can  be 
o b t a i n e d  by  i te ra t ive ly  repos i t ion ing  A to i m p l y  a th i rd  
side o f  the  requ i red  length.  

4. Computing the 3-D Location of the Center of Per- 
spective (see Figure 9) 
G i v e n  the t h r ee -d imens iona l  loca t ions  o f  the three  

cont ro l  poin ts  o f  a perspect ive  t e t rahedron ,  a n d  the 
lengths  o f  the  three  legs, the 3-D loca t ion  o f  the  center  
o f  perspect ive  can  be c o m p u t e d  as follows: 

(1) Construct a plane P 1 that is normal to A B and passes through the 
center of perspective, L. This plane can be constructed without 
knowing the position of L, which is what we are trying to compute. 
Consider the face of the tetrahedron that contains vertices A, B, 
and L. Knowing the lengths of sides LA, LB and A B, we can use 
the law of cosines to find the angle LAB, and then the projection 
QA of LA on AB. (Note that angle LQA is a right angle, and the 
point Q is that point on line AB that is closest to L). Construct a 
plane normal to AB passing through Q; this plane also passes 
through L. 

(2) Similarly construct a plane P2 that is normal to A C art d passes 
through L. 

(3) Construct the plane P3 defined by the three points A, B, and C. 

(4) Intersect planes P l, P2, and P3. By construction, the point of 
intersection R is the point on P3 that is closest to L. 

(5) Compute the length of the line AR and use that in conjunction 
with the length of LA to compute the length of the line RL, which 
is the distance of L from the plane P3. 

(6) Compute the cross product of vectors AB and A C to form a vector 
perpendicular to P3. Then scale that vector by the length of RL 
and add it to R to get the 3-D location of the center of perspective 
L. 
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Fig. 8. Geometry for an Iterative Solution to the P3P Problem. Fig. 9 Computing the 3-D Location of  the Center o f  the Perspective (L). 
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If the focal length of the camera and the principal 
point in the image plane are known, it is possible to 
compute the orientation of the image plane with respect 
to the world coordinate system; that is, the location of 
the origin and the orientation of the image plane coor- 
dinate system with respect to the 3-D reference frame. 
This can be done as follows: 

393 

(1) Compute the 3-D reference frame coordinates of  the center of 
perspective (as described above). 

(2) Compute the 3-D coordinates of  the image locations of  the three 
control points: since we know the 3-D coordinates of the CP and 
the control points, we can compute the 3-D coordinates of  the 
three rays between the CP and the control points. Knowing the 
focal length of  the imaging system, we can compute, and subtract 
from each ray, the distance from the CP to the image plane along 
the ray. 

(3) Compute the equation of  the plane containing the image using 
the three points found in step (2). The normal to this plane, 
passing through the CP, gives us the origin of  the image plane 
coordinate system (i.e., the 3-D location of  the principal point), 
and the Z axis of  this system. 

(4) The orientation of  the image plane about the Z axis can be 
obtained by computing the 3-D coordinates of  a vector from the 
principal point to any one of  the points found in step (2). 

Appendix B. An Analytic Solution for the Perspective- 
4-Point Problem (with all control points lying in a 
common plane) 

In this appendix an analytic technique is presented 
for obtaining a unique solution to the P4P problem when 
the four given control points all lie in a common plane. 

1. Problem Statement (see Figure 10) 
GIVEN: A correspondence between four points lying 

in a plane in 3-D space (called the object plane), and 
four points lying in a distinct plane (called the image 
plane); and given the distance between the center of 
perspective and the image plane (i.e., the focal length of 
the imaging system); and also given the principal point 
in the image plane (i.e., the location, in image plane 
coordinates, of the point at which the optical axis of the 
lense pierces the image plane). 

FIND: the 3-D location of the center of perspective 
relative to the coordinate system of the object plane. 
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Fig. 10. Geometry of the P4P Problem (With all Control Points Lying 
in a Common Plane). 
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2. Notation 
* Let the four given image points be labeled (Pi}, and 

the four corresponding object points {Qi}. 
* We will assume that the 2-D image plane coordinate 

system has its origin at the principal point (PPI). 
* We will assume that the object plane has the equation 

Z = 0 in the reference coordinate system. Standard 
techniques are available to transform from this coor- 
dinate system into a ground reference frame (e.g., see 
[61 or [91). 

* Homogeneous coordinates will be assumed [12]. 
* Primed symbols represent transposed structures. 

3. Solution Procedure 
(a) Compute the 3 × 

(b) 

(c) 

(d) 
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(e) 

(f) 

(g) 

(h) 

(i) 

3 collineation matrix T which 
maps points from object plane to image plane (a 
procedure for computing T is given later): ( j )  

[ Pi] = [ T]*[ Oil, 

where (B 1) 

[ Pi] = [ki*xi, ki*fl, ki]', 
[Qi] = [Xi, Yi, 1]'. 

The ideal line in the object plane, with coordinates 
[0, 0, 1]' is mapped into the vanishing line in the 
image plane [ VLI] by the transformation: 

Note: 
[ I'Ll] = [inv[T]]'*[0, 0, 1]'. (B2) 

Determine the distance D1 from the origin of  the 
image plane (PPI) to the vanishing line [ VLI] = 

[al,  a2, a3]': 

I a3 DI = sqrt[(al)2 + (a2)2] (B3) 

Solve for the dihedral (tilt) angle 0 between the 
image and object planes: 

0 = arctan(f/DI), (B4) 

where f =  focal length. 

