【车流量预测论文】Geoman: Multi-level attention networks for geo-sensory time series prediction.-20201206

GeoMAN模型利用多级注意力机制处理地理传感器数据,预测时间序列,尤其适用于空气质量预测。模型结合局部和全局Attention,通过encoder-decoder架构,结合额外的环境信息提升预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GeoMAN:基于multi-level attention机制的传感器时间序列预测模型

简单的Pytorch实现,具体可以参考Github: https://github.com/xchadesi/GeoMAN, 这里主要介绍一下该模型的应用场景、多层注意力机制原理,以及输入数据的构造方法等。

1.应用场景

在这里插入图片描述
上图是北京市地区的空气检测站的分布图,每一个检测站被称之为一个sensor,每一个sensor在一天之内都会间隔固定的时间(一般是5min)采集空气数据,其中包括:温度、湿度、PM2.5(是本文需要预测的指标—目标属性)、NO、NO2、以及各个方向的风力大小等19个维度的属性特征。这种场景的数据特点就是,每一个sensor地理位置是不会变化的,它们之间的相对位置也是不变的,但是由于是每隔一段时间就会采集一次数据,因此每一个sensor都会产生一系列的时序数据。假设sensor的数量是Ng个,每一个sensor采集的属性特征数为Nl。分析任务就是,给一个时间间隔T范围内的所有sensor数据,来预测某一个sensori在接下来的T+τ时间段内的某一维属性特征序列值。从问题描述我们可以知道,对于其中的一个sensor X,它在一段时间T内产生的数据可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xhfei1224

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值