【pytorch】model.train()解释

在PyTorch中,model.train()用于开启神经网络的训练模式,激活batch normalization和dropout,确保模型在训练数据上学习。而model.eval()则在测试阶段使用,它保持batch normalization的统计值并关闭dropout,以便于更准确地评估模型的性能。理解这两个模式的正确使用对于模型训练至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

model.train():

在使用pytorch构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),作用是启用batch normalization和drop out。

model.eval():

测试过程中会使用model.eval(),这时神经网络会沿用batch normalization的值,并不使用drop out。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xhfei1224

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值