FatMouse's Speed
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 14427 Accepted Submission(s): 6358
Special Judge
Problem Description
FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing.
Input
Input contains data for a bunch of mice, one mouse per line, terminated by end of file.
The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice.
Two mice may have the same weight, the same speed, or even the same weight and speed.
The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice.
Two mice may have the same weight, the same speed, or even the same weight and speed.
Output
Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing a mouse). If these n integers are m[1], m[2],..., m[n] then it must be the case that
W[m[1]] < W[m[2]] < ... < W[m[n]]
and
S[m[1]] > S[m[2]] > ... > S[m[n]]
In order for the answer to be correct, n should be as large as possible.
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one.
W[m[1]] < W[m[2]] < ... < W[m[n]]
and
S[m[1]] > S[m[2]] > ... > S[m[n]]
In order for the answer to be correct, n should be as large as possible.
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one.
Sample Input
6008 1300 6000 2100 500 2000 1000 4000 1100 3000 6000 2000 8000 1400 6000 1200 2000 1900
Sample Output
4 4 5 9 7
Source
先对老鼠们按质量(第一关键字)升序,速度(第二关键字)降序。
然后用动态规划的思想去做,f 表示与上个节点的衔接。
最后用栈输出结果。
代码如下:
#include <cstdio>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define MAX 1000
struct mouse
{
int m,v; //质量和速度
int num;
}data[MAX+11];
int dp[MAX+11]; //LIS
int f[MAX+11]; //指向上一只老鼠
int maxx;
bool cmp(mouse a,mouse b)
{
if (a.m == b.m)
return a.v > b.v;
return a.m < b.m;
}
int main()
{
int ant = 1;
maxx = 0;
while (~scanf ("%d %d",&data[ant].m,&data[ant].v))
{
data[ant].num = ant;
dp[ant] = 1;
f[ant] = ant;
ant++;
}
ant--;
sort (data+1 , data+1+ant , cmp);
for (int i = 2 ; i <= ant ; i++)
{
for (int j = 1 ; j < i ; j++)
{
if (data[i].m > data[j].m && data[i].v < data[j].v && dp[j] + 1 > dp[i])
{
dp[i] = dp[j] + 1;
f[i] = j;
}
maxx = max(maxx , dp[i]);
}
}
int pos; //最长链最后一只老鼠的位置
for (int i = 1 ; i <= ant ; i++)
{
if (dp[i] == maxx)
{
pos = i;
break;
}
}
stack<int> s; //用栈来存老鼠的序号(sort后的下标)
s.push(pos);
while (f[pos] != pos)
{
pos = f[pos];
s.push(pos);
}
printf ("%d\n",maxx);
while (!s.empty())
{
printf ("%d\n",data[s.top()].num);
s.pop();
}
printf ("\n");
return 0;
}