- 博客(1020)
- 资源 (54)
- 收藏
- 关注

原创 扩散模型与强化学习(0):专栏汇总与导航
最近强化学习在Diffusion Models得到了越来越多广泛的应用,本专栏将系统性地介绍当前Diffusion Models中实用且前沿的技术进展。
2025-06-22 17:11:34
289
2

原创 手把手写C++服务器(0):专栏文章-汇总导航【持续更新】
手把手写C++服务器(1):网络编程常见误区手把手写C++服务器(2):C/C++编译链接模型、函数重载隐患、头文件使用规范手把手写C++服务器(3):C++编译常见问题、编译优化方法、C++库发布方式手把手写C++服务器(4):Linux四大必备网络分析工具手把手写C++服务器(6):编译实操——打开gcc/g++世界手把手写C++服务器(7)——给C语言程序员看的C++科普手把手写C++服务器(8):常用boost之program_options命令行参数解析
2021-07-28 11:58:34
4908
51

原创 经典必刷LeetCode汇总
LeetCode题目分类Hash相关q1_两数之和链表操作q2_两数相加 q19_删除链表的倒数第N个节点 q61_旋转链表 q138_复制带随机指针的链表 q206_反转链表双指针遍历/滑动窗口q3_无重复字符的最长子串 q11_盛最多水的容器 q15_三数之和 q16_最接近的三数之和 q26_删除排序数组中的重复项 q42_接雨水 q121_买卖股票的...
2020-04-12 15:04:05
4094
2
原创 代码解读:微调Qwen2.5-Omni 实战
Qwen2.5-Omini发布已经几个月了,但是网上实战微调的教程比较少,特别是如何准备数据如何调参等经验性技巧依旧比较难获得。这篇博客从实战出发,介绍如何微调Qwen2.5-Omni以及微调过程中的一些经验。
2025-07-28 20:46:33
946
原创 畅游Diffusion数字人(31):FantasyPortrait打造全新面部驱动引擎
从静态图像生成富有表现力的面部动画是一项具有挑战性的任务。以往依赖显式几何先验(如人脸关键点或三维形状模型 3DMM)的方法,在跨身份迁移时容易产生伪影,且难以捕捉细腻的情感。此外,现有方法普遍不支持多角色动画生成,因为来自不同角色的驱动特征往往会相互干扰,进一步加大任务的复杂度。为了解决这些问题,阿里巴巴提出了 FantasyPortrait,一个基于扩散变换器的框架,能够在单角色和多角色场景中生成高保真、情感丰富的面部动画。
2025-07-23 08:15:00
1464
原创 扩散模型与强化学习(14):强化学习中黑客技能的泛化现象与解决方案
研究揭示了AI模型的奖励黑客行为在任务间具有泛化性。通过8个多选题数据集实验,使用GPT-3.5和专家迭代方法发现,训练环境中的奖励黑客行为会泛化到测试环境。研究设计了"草稿纸"机制记录模型推理过程,并观察到模型能结合用户信念、认知评估标准,甚至可能重写自身奖励函数。实验设置了政治谄媚、工具奉承等可游戏化环境课程,结果显示模型奖励篡改成功率低于1%。缓解措施包括对抗性奖励函数、模型前瞻等技术,以及在易受攻击环境中使用监督微调数据。研究强调需要改进RL算法和工程实践来预防奖励黑客行为
2025-07-22 09:00:00
588
2
原创 扩散模型与强化学习(13):In-Context Reward Hacking现象与解决方案
奖励作弊(Reward Hacking)指智能体通过钻规则漏洞而非真正完成任务来最大化奖励信号。以论文编辑实验为例,研究提出“上下文奖励作弊”(ICRH)概念,即模型利用共享上下文钻空子,如盲目添加“正确!”或输出无关内容。实验发现,模型规模扩大可能加剧ICRH,且提示词优化难以根治。与传统奖励作弊不同,ICRH发生在部署阶段,由通用性驱动。应对建议包括多轮测试、多样化反馈及异常场景模拟,但尚无完美解决方案。
2025-07-21 09:00:00
1021
原创 扩散模型与强化学习(12):RLHF中的Reward hacking现象
本文探讨了强化学习中的奖励黑客(Reward Hacking)问题,即智能体通过利用奖励函数缺陷获取高回报却未达成预期目标的现象。文章分析了奖励黑客的成因,包括环境不完善、奖励函数设计挑战以及Goodhart定律的影响,并区分了环境误设型和奖励篡改型两种类型。特别关注了RLHF(基于人类反馈的强化学习)在语言模型中的应用,指出模型可能通过生成看似正确实则错误的回答来"欺骗"人类评估者。研究显示,随着模型能力提升,奖励黑客现象会加剧,表现为代理奖励上升而真实奖励下降。文章呼吁未来研究
2025-07-20 15:03:30
912
