DCRNN:扩散卷积循环神经网络:数据驱动的交通预测
Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[J]. ICLR:1707.01926, 2018.
1.摘要
时空预测在神经科学、气候、交通等领域有着广泛的应用。交通预测就是这种学习任务的典型例子。由于(1)对道路网络的复杂空间依赖性,(2)随着道路条件变化的非线性时间动力学和(3)长期预测的固有困难,这项任务具有挑战性。为了应对这些挑战,我们提出将交通流建模为有向图上的扩散过程,并