文章目录
前言
在信息爆炸的时代,数据的形式早已不再局限于表格和数字。当我们试图构建一个智能问答系统或个性化推荐引擎时,传统的数据库似乎总是“力不从心”——它无法理解“煎蛋”和“炒蛋”的关联,也无法通过“红红黄黄的菜”这种模糊描述精准定位“番茄炒蛋”。而这一切,正是向量数据库的用武之地。
一、什么是向量数据
在深入探讨向量数据库之前,我们需要先理解一个核心概念——向量数据。向量数据库的核心功能是存储和查询高维向量,而向量数据的本质,是将现实世界的非结构化信息(如文本、图像、音频等)转化为计算机能理解的“数学语言”。
举个例子:想象我们在学做一道菜:番茄炒蛋,我们把准备阶段分三步:每一步都转化为空间三维坐标:
“番茄切块” → [0.7, -0.2, 1.3]
“打散鸡蛋” → [0.5, 1.1, -0.8]
“热锅放油” → [-1.2, 0.4, 0.6]
[0.7, -0.2, 1.3]这些就是向量数据!
每个步骤都被嵌入模型(Embedding)翻译成机器能懂的"位置坐标"(向量化)。就像把"番茄炒蛋步骤"变成地图上的定位点,方便快速查找。
实例应用:当你说"炒蛋前需要准备什么?",嵌入模型会把它转换成类似[0.3, 1.2, -0.5]的坐标,然后在"菜谱地图"上找最近的坐标点。
这就是向量数据库的一个简单的使用,[0.7, -0.2, 1.3]里面的数量就是维度,768维就是有768个数。