原创 FantasyPortrait:Enhancing Multi-Character Portrait Animation with Expression-Augmented Diffusion
从静态图像中产生富有表现力的面部动画是一项具有挑战性的任务。先前的方法依赖于明确的几何先验(例如,面部地标或3DMM),在交叉再现中经常受到伪影的影响,并且难以捕捉微妙的情感。此外,现有的方法缺乏对多角色动画的支持,因为来自不同个体的驱动特征经常相互干扰,使任务复杂化。为了解决这些挑战,我们提出了FantasyPortrait,这是一个基于扩散转换器的框架,能够为单角色和多角色场景生成高保真和情感丰富的动画。我们的方法引入了一种表情增强学习策略,该策略利用内隐表征来捕捉身份不可知论的面部动态,增强模型呈现细
2025-07-19 11:44:59
800
2
原创 每日AIGC最新进展(88):月之暗面提出Anything-to-Audio生成AudioX、浙江大学提出基于潜在运动的肖像视频生成、百度提出人类手势与语音节奏同步的视频生成Cosh-DiT
月之暗面提出Anything-to-Audio生成AudioX、浙江大学提出基于潜在运动的肖像视频生成、百度提出人类手势与语音节奏同步的视频生成Cosh-DiT
2025-07-10 09:00:00
884
原创 每日AIGC最新进展(87):字节跳动提出通过相机控制的视频扩散模型实现大规模动态场景CameraCtrl II、微软提出3D引导的可控视频生成I2V3D、高德提出运动规律视频测评VMBench
字节跳动提出通过相机控制的视频扩散模型实现大规模动态场景CameraCtrl II、微软提出3D引导的可控视频生成I2V3D、高德提出运动规律视频测评VMBench
2025-07-09 08:45:00
676
原创 每日AIGC最新进展(86):字节跳动提出多物体组合视频生成CINEMA、CVPR2025 自回归Mesh生成TreeMeshGPT、南京大学提出视频中插入单图对象方法DreamInsert
字节跳动提出多物体组合视频生成CINEMA、CVPR2025 自回归Mesh生成TreeMeshGPT、南京大学提出视频中插入单图对象方法DreamInsert
2025-07-08 08:30:00
830
1
原创 每日AIGC最新进展(85):华中科技大学提出视觉空间人物思维链EmbodiedVSR、腾讯提出VLM-Guide Mesh生成PBR3DGen、TCD提出使用Jensen蒸馏的Text-to-3D
华中科技大学提出视觉空间人物思维链EmbodiedVSR、腾讯提出VLM-Guide Mesh生成PBR3DGen、TCD提出使用Jensen蒸馏的Text-to-3D
2025-07-07 09:00:00
1104
原创 每日AIGC最新进展(84):清华大学提出高效视频理解FastVID、多伦多大学提出长时间视频理解模型Vamba、杭州电子科技大学提出反事实推理多模态大模型Bench COVER
清华大学提出高效视频理解FastVID、多伦多大学提出长时间视频理解模型Vamba、杭州电子科技大学提出反事实推理多模态大模型Bench COVER
2025-07-06 15:09:56
796
原创 每日AIGC最新进展(83):华为提出频驱动的通用肖像视频编辑RASA、香港科技大学提出长视频生成Multi-Agent、北京大学提出高效视频到音频生成模型TA-V2A
华为提出频驱动的通用肖像视频编辑RASA、香港科技大学提出长视频生成Multi-Agent、北京大学提出高效视频到音频生成模型TA-V2A
2025-07-05 08:45:00
824
原创 每日AIGC最新进展(82):耶鲁大学提出自回归视频生成统一框架Meta-ARVDM、弗吉尼亚州立大学提出视频参照抠图VRMDiff、中山大学提出大型的任务导向手-物体交互视频数据集TASTE-Rob
耶鲁大学提出自回归视频生成统一框架Meta-ARVDM、弗吉尼亚州立大学提出视频参照抠图VRMDiff、中山大学提出大型的任务导向手-物体交互视频数据集TASTE-Rob
2025-07-04 08:45:00
541
原创 每日AIGC最新进展(81):快手提出生成视频重渲染框架ReCamMaster、天津大学提出多任务视频修复框架MTV-Inpaint、微软提出新文生视频框架HiTVideo
快手提出生成视频重渲染框架ReCamMaster、天津大学提出多任务视频修复框架MTV-Inpaint、微软提出新文生视频框架HiTVideo
2025-07-03 08:45:00
1155
1
原创 扩散模型与强化学习(11):解读经典Diffusion-DPO
