【车流量预测论文】(2020)GMAN: A Graph Multi-Attention Network for Traffic Prediction-20201213

GMAN是一种用于交通预测的新型网络结构,它利用编码器-解码器架构和时空注意力块,有效地考虑了交通系统的复杂性和动态变化。通过转换注意力层减少误差传播,提高长期预测准确性,尤其在1小时交通量和速度预测上表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GMAN:一种用于交通预测的图形多注意网络

GMAN: A Graph Multi-Attention Network for Traffic Prediction

论文参考代码Github:https://github.com/suu1994/GMAN

摘要

由于交通系统的复杂性和许多影响因素不断变化的性质,长期交通预测具有很大的挑战性。在本文中,我们关注时空因素,并提出一种图多注意网络(GMAN)预测道路网络图中不同位置的超前时间步长的交通状况。GMAN采用了一种编码器-解码器架构,其中编码器和解码器均由多个时空注意块组成,以模拟时空因素对交通状况的影响。 编码器对输入流量特征进行编码,解码器预测输出序列。在编码器和解码器之间,应用转换注意层来转换编码的流量特征,以生成未来时间步长的序列表示,作为解码器的输入。转换注意机制对历史时间步长和未来时间步长之间的直接关系进行建模,有助于缓解预测时间步长之间的误差传播问题。在两个实际交通预测任务(交通量预测和交通速度预测)上的实验结果表明了GMAN的优越性。特别是,在1小时前的预测中,GMAN的MAE测量值比最先进的方法提高了4%。

作者团队:厦门大学等

《GMAN: A Graph Multi-Attention Network for Traffic Prediction》

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xhfei1224

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值