一种基于多模态深度学习的混合交通流预测方法
A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning
作者团队:西南交通大学&国立台湾科技大学等
Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatialtemporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-d