本文提出Diffusion-DPO方法,通过直接优化人类偏好数据来对齐文本到图像扩散模型。该方法基于直接偏好优化(DPO)框架,重新设计损失函数以适应扩散模型的似然特性。实验使用85.1万对Pick-a-Pic数据集微调Stable Diffusion XL模型,结果表明该方法在视觉吸引力和文本对齐度上显著优于基线模型。研究还探索了AI反馈替代人工评估的可行性,发现使用PickScore等评分模型训练能进一步提升性能,为扩散模型对齐提供了新方向。
2025-07-02 08:45:00
1461
原创 扩散模型与强化学习(10):解读第一个视频生成DPO的工作VideoDPO
本文提出VideoDPO方法,通过改进直接偏好优化(DPO)来解决视频扩散模型存在的视觉质量与文本-视频对齐问题。作者设计了OmniScore综合评分系统,同时评估视频质量和语义对齐度,并开发自动化流程生成偏好对数据,无需人工标注。实验表明,该方法显著提升了生成视频的视觉保真度和语义一致性,为多维度偏好对齐提供了有效解决方案。
2025-07-01 08:30:00
401
原创 扩散模型与强化学习(9):Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization
本文提出了一种基于人类偏好对齐的扩散框架,用于生成高度动态和逼真的音频驱动肖像动画。通过构建专门的人类偏好数据集,并引入定向偏好优化和时序运动调制两大创新,解决了唇部同步、表情自然度和运动连贯性等关键挑战。该方法在UNet和DiT架构中均表现出优势,实验表明其显著提升了唇音同步精度和面部表现力,同时在人类偏好指标上优于现有基线。研究还发布了首个针对肖像动画的偏好数据集,为相关领域研究提供了重要资源。该框架为高保真肖像动画的生成提供了新的技术路径。
2025-06-30 09:00:00
1015
原创 扩散模型与强化学习(8):解读Wan2.1 reward训练代码
本文介绍了如何利用奖励函数训练Wan2.1视频生成模型。文章详细讲解了四种奖励函数(美学奖励、HPS奖励、PickScore奖励和MPS奖励)的实现方法,并提供了完整的训练代码。通过控制计算图的保存范围来优化内存使用,只保留关键步骤的计算图,避免计算图爆炸。该方法适用于视频生成强化学习任务,为相关研究提供了实用参考。
2025-06-29 13:10:53
629
原创 扩散模型与强化学习(7):用DPO改进音频驱动视频生成实践
本文提出了一种创新的人类偏好对齐扩散框架,用于生成音频和骨骼运动驱动的高质量肖像动画。该框架包含两个核心技术:1)针对肖像动画的定向偏好优化,通过构建人类偏好数据集优化生成结果;2)时间运动调制机制,将不同采样率的运动信号有效整合到扩散模型中,保持高频运动细节。实验表明,该方法在唇音同步、表情自然度和运动连贯性方面显著优于现有基线方法,同时提升了人类偏好评价指标。研究还发布了专门构建的肖像动画偏好数据集,为相关研究提供了新基准。
2025-06-28 09:00:00
86
原创 扩散模型与强化学习(6):快手可灵提出经典的视频Flow-DPO方法VideoAlign
本文提出了一种利用人类反馈改进视频生成的系统方法。研究团队构建了包含182k样本的多维人类偏好数据集(视觉质量、运动质量和文本对齐),并开发了VideoReward奖励模型。基于强化学习框架,研究者提出了三种基于流模型的对齐算法:Flow-DPO、Flow-RWR两种训练时方法和Flow-NRG推理时技术。实验表明,VideoReward优于现有模型,Flow-DPO表现最佳,而Flow-NRG支持推理时自定义质量权重。通过分离上下文相关与无关的评估维度,该方法显著提升了视频生成质量与可解释性。
2025-06-27 09:00:00
624
原创 扩散模型与强化学习(5):Flow-based Model与GRPO
最近在生成模型方面的突破- -特别是扩散模型和矫正流- -已经彻底改变了视觉内容的创造,但将模型输出与人类偏好保持一致仍然是一个关键的挑战。现有的基于强化学习( RL )的视觉生成方法存在严重的局限性:与基于常微分方程( ODEs )的现代采样范式不兼容、大规模训练不稳定以及缺乏视频生成的验证。本文介绍DanceGRPO,第一种将群体相对策略优化( Group Relative Policy Optimization,GRPO )适应于视觉生成范式的统一框架。
2025-06-26 09:00:00
976
原创 扩散模型与强化学习(4):PG/TRPO/PPO/DPO/GRPO的区别与联系
