【车流量预测论文】一种基于多模态深度学习的混合交通流预测方法[1025]

本文提出了一种混合多模态深度学习方法,用于短期交通流预测。该方法结合了1D CNN和GRU,利用注意力机制学习多模态交通数据的时空特征和长期依赖性,展示出在复杂非线性城市交通流预测中的高准确性和有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一种基于多模态深度学习的混合交通流预测方法

A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning

作者团队:西南交通大学&国立台湾科技大学等

Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatialtemporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xhfei1224

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值