Leetcode--全排列

本文深入解析了全排列算法,通过实例展示了如何使用回溯法解决序列的所有可能全排列问题。以[1,2,3]为例,详细阐述了算法的实现过程,包括状态保存、递归调用以及结果收集等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

输入: [1,2,3]
输出:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

思路

使用回溯法;

每个位置插入前面还没插入的数,然后对每个位置进行尝试;

最后得到所有的全排列

class Solution {
public:
    // 保存最后的结果集
    vector<vector<int> > result;
    void getPer(vector<int> & nums, vector<bool>& vis, vector<int>& temp){
        // 如果temp的长度等于nums的长度说明所有的数都已经加入到了temp中
        if((int)nums.size()== (int)temp.size()){
            result.emplace_back(temp);
            return;
        }
        int size= nums.size();
        for(int i= 0; i< size; ++i){
            // 在之间的temp中还没插入nums[i],则进行插入
            if(!vis[i]){
                vis[i]= 1;
                temp.emplace_back(nums[i]);
                getPer(nums, vis, temp);
                temp.pop_back();
                vis[i]= 0;
            }
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        
        vector<int> temp;
        vector<bool> vis(nums.size(), 0);
        getPer(nums, vis, temp);
        return result;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值