【车流量预测】(2018DCRNN)Diffusion convolutional recurrent neural network: Data-driven traffic forecasting

DCRNN是一种用于交通预测的深度学习框架,结合扩散卷积和循环神经网络,有效地捕捉道路网络的空间依赖性和时间动力学。在大规模道路网络数据集上,该模型相比其他先进基线提升了12%-15%的预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DCRNN:扩散卷积循环神经网络:数据驱动的交通预测

Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[J]. ICLR:1707.01926, 2018.

1.摘要

   时空预测在神经科学、气候、交通等领域有着广泛的应用。交通预测就是这种学习任务的典型例子。由于(1)对道路网络的复杂空间依赖性,(2)随着道路条件变化的非线性时间动力学和(3)长期预测的固有困难,这项任务具有挑战性。为了应对这些挑战,我们提出将交通流建模为有向图上的扩散过程,并

### 解决 `cd` 命令无法找到 `stable-diffusion-webui` 文件夹的问题 当遇到 `cd` 命令找不到指定文件夹的情况时,通常是因为当前工作路径不正确或是目标文件夹不存在于预期位置。以下是几种可能的原因及解决方案: #### 1. 确认文件夹存在及其绝对路径 确保 `stable-diffusion-webui` 文件确实存在于所期望的位置。可以使用 `ls` 或者 `find` 来查找文件夹。 ```bash # 列出当前目录下的所有文件和子目录 ls -la # 查找名为 'stable-diffusion-webui' 的文件夹 find /path/to/search -type d -name "stable-diffusion-webui" ``` 如果通过上述方法找到了文件夹的确切位置,则可以直接切换到该文件夹[^1]。 #### 2. 使用绝对路径而非相对路径 有时相对路径可能会引起混淆,尤其是在脚本执行过程中改变了默认的工作目录。因此建议始终尝试使用完整的绝对路径来访问文件夹: ```bash cd /full/path/to/stable-diffusion-webui/ ``` 这一步骤能够有效避免因相对路径引起的定位失败问题[^3]。 #### 3. 检查克隆仓库过程是否有误 假如是从 GitHub 上拉取项目源码创建此文件夹的话,请确认 Git 克隆操作顺利完成,并且没有因为网络原因中途中断而导致文件夹未被成功建立。 ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ``` 若之前的操作未能完成,可再次运行以上命令重新获取最新版本的代码库。 #### 4. 调整权限设置 某些情况下,由于权限不足也可能导致无法正常读写甚至查看特定文件夹的内容。此时可以通过修改文件夹所属用户组以及相应的读写权限来进行修复。 ```bash sudo chown -R $USER:$USER ./stable-diffusion-webui chmod -R u+rwx ./stable-diffusion-webui ``` 这些指令会将文件夹所有权分配给当前登录用户并授予其完全控制权,从而允许顺利进入文件夹内进行后续操作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xhfei1224

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值