The ideal line in the image plane with coordinates 
[0, 0, 1]' is mapped into the vanishing line in the 
object plane [ VLO] by the transform 

[VLO] = [r] '*[0, 0, 1]'. (BS) 

Compute the location of  point [PPO] in the object 
plane ([PPO] is the point at which the optical axis 
of  the lense pierces the object plane): 

[PPO] = [inv[T]]'*[0, 0, 1]' (B6) 

Compute the distance DO from [PPO] = [cl, c2, 
c3]' to the vanishing line [ VLO] = [bl, b2, b3]' in 
the object plane: 

I bl*cl + b2*c2 +b3*c31 (B7) 
DO = c3.sqrt[(bl) 2 + (b2)2] . 

Solve for the "pan" angle $ as the angle between 
the normal to [ VLO] = [bl, b2, b3]' and the Xaxis 
in the object plane: 

$ = arctan(-b2/bl). (B8) 

Determine XSGN and YSGN: If a line (parallel to 
the X axis in the object plane) through [PPO] 
intersects [VLO] to the right of  [PPO], then 
XSGN = 1. Otherwise XSGN = -1 .  Thus, 

i f  bl*cl  + b2"c2 + b3"c3 < 0, 
bl*c3 

then XSGN = 1, otherwise XSGN = -1 .  (B9) 

Similarly, 

b l*cl  + b2"c2 + b3"c3 
if  < 0 

b2"c3 
then YSGN--  1, otherwise YSGN = - 1 .  (B10) 

Solve for the location of  the CP in the object plane 
coordinate system: 

DCP = DO* sin(0) (Bl l )  
XCP = XSGN*abs[DCP* sin(0)* cos(S)] 

+ cl/c3 (B12) 
YCP = YSGN*abs[DCP* sin(0)* sin(S)] 

+ c2/c3 (B 13) 
ZCP = DCP* cos(0) (B14) 

If [ VL1], as determined in (b), has the coordinates 
[0, 0, k], then the image and object planes are 
parallel (0 = 0). Rather than continuing with the 
above procedure, we now solve for the desired 

Communications June 1981 
of Volume 24 
the ACM Number 6 



i n fo rma t ion  using s imi lar  t r iangles  and  Euc l idean  
geometry .  

4. Computing the Collineation Matrix T 
Let  

I lS l  Y1 l[I 
[ Q ]  = II x 2  Y2 1 II = [ [Q1] ' ,  [Q2] ' ,  [Q3] ' ] ,  

IIx3 Y3 111 

II x t y l III 
[ e ]  = I lx2y2  ill = [ [ e l i ' ,  [P2] ' ,  [P3] ' ] ,  

II x3 y3 1 II 

[ Q 4 ] =  [X4, Y4, 1]', 
[P4]  = [x4 ,y4 ,  1]', 
I V ]  = [ inv [P] ] '* [e4 ]  = [vl, v2, v3]', 
[ R ]  = [ i n v [ Q ] ] ' * [ a 4 ]  = [ r l ,  r2, r3] ' ,  

vl r3 
W 1  - -  * 

r l  v3 ' 
v2 r3 

W 2  - -  * 
r2 v3 ' 

Ilwl 0 0]1 
[w] =110 wE 011. 

110 0 111 

Then,  

I T ] '  = [ i nv [Q] ]* [  W ] * [ P ]  

such that  

[Pi] = ki*[xi ,  yi ,  1] = [T]*[Qi] .  
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5. Example 
Given:  

f = 0 . 3 0 4 8 m ( 1 2  in.) 
P1 = ( -0 .071263,  0.029665) 
P 2 =  ( - 0 . 0 5 3 0 3 3 , - 0 . 0 0 6 3 7 9 )  
P3 = ( -0 .014063,  0.061579) 
P 4 =  ( 0.080120, -0 .030305)  

[ T ] '  = 

(a) 

[ inv[T] ] '  = 

(b) [ V L I ]  = 

(c) 3 I  = 
(d) 0 = 
(e) [ V L O ]  = 

( f )  [ P P O ]  = 

(g) D o  = 
(h) $ -- 

X S G N  = 
(i)  Y S G N  = 

( j )  D C P  = 

X C P  = 
Y C P  = 
Z C P  = 

II 0.000212 
II -0 .000368  
II -0 .025404  

II 1117.14 -2038 .86  
II 3371.56 2302.22 
I I -51 .0636 -120 .442  

[ 0 , - 5 . 1 4 9 9 1 ,  1.31713]' 
0.255758 
0.872665 rad  (50 °) 

Q1 = ( - 3 0 ,  80) 
Q2 = ( - 1 0 0 ,  - 2 0 )  
Q3 = ( 140, 50) 
Q4 -- ( - 4 0 ,  - 2 4 0 )  

0.000236 0.000925 II 
0.000137 0.000534 II 
0.021650 0.843879 II 

0.0 II 
-5 .14991 II 

1.31713 II 

[0.000925, 0.000534, 0.843880]'  
[--51.0636, -- 120.442, 1.31713]' 
711.196 
--0.523599 r ad  ( - 3 0  °) 
- 1  
- 1  
544.8081 
-400 .202  
-300 .117  

350.196 
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