【DeepSeek R1构建本地RAG知识库】向量数据库原理讲解


前言

在信息爆炸的时代,数据的形式早已不再局限于表格和数字。当我们试图构建一个智能问答系统或个性化推荐引擎时,传统的数据库似乎总是“力不从心”——它无法理解“煎蛋”和“炒蛋”的关联,也无法通过“红红黄黄的菜”这种模糊描述精准定位“番茄炒蛋”。而这一切,正是向量数据库的用武之地。


一、什么是向量数据

在深入探讨向量数据库之前,我们需要先理解一个核心概念——向量数据。向量数据库的核心功能是存储和查询高维向量,而向量数据的本质,是将现实世界的非结构化信息(如文本、图像、音频等)转化为计算机能理解的“数学语言”。

举个例子:想象我们在学做一道菜:番茄炒蛋,我们把准备阶段分三步:每一步都转化为空间三维坐标:

“番茄切块” → [0.7, -0.2, 1.3]
“打散鸡蛋” → [0.5, 1.1, -0.8]
“热锅放油” → [-1.2, 0.4, 0.6]

[0.7, -0.2, 1.3]这些就是向量数据!

每个步骤都被嵌入模型(Embedding)翻译成机器能懂的"位置坐标"(向量化)。就像把"番茄炒蛋步骤"变成地图上的定位点,方便快速查找。

实例应用:当你说"炒蛋前需要准备什么?",嵌入模型会把它转换成类似[0.3, 1.2, -0.5]的坐标,然后在"菜谱地图"上找最近的坐标点。

这就是向量数据库的一个简单的使用,[0.7, -0.2, 1.3]里面的数量就是维度,768维就是有768个数。


### 使用 DeepSeek R1 构建本地RAG 知识库 #### 准备工作环境 为了构建基于 DeepSeek R1本地RAG 系统,需先安装必要的软件包并配置开发环境。推荐使用 Python 虚拟环境来管理依赖项。 ```bash python3 -m venv rag_env source rag_env/bin/activate pip install deepseek-r1 langchain streamlit ``` #### 数据准备与预处理 创建一个结构化的数据集作为知识源,可以是 JSON 文件或其他易于解析的形式。对于每条记录,应至少包含唯一标识符、正文内容以及任何有助于后续检索的相关元数据字段。 ```json [ {"id": "doc_001", "content": "这是第一条文档的内容...", "metadata": {...}}, {"id": "doc_002", "content": "第二条文档的信息在这里.", "metadata": {...}} ] ``` #### 初始化索引数据库 利用 LangChain 或其他相似框架建立向量存储层,以便于之后进行高效的语义匹配查询操作。 ```python from langchain.indexes import VectorStoreIndexWrapper, Chroma documents = [...] # 加载之前准备的数据列表 vector_store = Chroma.from_documents(documents=documents) index_wrapper = VectorStoreIndexWrapper(store=vector_store) ``` #### 配置 DeepSeek R1 模型实例 加载预先训练好的 DeepSeek R1 模型,并设置好运行参数以优化性能表现。 ```python import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer device = 'cuda' if torch.cuda.is_available() else 'cpu' model_name_or_path = "path/to/deepseek-r1" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path).to(device) ``` #### 实现核心逻辑函数 编写用于接收用户输入、调用检索服务获取最相关的上下文片段、再经由生成模型合成最终回复的核心业务流程方法。 ```python def generate_response(query_string): retrieved_docs = index_wrapper.similarity_search(query=query_string)[:5] # 获取前五名相关度最高的文档 context_texts = "\n".join([d.page_content for d in retrieved_docs]) inputs = tokenizer(f"{query_string} [SEP] {context_texts}", return_tensors="pt").input_ids.to(device) outputs = model.generate(inputs) response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return response_text ``` #### 打造交互界面 最后一步就是设计图形用户接口 (GUI),让用户可以通过 Web 浏览器方便地访问这套系统所提供的问答能力。Streamlit 提供了一个简单易用的方式来部署此类应用程序。 ```python import streamlit as st st.title('DeepSeek R1 Localized Knowledge Base') user_input = st.text_area("Ask anything:") if user_input: answer = generate_response(user_input) st.write(answer) ``` 通过上述步骤,已经完成了一个完整的基于 DeepSeek R1本地RAG 知识库解决方案的设计[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xd聊架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值