数据结构与算法入门 Day 0:程序世界的基石与密码

🌟数据结构与算法入门 Day 0:程序世界的基石与密码🔑

ps:接受到了不少的私信反馈,说应该先把前置的知识内容做一个梳理,所以把昨天的文章删除了,重新开启今天的博文写作

Hey 小伙伴们!今天我们要一起推开数据结构与算法的大门啦!🚪✨这篇笔记特别适合:

- 刚接触编程的小白🐣

- 想系统巩固基础的同学📚

- 面试前需要快速复习的勇者💪

一、数据结构的DNA🧬

🌱 先导概念:程序世界的原子与分子

1.1 数据 vs 算法(生命体的物质与灵魂)
// 数据就像细胞
int student_scores[] = {90, 85, 78}; 

// 算法如同基因表达过程
// 算法的设计取决于所选定的逻辑结构,而算法的实现则要考虑到所用的存储结构
void calculate_avg(int arr[], int size) {
    int sum = 0;
    for(int i=0; i<size; i++) {
        sum += arr[i];  // 数据加工
    }
    printf("平均分:%d", sum/size);  // 信息输出
}
1.2 五层概念解剖

在这里插入图片描述

1.3 数据结构的组成要素

在这里插入图片描述


🧪 综合实验:学生管理系统DNA拆解

1 系统要素映射表
概念具体实现C语言对应
数据学生信息原始值int student_id
数据元素单个学生完整档案struct Student
数据项学号/姓名/成绩结构体成员变量
数据对象全体学生数据库Student class1[50]
数据结构按学号组织的存储方式结构体数组+排序算法
数据类型学生信息抽象模板typedef struct

2 算法实例:成绩查询系统

// 结构定义
typedef struct {
    long id;
    char name[20];
    float score;
} Student;

// 线性查找算法
int find_student(Student arr[], int size, long target_id) {
    for(int i=0; i<size; i++) {
        if(arr[i].id == target_id) {  // 数据比对
            printf("找到学生:%s,分数:%.1f", arr[i].name, arr[i].score);
            return i;
        }
    }
    return -1;
}

二、算法五性验证🔍

特性内涵解析验证要点
有穷性 🕒执行步骤有限,时间可接受循环终止条件、递归深度控制
确定性 🎯无二义性,相同输入必得相同输出条件判断明确,无随机因素
可行性 ⚙️可通过基本操作实现使用语言支持的数据类型和运算
输入 📥零个或多个外部输入参数合法性检查
输出 📤至少一个有效输出返回值/参数输出/文件写入等形式

2.1 学生管理系统DNA验证实验 🧪

系统核心代码回顾
typedef struct {
    long id;          // 学号(数据项)
    char name[20];    // 姓名(数据项)
    float score;      // 成绩(数据项)
} Student;           // 数据元素

Student class[50];   // 数据对象(50人班级)

// 查找算法
int find_student(long target_id) {
    for(int i=0; i<50; i++) {  // 明确循环边界
        if(class[i].id == target_id) {  // 确定比较条件
            printf("找到学生:%s", class[i].name);
            return i;  // 有效输出
        }
    }
    return -1;  // 异常输出
}
五性验证表
特性验证过程测试用例结果
有穷性循环最多执行50次 → 有限步骤target_id=不存在学号
确定性相同学号必定定位到同一学生重复输入相同学号
可行性仅使用数组遍历和数值比较基本操作正常学号输入
输入接受long型参数输入"20231234"
输出返回int型索引或-1找到返回位置,未找到返回-1

2.2 经典算法三重验证 🏋️♂️

2.2.1 二分查找(确定性典范)
int binary_search(int arr[], int size, int target) {
    int left = 0, right = size-1;  // 明确初始条件
    while(left <= right) {        // 循环终止条件
        int mid = left + (right-left)/2;  // 防止溢出
        if(arr[mid] == target) return mid;
        else if(arr[mid] < target) left = mid+1;  // 确定路径
        else right = mid-1;
    }
    return -1;  // 必有输出
}
2.2.2 递归算法(有穷性挑战)
int factorial(int n) {
    if(n <= 1) return 1;              // 递归基确保终止
    else return n * factorial(n-1);    // 规模递减
}
特性风险点解决方案
有穷性未处理负数导致无限递归添加参数校验 if(n<0) return -1;
可行性阶乘值可能溢出int范围改用long类型
输出未定义非法输入的返回值明确错误码机制
2.2.3 动态规划(可行性示范)
int fib(int n) {
    int dp[n+1];                 // 辅助空间
    dp[0] = 0; dp[1] = 1;        // 明确初始值
    for(int i=2; i<=n; i++){     // 严格递增
        dp[i] = dp[i-1] + dp[i-2]; // 状态转移
    }
    return dp[n];                // 确定输出
}

2.3 算法特性关系图谱 🔗

在这里插入图片描述

💡 避坑指南:在实现递归算法时,建议画出递归树验证有穷性;对浮点运算要特别注意确定性问题(如0.1+0.2≠0.3)!