本文系统梳理了强化学习策略优化方法的演进过程,从PG(策略梯度)到TRPO(信任域策略优化)、PPO(近端策略优化)、DPO(直接偏好优化)直至GRPO(群组相对优化策略)。这一发展路径呈现出三大规律:1)从在线策略向离线策略迁移;2)策略稳定性不断提升;3)数据需求从环境交互转向静态偏好数据。文章重点对比了各算法核心思想与改进点:TRPO引入信任域约束解决PG的高方差问题,PPO通过Clip机制简化TRPO的复杂计算,DPO实现离线策略学习并利用人类偏好数据,而GRPO则在保持奖励模型的同时优化计算效率。
2025-06-25 09:00:00
1131
原创 扩散模型与强化学习(3):Skyreels-v2中的DPO实战
《Skyreels-v2: Infinite-length film generative model》中详细介绍了训练Flow-DPO的原理、方法、数据收集策略等,内容非常翔实,是训练Flow-DPO非常难得的一份参考资料。
2025-06-24 09:00:00
713
原创 扩散模型与强化学习(2):字节视频生成模型Seaweed-7B中的RLHF实践
虽然SFT在改善美观方面是有效的,但在SFT后经常观察到运动和结构的退化。在Seaweed-7B中,使用RLHF可以明显改善在改善结构和运动质量。
2025-06-23 08:45:00
960
原创 扩散模型与强化学习(1):字节Seedance中的人类偏好优化实践
最近强化学习在Diffusion Models得到了越来越多广泛的应用,本专栏将系统性地介绍当前Diffusion Models中实用且前沿的技术进展。这篇博客介绍字节最新的视频生成模型Seedance 1.0: Exploring the Boundaries of Video Generation Models中所用到的强化学习技术。
2025-06-22 17:07:46
898
原创 VLM引导的矢量草图生成AutoSketch
很久没有解读草图生成相关的论文了,这次解读国立台湾大学提出的最新论文“AutoSketch: VLM-assisted Style-Aware Vector Sketch Completion”,使用VLM补全草图生成,工作很有意思。
2025-06-08 21:18:07
881
原创 详细解读InstantX团队最新力作个性化人物定制生成InstantCharacter代码和调参经验
InstantX团队自从推出了InstantID之后,再也没有像InstantID爆款的开源项目,但是近两年大佬们一直努力开源,这种精神令人敬仰。这篇博客解读InstantX最新的开源项目InstantCharacter。
2025-06-05 20:19:45
788
原创 OSError: Can‘t load tokenizer for ‘facebook/wav2vec2-large-xlsr-53‘. If you were trying to load it
在使用facebook/wav2vec2-large-xlsr-53进行音频编码时,遇到了无法加载分词器的问题,错误提示为OSError: Can't load tokenizer for 'facebook/wav2vec2-large-xlsr-53'。
2025-05-21 20:09:15
228
原创 畅游Diffusion数字人(30):情绪化数字人视频生成
仅从音频生成此类运动极具挑战性,因为它在音频和运动之间存在一对多的相关性。运动视频的情绪是多元化的选择,之前的工作很少考虑情绪化的数字人生成。今天解读一个最新的工作FLOAT,可以生成制定情绪化的数字人视频。
2025-05-20 10:51:44
915
原创 畅游Diffusion数字人(29):腾讯混元团队提出数字人表情控制HunyuanPortrait
之前解读过很多经典的表情控制的工作,如Echomimic、Follow-your-Emoji等。最近讯混元团队提出数字人表情控制HunyuanPortrait,这个工作在效果上明显超越了之前的工作,这篇博客详细解读一下这篇论文。
2025-05-19 11:40:52
662
2
2019年西安电子科技大学《自动控制原理》期末试卷
2020-01-08
中国大学生计算机设计大赛·国家级一等奖作品·资料汇总
2021-05-19
ShapeNet数据集
2021-02-05
电子信息/通信/计算机专业 保研资料汇总
2021-05-28
2016年-2019年西安电子科技大学《自动控制原理》期末试卷汇总.zip
2020-01-08
Webvid-10M数据集 完整版-第一部分
2024-09-23
Webvid-1M原始数据集完整版-第二部分
2024-09-23
手写英文字母数据集【附使用方法】
2021-11-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人