三、复杂度计算手册📚(C语言特供版)

3.1、复杂度运算方法论 🧮

在这里插入图片描述

3.1.1 大O表示法黄金法则
  • 去常原则O(3n²+5n) → O(n²)
  • 去低阶项O(n³ + 2n²) → O(n³)
  • 系数归一O(2n) → O(n)
  • 对数底数忽略O(log₂n) → O(log n)
3.1.2 复杂度计算四步法
  1. 识别基本操作:找出最频繁执行的核心语句
  2. 确定输入规模n:数组长度/链表节点数等
  3. 计算执行次数f(n):建立数学表达式
  4. 简化表达式:应用大O法则

3.2、时间复杂度实战演练 💻

3.2.1 新手村:线性结构复杂度
// 案例1:O(1) 数组随机访问
int get_first(int arr[], int n) {
    return arr[0];  // 仅执行1次访问
}

// 案例2:O(n) 顺序查找
int linear_search(int arr[], int n, int target) {
    for(int i=0; i<n; i++) {  // 循环n次
        if(arr[i] == target) return i;
    }
    return -1;
}

// 案例3:O(n²) 冒泡排序
void bubble_sort(int arr[], int n) {
    for(int i=0; i<n-1; i++) {       // 外层n次
        for(int j=0; j<n-i-1; j++) {  // 内层n-i次
            if(arr[j] > arr[j+1]) {
                int temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
            }
        }
    } // 总次数 = Σ(n-i) ≈ n²/2 → O(n²)
}
2.2 进阶区:递归与分治复杂度
// 案例4:O(2ⁿ) 斐波那契(递归版)
int fib(int n) {
    if(n <= 1) return n;
    return fib(n-1) + fib(n-2);  // 每层分裂2个子问题
}

// 案例5:O(n) 斐波那契(动态规划版)
int dp_fib(int n) {
    int dp[n+1];
    dp[0]=0; dp[1]=1;
    for(int i=2; i<=n; i++){  // 单层循环
        dp[i] = dp[i-1]+dp[i-2];
    }
    return dp[n];
}

// 案例6:O(n log n) 归并排序
void merge_sort(int arr[], int l, int r) {
    if(l < r) {
        int mid = l + (r-l)/2;
        merge_sort(arr, l, mid);    // T(n/2)
        merge_sort(arr, mid+1, r);  // T(n/2)
        merge(arr, l, mid, r);      // O(n)
    } // 递归方程:T(n)=2T(n/2)+O(n) → O(n log n)
}

3.3、空间复杂度深度解析 🧠

在这里插入图片描述

3.3.1 空间复杂度类型
类型特征示例
O(1)固定大小的额外空间临时变量、指针
O(n)与输入规模成线性关系动态数组、哈希表
O(n²)二维数据结构邻接矩阵、二维数组
O(log n)递归栈空间二分查找递归版
3.3.2 空间复杂度对比实验
// 实验1:O(1) 原地反转数组
void reverse_array(int arr[], int n) {  // 仅用1个临时变量
    for(int i=0; i<n/2; i++) {
        int temp = arr[i];
        arr[i] = arr[n-1-i];
        arr[n-1-i] = temp;
    }
}

// 实验2:O(n) 斐波那契DP版(见案例5)

// 实验3:O(n) 递归阶乘
int factorial(int n) {
    if(n <= 1) return 1;
    return n * factorial(n-1);  // 递归深度n → 栈空间O(n)
}

3.4 复杂度速查表(程序员必备)

操作场景时间复杂度空间复杂度典型场景
数组随机访问O(1)O(1)arr[i]
链表插入节点O(1)O(1)已知插入位置
哈希表查找O(1)O(n)无冲突的理想情况
平衡树操作O(log n)O(n)AVL树、红黑树
图的邻接矩阵遍历O(n²)O(n²)存储所有顶点关系

四、终极知识图谱🗺️

在这里插入图片描述


🔜下期剧透:顺序表的奇幻之旅

明天我们将深入:

  • 🧩顺序表的底层内存原理
  • ⚡C语言实现动态数组
  • 💣内存管理的常见陷阱
  • 🔥时间复杂度实测对比(附性能测试代码)

准备好你的编译器,我们明天一起coding!🚀

💡学习小贴士:建议在本地IDE中运行所有代码示例,尝试修改参数观察运行结果的变化。
            复杂度分析部分可以尝试画出「语句执行频度表」辅助理解哦~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值